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Abstract

Drug-induced abnormal heart rhythm known as Torsades de Pointes (TdP) is a potential lethal 

ventricular tachycardia found in many patients. Even newly released anti-arrhythmic drugs, like 

ivabradine with HCN channel as a primary target, block the hERG potassium current in 

overlapping concentration interval. Promiscuous drug block to hERG channel may potentially lead 

to perturbation of the action potential duration (APD) and TdP, especially when with combined 

with polypharmacy and/or electrolyte disturbances. The example of novel anti-arrhythmic 

ivabradine illustrates clinically important and ongoing deficit in drug design and warrants for 

better screening methods. There is an urgent need to develop new approaches for rapid and 

accurate assessment of how drugs with complex interactions and multiple subcellular targets can 

predispose or protect from drug-induced TdP. One of the unexpected outcomes of compulsory 

hERG screening implemented in USA and European Union resulted in large datasets of IC50 

values for various molecules entering the market. The abundant data allows now to construct 

predictive machine-learning (ML) models. Novel ML algorithms and techniques promise better 

accuracy in determining IC50 values of hERG blockade that is comparable or surpassing that of 

the earlier QSAR or molecular modeling technique. To test the performance of modern ML 

techniques, we have developed a computational platform integrating various workflows for 

quantitative structure activity relationship (QSAR) models using data from the ChEMBL database. 

To establish predictive powers of ML-based algorithms we computed IC50 values for large dataset 

of molecules and compared it to automated patch clamp system for a large dataset of hERG 

blocking and non-blocking drugs, an industry gold standard in studies of cardiotoxicity. The 

optimal protocol with high sensitivity and predictive power is based on the novel eXtreme gradient 

boosting (XGBoost) algorithm. The ML-platform with XGBoost displays excellent performance 

with a coefficient of determination of up to R2 ~0.8 for pIC50 values in evaluation datasets, 

surpassing other metrics and approaches available in literature. Ultimately, the ML-based platform 

developed in our work is a scalable framework with automation potential to interact with other 
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developing technologies in cardiotoxicity field, including high-throughput electrophysiology 

measurements delivering large datasets of profiled drugs, rapid synthesis and drug development 

via progress in synthetic biology.
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INTRODUCTION

Abnormal cardiac electrical activity is a common side effect from unintended block of the 

promiscuous drug target Kv11.1 K+ channel (better known as hERG), the pore-forming 

domain of the delayed rectifier K+ channel in the heart. Block of the hERG channel leads to 

prolongation of the QT interval on the ECG, a phase of the cardiac cycle that corresponds to 

underlying cellular repolarization. Since 2005, the regulatory process for preclinical drug 

candidates includes a dedicated clinical study, primarily in healthy volunteers, the so-called 

“Thorough QT Study”. A drug that results in greater than 5 ms QT prolongation above 

normal in healthy humans indicates “regulatory concern” 1. Various drugs with unrelated 

structural scaffolds are known to block hERG and several drugs have been withdrawn from 

the market or were restricted in their usage due to their potential to block Kv11.1, lengthen 

the QT-interval and cause TdP. Estimates are that 40–70% of all new drug candidates bind to 

hERG channel and thus present a potential for cardiotoxicity 2–7. The in-vitro and animal 

models were developed to screen for drug blockade to hERG leading to substantial increase 

in cost of drug development. Therefore, development of cost-effective and efficient 

computational screening approaches may offer complimentary advantage to in-vitro pre-

clinical studies by eliminating potentially dangerous candidates early in the development 

and providing information on key determinants of inadvertent hERG blockade.

