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A novel SNP in the 5’ regulatory 
region of organic anion transporter 
1 is associated with chronic kidney 
disease
Chiao-Yin Sun1,2, Mai-Szu Wu3,4, Chin-Chan Lee1,2, Shu-Hong Chen1,5, Kang-Chieh Lo6 & 
 Yau-Hung Chen6

We aimed to analyze the associations of single nucleotide polymorphisms (SNP) in the 5′ regulatory 
region of the human organic anion transporter 1 (OAT1) gene with chronic kidney disease (CKD). A case-
control study including age- and sex-matched groups of normal subjects and patients with CKD (n = 162 
each) was designed. Direct sequencing of the 5′ regulatory region (+88 to −1196 region) showed that 
patients with CKD had a higher frequency of the −475 SNP (T > T/G) than normal subjects (14/162 
vs. 2/162). The luciferase activity assay results indicated that the −475G SNP had a higher promoter 
efficiency than the −475T SNP. Chromatin immunoprecipitation (ChIP) and LC/MS/MS analyses showed 
that the −475G SNP up-regulated 26 proteins and down-regulated 74 proteins. The Southwestern blot 
assay results revealed that the −475G SNP decreased the binding of Hepatoma-derived growth factor 
(HDGF), a transcription repressor, compared to the −475T SNP. Overexpression of HDGF significantly 
down-regulated OAT1 in renal tubular cells. Moreover, a zebrafish animal model showed that HDGF-
knockdown zebrafish embryos had higher rates of kidney malformation than wild-type controls 
[18/78 (23.1%) vs. 1/30 (3.3%)]. In conclusion, our results suggest that an OAT1 SNP might be clinically 
associated with CKD. Renal tubular cells with the −475 SNP had increased OAT1 expression, which 
resulted in increased transportation of organic anion toxins into cells. Cellular accumulation of organic 
anion toxins caused cytotoxicity and resulted in CKD.

The pathological course of chronic kidney disease (CKD) forms a virtuous circle. Current studies have revealed 
that anionic uremic toxins, such as indoxyl sulfate (IS) and p-cresol sulfate (PCS), can increase oxidative stress 
and induce cell apoptosis. Clinical evidence has also shown that decreasing IS and PCS through treatment with 
an oral spherical carbon adsorbent can protect against deterioration of renal function in patients with CKD1.

The family of organic anion transporters (OATs) belongs to the major facilitator superfamily (SLC22A), and 
OATs are expressed in renal tubular epithelial cells to regulate excretion and reabsorption of endogenous and 
exogenous organic anions, including drugs and their metabolites2. Recently, it was revealed that anionic uremic 
toxins are physiological substrates for the OAT family and that their accumulation within renal tubules through 
the activity of OATs induces renal dysfunction3–5. For example, OAT1, a prototypical OAT, is reported to play 
a central role in the renal secretion of organic anions. OAT1 mediates the uptake of a wide range of relatively 
small and hydrophilic organic anions from plasma into the cytoplasm of proximal tubular cells, allowing these 
organic anion toxins to then be pumped out by other types of OATs6. Substantial evidence indicates that OAT1 
plays a critical role in kidney injury by mediating accumulation of organic anionic toxins in the kidney7–9. Renal 
clearance of organic anions varies among individuals10. Clinically, the serum levels of IS and PCS, organic sol-
utes transported into renal tubular cells by OAT1, have been shown to vary among subjects with similar renal 
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function11–13, suggesting that genetic factors might contribute to interindividual differences in renal clearance of 
organic anionic toxins.

The genes encoding OAT1 and other solute transporters are clustered on human chromosome 11, with OAT1 
and OAT3 genes existing on chromosome 11 as a tandem pair. Previous studies have demonstrated that the 
selective pressure on the coding sequences of OAT1 is relatively small compared with that of other OAT family 
members14, suggesting that OAT1 is a conserved protein. Clinical studies have also indicated that OAT1 has low 
genetic and functional diversity in coding regions15. Therefore, this study aimed to analyze single nucleotide poly-
morphisms (SNPs) in the 5′ regulatory region of human OAT1 (SLC22A6) and their possible clinical associations 
with CKD. We screened for variants in the 5′ regulatory region of OAT1 in DNA samples from normal subjects 
and subjects with CKD (n = 162 for each group), and the associations between regulatory polymorphisms and 
CKD were analyzed. We also performed cellular studies to investigate the molecular mechanism of expression 
regulated by polymorphisms in the 5′ regulatory region of human OAT1.