One of the most successful strategies to avoid side-effects in pre-clinical drug development 

relies on in-silico screening with Quantitative Structure Activity Relationship (QSAR) 

modeling, where predictive models for desired (on-target) and undesired (anti- or off-target) 

drug effects are evaluated to design optimized molecules as potential lead candidates 8. The 

vast majority of the QSAR models reported in the literature to that point for hERG-related 

cardiotoxicity are ligand-based, i.e. the model builds on data derived from the ligand 

structures and experimental data 9–11, rather than the data derived from the molecular targets 
12–14. QSAR regression models map these data to molecular activity and aim to predict the 

activities of novel molecules, i.e. compounds that were outside of the training sets. Popular 

pharmacophore models can incorporate the data of a broad variety of molecules with 

different structural scaffolds with the goal to generate so-called global models that aim to be 

predictive across various molecular scaffolds15–17. Several attempts were made to employ 

machine learning (ML) techniques to develop better QSAR models. Past work employed 

simple linear regression models such as partial least squares (PLS) 17–19 or Support Vector 

Machines (SVM)9,19–21 and also Bayesian approaches for classification 13,16,22,23 as well as 

Nearest Neighbor approaches 24. More recent papers also include ensemble based methods 
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9,25–27 such as Random Forest 9,25 and Gradient Boosting 9 which are widely used 

nowadays. Also artificial neural networks have been used 19,28,29 to study QSAR properties 

of various target systems. The challenge to extend regression models to pre-clinical 

evaluation of cardiotoxicity is related to the relatively small and diverse datasets available 

resulting limited success and trust in the applications to pre-clinical toxicology 9,10. Another 

challenge for ML methods regarding hERG-related screening is related to the limited ability 

in quantitative IC50 predictions. Most of the reported QSAR models with larger datasets are 

binary classification models, which combine compounds in groups of ‘active’ and ‘inactive’ 

compounds or, sometimes, provide multi-class placements for molecules such as non-active, 

slightly active, very active, with prediction accuracies currently between 0.8 and 0.9 on 

some test sets 10,30,31. In contrast to classification models, regression models allow 

quantitative estimations of the target value32. We found only three hERG regression models 

using a larger training sets (>500 compounds)17,25,33. It is not straightforward to compare 

the quality of these models due to different evaluation metrics used and different 

compositions of training and test sets which may have a considerable effect on the 

performance 34. To evaluate the model accuracy many publications use cross-validation, 

where the performance of the model is usually estimated with the cross-validated coefficient 

of determination, referred to as Q2. However, as other authors pointed out, high Q2 values 

are necessary, but not sufficient to demonstrate model generalizability. To estimate the 

model performance it was recommended to use multiple metrics and based on cross-

validation and external data, that was not used to select or train the model 35–37.

The compulsory hERG screening implemented in USA and European Union for all drugs 

entering the market resulted in large datasets of IC50 values. Therefore, there is an 

opportunity to validate performance of ML-based methods using large and diverse datasets. 

That is, the data generated by various academic and industrial consortia allows for 

development of quantitatively-predictive ML platforms with a potential for rapid evaluation 

of IC50 values comparable or surpassing that of conventional QSAR or receptor-based 

methods. In recent years, ensemble tree methods such as Gradient Boosting Tree Regression 

or Random Forest 38,39 have been applied to various QSAR learning problems with great 

success 9,40. To test performance of various ML techniques, we have developed a 

computational platform with various workflows to build QSAR models using data from the 

ChEMBL database. To apply ML algorithms for computational toxicology, we used the 

Python package for QSAR modeling that integrates RDKit, scikit-learn, pandas, XGBoost 

modules, among others, facilitating QSAR model prototyping. All inquiries about this 

program package called “pyQSAR” should be addressed to the authors of this manuscript. 

To illustrate predictive powers of ML algorithms we computed IC50 values for a large 

dataset of molecules and compared it to automated patch clamp system for a large dataset of 

hERG blocking and non-blocking drugs, an industry gold standard in studies of 

cardiotoxicity. The dataset chosen for evaluation contained all of the compounds from the 

Comprehensive In Vitro Proarrhythmia Assay (CiPA) 41,42. We applied cross-validation and 

rigorously tested the model to ensure optimal generalization properties and explored the 

necessary conditions for high performance in assessing large datasets available for hERG 

blockers.
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METHODS

Overview

The aim of this study is to design an algorithm for prioritization and ranking various 

compounds according to the associated hERG-related cardiotoxic risks. The central 

approach of our study is that cardiotoxicity is assessed using the unified protocol for all 

compounds in the evaluation set e.g. experimental methods, protocols, cell-lines, etc are the 

same for all compounds. Therefore, we designed the training set accordingly ensuring that 

multiple compounds were screened with the same experimental condition. We used two 

different classes of descriptors, i.e. molecular descriptors and entries from 2D-

pharmacophore fingerprints, respectively. The molecular descriptors used in ML model 

development are mostly real values. The 2D-pharmacophore features are binary descriptors.

Construction of the ML training set for evaluation of hERG1 blockade

The ChEMBL43 database (Dec 2015) was queried for bioactivities for the target 

‘CHEMBL240’ the potassium voltage-gated channel subfamily H member 2 (the hERG 

channel, Kv11.1) with the Python package chembl-webresource-client (version 0.8.36). The 

following assay descriptions were included into the query: ‘Inhibition of human ERG’, 
‘Binding affinity to human ERG’, ‘Inhibition of human ERG at 10 uM’ and ‘Inhibition of 
human ERG channel’. The query was restricted to the bioactivity type ‘IC50’, the assay type 

‘B’ i.e. binding assays, and the target confidence ‘9’. Only items with a defined IC50 value 

were selected for training of ML models. 1069 compounds remained. The confidence score 

value reflects both the confidence that the target assigned is the correct target for that assay. 

The confidence scores range from 0, for as yet non-curated data entries, to 9, where a single 

protein target has been assigned with a high degree of confidence. Then the dataset was 

restricted to bioassays with at least 6 activities for different compounds leading to 822 

entries. Removal of duplicates in the dataset and of compounds with a molecular masses 

larger than 650 atomic units lead to 729 compounds of which 29 were contained in the 

predefined testset 2 and were removed as well. The training set contained 700 compounds 

from which 100 compounds were randomly selected to serve as a test set (Test1). 

Histograms of descriptive properties of compounds in the dataset including training and all 

test sets are provided in the supplementary material.

Workflow and composition of test sets

The modeling work-flow is illustrated in Fig 1. Four different test sets were constructed to 

evaluate the model performance. From the 700 compounds that passed the filtering 100 

compounds were selected randomly to form testset 1 (Test1). The second test set (Test2) 

contained 55 compounds with IC50 values reported by Kramer et al. 44. Compounds that 

were present in both the ChEMBL dataset and Test2 were removed manually from the 

ChEMBL data. This set is used as a standard evaluation toolbox for CiPA assays containing 

safe and cardiotoxic compounds with known activities allowing accurate calibration of the 

developed methods. Entries corresponding to assays that contain between 2 and 5 

compounds only were combined into test set 3 (Test3) containing total 155 compounds after 

removal of duplicates. Finally, the remaining entries were defined as test set 4 (Test4) 

containing 73 compounds after removal of duplicates. Every record in Test4 has a unique 
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ChEMBL-assay-ID. Molecules with a pIC50 > 5 were labeled as active compounds other 

compounds were labeled as inactive. Due to binarization of the data it is possible to 

characterize features and models in terms of the ROC-curve and the area under the ROC-

curve (AROC). This made it possible to compare the predictive power of the model with that 

of the molecular logP as well as to compare our model with current classification setups.

Duplicate compounds in the dataset were identified based on Tanimoto similarities as 

implemented in RDKit 45 generated from standardized molecular representations. Duplicates 

were removed. Duplicate entries were observed mostly for different stereoisomers of the 

same chemical scaffold. To account for the most active stereoisomer the minimum of all 

reported IC50 value was kept. The same procedure was applied to other duplicates. Smiles 

codes for compounds studied were generated with MolConvert (version 6.2.1) from 

ChemAxon’s MarvinSketch.

Feature Preprocessing

The features referred to as molecular descriptors were calculated with RDKit. Most 

descriptors contain real numbers, some have binary and integer values. We removed constant 

feature with the same value for all compounds within the training set. Furthermore, we 

removed descriptors with high correlation, so no two columns had a mutual Pearson 

correlation coefficient larger than 0.99.

Predictive features (FS1)—The remaining molecular descriptors were ranked using area 

under the receiver-operator-characteristic-curve(AROC) measuring the ability of each 

feature to distinguish between active and inactive compounds. The molecular descriptors 

with AROCeff = max(AROC, 1 – AROC)> 0.55 were referred to as predictive features or 

feature set 1 (FS1) comprising 55 descriptors all together.

Pharmacophore features (FS2)—A 2D pharmacophore is a set of chemical features 

with topological (2D) distances between them. Definitions from Gobbi and Poppinger 46 as 

implemented in RDKit were used. In RDKit these these pharmacophores can be represented 

as fingerprints i.e. bit-vectors with binary elements. The elements of these bit-vectors served 

as features for ML and referred to as pharmacophore features or feature set 2 (FS2). Only 

bits that were activated at least 100 times were used. The individual features were denoted as 

Ph2D_X, where X is an integer. The final feature set (FS3) was simply the unification of 

FS1 and FS2.

Metrics and scores

We used multiple scores and metrics to train and validate the performance of our model. For 

the fitting of the ML models the root mean squared error (RMSE) between the model 

prediction and the experimentally pIC50 values was used. To validate the performance 

comprehensively we used different metrics and scores were used: Prediction accuracy (PA), 

F1-score (F1), Cohen’s Kappa (CK) 47, Sensitivity (SE), Specificity (SP), False Negative 

Rate (FNR), False Positive Rate (FPR), True Negative Rate (TNR), True Positive Rate 

(TPR), Pearson’s correlation coefficient (r), as well as the coefficient of determination of the 

prediction vs the experiment (R2), and the experiment vs the prediction (R20), root mean 

Wacker and Noskov Page 5

Comput Toxicol. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



squared error (RMSE), root mean absolute error (MAE), the area under the ROC curve 

(AROC). As well as some scores that have been suggested by Tropsha et al. 37: X0 and X1. 

We used the implementation in scikit-learn 48 to calculate the values for r, R2, R20 and 

AROC. Metrics applied to cross-validated data were noted differently for R2 (referred to as 

Q2) and AROC (referred to as cvAROC). To quantify similarity we used maximum 

similarity to compounds in the training set (MST).

F1 = 2 · TP
(2 · TP + FP + FN) , FNR = FN

Ntot
, FPR = FP

Ntot
, TPR = TP

Ntot
, TNR = TN

Ntot
, SE = TP

(FP + FN) ,

SP = TP
(FP + FN) , PR = TP

(TP + FP) , X0 = (r2 − R20)/r2, X1 = (r2 − R2)/r2

MST—The the maximum Tanimoto similarity of a compound with respect to all compounds 

that were used to train a particular model. Therefore, the MST values are model specific, 

when different training sets were used. To calculate the similarity we used the Tanimoto 

metric as implemented in RDKit and Morgan fingerprints as bit vectors with radius 2 and 

1024 bits throughout the whole study.

Feature and model selection

1. A stepwise model selection protocol was used to train an eXtreme gradient 

boosting model (XGBoost). After defining the feature sets FS1–3, 10-fold cross-

validation 49 was used to identify the best performing unique features and 

parameters in the training set. The parameters and corresponding values for this 

grid search were: colsample_bytree: 0.2/0.3/0.4/0.5/0.6/0.7/0.8/0.9/1; subsample: 

0.2/0.4/0.5/0.6/0.7/0.8/0.9/1; max_depth: 2 – 8; eta: 0.001/0.01/0.02/0.08/0.1. 

More information about the parameters is provided in the results section. The 

names of the features used here exactly match the parameter names in the python 

implementation of XGBoost.

For each feature set and parameter the results were projected to the parameter 

values and the best performing parameters were selected. For each fold, a model 

was trained using compounds from 9 groups and the remaining group was used 

for validation. The RMSE for training and validation set were monitored. When 

the validation error reached a plateau during first 1000 iterations the fitting 

stopped. The resulting data was used to calculate the cross-validated coefficient 

of determination Q2.

2. For selected parameters and features learning curves were plotted. The learning 

curves were generated by averaging the performance of 10 repetitions, were, 

random samples of the complete training set served as validation set and 

fractions of the remaining compounds were used to fit the model. The size of the 

validation set was constant and set to 10% of the training set. The number of 

regression trees (iterations of model fitting) was controlled for each curve and 

varied between 200 and 1.000. Using, learning curves were generated to 

characterize the dependency of the model performance on the size of the dataset, 

as well as to identify the optimal number of iterations for the generation of the 
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final model. The training set was then shuffled and divided into 10 mutually 

exclusive groups.

3. The final model was trained using the complete training set and a predefined 

number of iterations. The non-default parameters for the final model were 

colsample_bytree: 0.6, eta: 0.01, max_depth: 3, subsample: 0.5. The number of 

iterations (number of trees) for the final model was set to 700.

Reference Models

Lasso—As a reference we used the training data to fit linear regression model using least 

absolute shrinkage and selection operator (lasso). Lasso is a method to build linear models 

which use the L1 norm as regularization term. The regularization term penalizes large 

feature coefficients. Lasso estimates sparse coefficients and prefers solutions with fewer 

parameters. Therefore, it effectively reduces the number of features the models depend on. 

Mathematically, it minimizes the least squares-penalty plus the regularization term:

minω
1

2nsamples
∣ Xω − y ∣ 2

2 + α ∣ ω ∣ 1

where the regularization parameter α is a constant and ||ω||1 the L1 norm and of the 

parameter vector and ||…||2 is the L2 norm. The scikit-learn implementation uses coordinate 

descent algorithm to fit the coefficients. Here the features defined as feature set 1, i.e. the 

molecular descriptors, were used. Using the fingerprints was not possible due to numerical 

instabilities. Prior to building the model, the features were transformed to have zero mean 

and a standard deviation of 1. We used five-fold cross validation to identify the best value for 

alpha which was 0.026. 47 variables were selected in the fitting process. The R2 values for 

the reference model regarding the training and all test sets are shown in table 1. More details 

regarding the reference model are provided in the supporting information.

Random Forest models RF_FS1 and RF_FS3—Two reference models were built 

with the Random-Forest-Regressor class implemented in sklearn. Random forest is an 

ensemble estimator that fits a number of classifying decision trees on several sub-samples of 

the dataset. Then averaging is used to increase the predictive accuracy. We used standard 

parameters from sklearn to fit two models. The first model, referred to as RF_FS1, was fit 

using the features contained in FS1. The second model, referred to as RF_FS3, used features 

contained in FS3 which included the 2D-pharmacophore fingerprints.

XGB simple

A boosting tree model using feature set FS1 with default configuration using 10 trees.

Software versions

For the presented publication Python 3.5.2 on a 64 bit Linux environment was used with the 

following packages: Pandas (0.19.1), Numpy (1.11.2), scikit-learn (0.18.1), RDKit 

(2016.03.1), molvs (0.0.5), XGBoost (0.4).
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Software availability

The ML software will be available to all academic users for a nominal fee of $50 CAD or 

for evaluation purposes with a permission from the developers. Please note, the software is 

now part of an integrated toxicology platform developed by Achlys Inc (Edmonton) and 

licensed through TEC Edmonton (Government of Alberta) for commercial users.

RESULTS

Defining chemical underpinnings of hERG blockade is one of the major goals in rapid 

screening drug candidates. Such a QSAR model would allow for rapid and accurate 

evaluation of drug candidates, reducing potential risks in drug development. Regression 

models based on established machine learning (ML) techniques may help to identify critical 

factors of the torsadogenic activity. Here we present a model based on the eXtreme gradient 

boosting algorithm for the prediction of small chemicals pIC50 values with respect to hERG. 

Input vectors were molecular descriptors and 2D pharmacophore features and experimental 

data from the ChEMBL database.

The ChEMBL database contained 15741 entries for the target ID CHEMBL240. However, 

the database contained data from diverse sources and types of assays. The bioactivity type 

IC50 (8033 entries) was the most common followed by Inhibition (3549 entries) and Ki 
values (2344 entries). However, the IC50 data contained 405 different assay descriptions and 

835 assay IDs, many of them unique. To increase the consistency of experimental data in our 

training set we restricted the data as described in the methods section.

Three different sets of features (FS1–3), as described in the methods section, were tested in 

combination with different sets of model parameters using 10-fold cross validation. The 

results of the grid search are summarized in fig. 3. For a broad set of parameters feature set 

FS3 was superior to FS1 and FS2 (fig. 3A). The boxplots in fig. 3B show that FS3 

performed best with an median Q2 above 0.65. The final set of parameters was based on the 

the best mean Q2 values in figures 3C–F. The parameter colsample_by_tree defines the 

fraction of columns that is used in each iteration to build the regression tree. For all feature 

sets this parameter had a small impact on the performance. The learning rate eta showed a 

clear preference of smaller values around 0.01 consistently for all feature sets. Interestingly, 

the parameter maximum_depth was optimal at values of 2 and 3, favoring less complex 

models. The final parameter subsample was optimal at values between 0.4 and 0.6 on 

average. Based on this results we selected the parameters for the final model.

The optimal number of trees was estimated based on the learning curves shown in figure 3F. 

With more than 700 trees the test RMSE stopped decreasing while the training RMSE 

decreased, indicating that the model started to overfit the training data. Therefore, we chose 

700 as the number of trees for the final model. So far exclusively compounds from the 

training set were used.

The fitted model was applied to pre-defined test sets to estimate the model’s ability to 

generalize and to estimate the off-sample performance. All test sets were combined to 

analyze dependency of the model performance on the ligand maximum similarity to 
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compounds in the training set (fig 4A–F). Figures 4A–B show the performance on the union 

of all test sets in terms of absolute agreement and ranking performance (ROC). The model 

allows a better separation of active and inactive compounds as compared to the molecular 

logP feature. Furthermore, the ROC-curve shows that the model performs significantly better 

than a random prediction as indicated by the black area in the plot. As indicated by fig 4C 

the compounds basically fall into two groups of similar compounds (MST > 0.5) and 

dissimilar compounds (MST < 0.5). The model performed very differently on Test1-4 (fig 

4D). The model can confidently predict values in Test1 and Test2, but fails for Test3-4. A 

threshold analysis revealed a dependency of the accuracy with the MST values of the 

compounds fig 4E–F. Subsets with higher MST values also gained higher accuracies. Figure 

4G shows the location of compounds with range violations, i.e. features with values outside 

the range defined by the according features in the training set. The separation of similar and 

dissimilar compounds suggests a possible way to define an applicability domain. Using both 

criteria, MST > 5 and no range violations led to figures 4H–I.

Y-randomization 50 was used to check rule out chance correlation. The target variable was 

shuffled and the complete model selection and fitting procedure was repeated. The XGBoost 

was able to fit y-randomized training data, however, none of the Y-randomized datasets was 

able to gain statistically significant values for Q2 that could be distinguished from a random 

prediction.

The frequencies of the features used in the final model were evaluated with the f-score 

method implemented in XGBoost. The score reflects how often a particular feature was used 

in the model. The most frequently used feature was the molecular logP value (fig 5A). The 

top ranks are dominated by molecular descriptors. Only one 2D-pharmacophore was under 

the top 20 ranks. Nevertheless, the model gained performance from using the 

pharmacophore features (fig. 3).

The linear model (Lasso) performs worst in terms of fitting the training set as well as 

predicting the values in the test sets. Only for Test2 the Random Forest model RF_FS1 

archives lower values. Interestingly, for Test1 and Test4 the performance of all the ensemble 

based models, including the final model, is comparable to each other. The performance of 

the final model comparable to the ensemble based reference models on Test1 (Fig. 6). On 

Test2 the final model showed increased ability to predict the experimental values indicated 

by an R2 of 0.61 compared to values 0.46 by the reference models at maximum. As well for 

the Random Forest models, RF_FS1 and RF_FS3, using the molecular fingerprint based 

features seem to enhance model performance on Test1 and Test2. All models perform poorly 

on Test3 and Test4 with R2 values around zero or even negative values respectively.

4. DISCUSSIONS

We have developed a statistically significant QSAR machine learning (ML) model in 

agreement with OECD guidelines for the prediction of pIC50 values regarding the potassium 

channel Kv11.1, also known as hERG channel. We provide a detailed protocol of the model 

selection and parameterization procedure. The presented framework can be used to model 

data for other biological targets when sufficient experimental data is available. Our results 
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show that quantitative estimations for new compounds are accurate if they are similar to 

compounds in the training set. The higher the mutual similarities the more accurate the 

predictions. Optimally, the model should be used to predict compounds with small 

derivations from the training set. As soon as new data is available, the model should be re-

trained incorporating the new data. This observation is in line with that of Gavaghan et al17 

who monitored the performance of their model over a period of 15 months after 

implementation and found that more and more compounds were outside the applicability 

domain making it necessary to update the model on a regular basis. Such a model is useful 

in the drug optimization process to identify cardiac safe or risky derivatives of already tested 

substances. As it is difficult to derive molecular parameters that can be optimized from an 

ensemble based model, we suggest to generate possible derivatives of compounds which are 

subsequently scored with our model. Then derivatives that have lower risk of blocking 

hERG can be selected.

The ML model failed to predict pIC50 values from Test3 and Test4 (fig. 4D) clearly 

rendering application boundaries. The low performance is a related to several important 

limitations central to other methods as well. First, the compounds are rather dissimilar to 

compounds in the training set (fig 2B). Secondly, the experimental data origins from 

different assays as the data in the training set and Test1. And finally, especially for Test4, the 

data comes from diverse sources. In Test4 every item had a unique ChEMBL-Assay-ID, 

indicating the extreme diversity of experimental values. In contrast, the model was able to 

predict the values in Test2. Fig. 4D shows that that classification of active and inactive 

compounds based on the prediction works for almost 100% of the compounds. However, so 

does the classification based on logP values. Interestingly, for the RMSE is highest for Test2 

compared to all other test sets. Our interpretation of these findings is that inconsistent 

experimental conditions add substantial noise to the target values. For example, different 

temperatures used in different assays can have complex influence on the kinetics and 

thermodynamics of the hERG block 51. Such parameters, therefore, should be recorded in 

databases like ChEMBL.

To highlight the dependency of the performance on the ligand similarity we combined all 

four test sets and performed a threshold analysis. We found a clear trend towards better 

performance for compounds with high MST values. For subsets of less similar compounds 

the performance dropped. However, even for the least similar subset the result was still 

better than random. Notably, even for the subset of most dissimilar compounds the 

performance was better as for Test4 as mentioned above. The distributions of MST of all test 

compounds, showed two maxima around 0.3 and 0.8 and a minimum around 0.5. Accurate 

estimations were possible for compounds with higher MST, suggesting a natural 

applicability domain for the model (MST > 0.5). For compounds with lower MST the 

performance converged to that of the baseline model, i.e. the best molecular descriptor 

(MolLogP). For all thresholds the model performs significantly better than random, however, 

for very dissimilar subsets of compounds the predictive power is almost identical to the 

baseline model. Therefore, the model should be used or compounds with higher MST 

values. Correlation of hERG affinities with the molecular solubility have been observed 

before and features that account for solubility or lipophilicity like the logP and logD 

frequently turned out to be the most influential factors 52.
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Most regression models published to date were formulated from small sets of compounds. 

We found only three hERG regression models using a larger training sets (>500 

compounds). It is not straightforward to compare the quality of the models due to different 

evaluation metrics used and different compositions of training and test sets which may have 

a considerable effect on the performance 34. The compulsory safety screening for all drugs 

in preclinical development finally led to large publicly available datasets of compounds with 

known QSAR properties. In addition, high-performance training algorithms for supervised 

learning have been developed and utilized for computational toxicology 53. For example, 

complex models like deep neural-nets 29 and gradient boosting have been under the winning 

contributions at competitions like the Merck’s drug discovery effort at kaggle.com. To 

evaluate the model accuracy many publications use cross-validation, where the performance 

of the model is usually estimated with the cross-validated coefficient of determination, 

referred to as Q2. However, high Q2 values 35–37 are necessary, but not sufficient condition 

to demonstrate model generalizability and transferability. The better strategy has to utilize 

multiple metrics and as well as cross-validation and input from external data, that was not 

used to select or train the model 35–37.

Cianchetta et. al33 trained a regression model based on a dataset of 885 molecules. They 

reported an off-sample R2 of 0.9 or greater. However, the test set only contained 16 

molecules uniformly spanning the activity range of the dataset! The compounds were 

manually selected and removed from the training set. Such a test set invariably lead to an 

overestimation of the off-sample accuracy or the accuracy on data that has not been used to 

train or select the model. Gavaghan et. al17 used a dataset of 1312 molecules with IC50 

values that were all measured with the same protocol (IonWorks High Throughput 

Electrophysiology Assay) to fit a PLS model. The test set contained 7520 compounds. 

Neither the training set nor the test set are publicly available. The authors were particularly 

interested in the validity of external and internal validation techniques. The reported R2 

values estimated with the cross-validation displayed R2 coefficients ranging between 0.31 

and 0.64. Hansen et al25 used multiple models (Ridge Regression, Gaussian Processes, SVM 

and Random Forest) to set standards for building consensus models. Their training set 

contained around 660 compounds. The model performance was not evaluated with a test set 

from an independent source. The reported cross-validation RMSE values were between 0.57 

and 0.73 comparing predicted pIC50 against available experimental data.

How could your model be improved? The shape of the learning curves (Fig. 3G) indicates 

that more training data would improve the performance as with increased size of the training 

set the validation RMSE decreases. Furthermore, improved features may increase the 

accuracy. The use of 2D-pharmacophore features increased the mean Q2 value from around 

0.6 to 0.65. We used morgan fingerprints with radius 2 and 1024 bit length. Other 

configurations or types of fingerprints might be able to improve the model performance. We 

speculate that features that integrate 3D information, or even 4D features that incorporate 

motion, may be a promising route for future development of rapid toxicology screening 

based on ML approaches. However, the generation of useful 3D and 4D features is not trivial 

and their purpose has been questioned 8.
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• Machine-Learning Platform (MLP) were developed to predict cardiotoxicity 

with large training dataset of compounds

• MLP allows for fast and accurate predictions of IC-50 values for hERG 

blockade

• MLP provides an opportunity to determine key molecular characteristics 

responsible for high-affinity hERG blockade

Wacker and Noskov Page 15

Comput Toxicol. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Machine Learning Platform Flowchart. For feature selection and model tuning only 

compounds in the training set were used. The compounds in the test sets were saved for the 

final evaluation of model performance. For model selection 10-fold cross-validation was 

used using the compounds in the training set. For the final model the complete training set 

was used.
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Figure 2. 
A) Approximated density of pIC50 values in the Training and Test sets. B) Approximated 

density of the maximum similarities to compounds in the training set for all test sets. For the 

training set the similarity to the next most similar compound is shown. The curves are scaled 

so that the area under the curve is 1.

Wacker and Noskov Page 17

Comput Toxicol. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A) Q2 values from 10-fold cross-validation for the three feature sets FS1 (●), FS2 (▲), FS3 

(■). B) Boxplots summarizing Q2 values. C–F) mean Q2 projected on the C) fraction of 

columns used to build each decision tree, D) the learning rate eta, E) the maximal depth of 

each tree and F) the size of the sample used for each tree. G) Training (■) and validation 

(●) RMSE over the size of the training set for different numbers of trees using the final 

parameters. Here fractions (between 0.2 and 1) of the training set were used to analyse the 

dependency of the predictive power on the size of the training set.
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Figure 4. 
Model performance for all test sets combined. A) Correlation to experimental data. B) ROC 

curve using same class criteria. C) Error over the distance to the training set for each 

compound. Color codes illustrate the MST values (blue: MST > 0.5, red: MST < 0.5). Model 

performance for the combined test sets (D) and dependences on different similarity 

thresholds (E and F). G) Location of range violations. Number or range violations indicated 

by color and size of spheres. Cross-symbols indicate compounds with no range violations. 

H) and I) model performance for compounds within the recommended applicability domain.
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Figure 5. 
The number of times features have been used in the model: A) the top 20 features and B) the 

following features. Molecular descriptors (blue) and pharmacophore features (black). Only 

scores of the top 150 features (of ~400) are shown.
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Figure 6. 
Comparison of the final model with reference models. Only the range between -1 and 1 is 

shown. The value for the Lasso model for test set 4 (Test4) was - 1.22. The dotted line marks 

R2 = 0.6.
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