Results
The reference sequence of the 5′ regulatory region of human OAT1 from +88 to −1196 bp and the results of 
promoter prediction are shown in Supplemental Fig. S1. There were 3 potential promoter regions predicted on 
the 5′ regulatory region of OAT1 from −1 to −1196 bp. To define possible clinical associations between the SNPs 
of OAT1 and CKD, DNA fragments containing the 5′ regulatory region of OAT1 (from +88 to −1196 bp) were 
analyzed with chromosomal DNA of peripheral leukocytes by direct sequencing (Fig. 1A). The study included 
324 study subjects divided into age- and sex-matched normal (n = 162) and CKD (n = 162) groups. The charac-
teristics of study subjects are listed in Table 1. Ten SNPs were found by direct sequencing, and the frequencies of 
these SNPs for each group are summarized in Table 2. Four of the SNPs found in this study (−118, −171, −791, 
−811) have been previously identified and assigned an rs number in the SNP database (dbSNP). Six of the SNPs 
found in this study (−244, −475, −775, −777, −786, −1073) are new variants, and no corresponding rs numbers 
were found (Table 2). The representative sequencing results are shown in Fig. 1B. The −475 SNP with the change 

Figure 1.  Direct sequencing of the OAT1 5′ regulatory region. (A) The predicted TATA box of the promoter 
was located at positions −98 to −104 from the transcription start site. Polymorphisms of the 5′ regulatory 
region of OAT1 from +88 to −1196 bp were analyzed by direct sequencing. The locations and directions of the 
direct sequencing primers are illustrated in the figure. (B) Chromosomal DNA from peripheral leukocytes was 
analyzed by direct sequencing. There were 10 SNPs on the 5′ regulatory region of OAT1. The representative 
graphs for these SNPs are displayed.

Normal control n = 162 CKD n = 162

Age (y/o) 64.15 ± 13.01 64.74 ± 12.29

Gender (F/M) 81/81 81/81

eGFR 96.48 ± 11.27 32.02 ± 14.78*

CKD stage

3 n = 72

4 n = 35

5 n = 55

Table 1.  Characteristics of study subjects and results of direct sequencing. (A) the characteristics of study 
subjects. The frequency of −475 polymorphism (T > T/G) of CKD subjects was significantly higher than 
normal subjects (P = 0.003). *P < 0.05.
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of T > T/G was the most common SNP in the study population (16/324, 4.9%). In addition, the frequency of the 
−475 SNP in subjects with CKD was significantly higher than in normal subjects (14/162 vs. 2/162; P = 0.003). 
The frequencies of other SNPs did not differ significantly between normal (control) and CKD groups (Table 2). 
These results suggest that the −475 SNP (T > T/G) of OAT1 is clinically associated with CKD. The odds ratio for 
subjects with the −475 SNP (T > T/G) having CKD was 7.57 (95% Confidence Interval: 1.69–33.86; P = 0.008).

To elucidate possible effects of the −475 SNP on expression of OAT1, a promoter activity assay with wild-type 
and −475 mutant promoters (−1 to −1196 nt) was performed (Fig. 2A). The −475 mutant promoter increased 
luciferase activity relative to the wild-type promoter (2.5 vs. 1.0; P = 0.019) (Fig. 2B). Real-time PCR results also 
showed that the −475 mutant promoter increased luciferase mRNA expression relative to the mutant promoter 
(P = 0.003) (Fig. 2C). These results indicate that the −475 SNP of OAT1 might up-regulate OAT1 expression by 
affecting transcription factor binding. A chromatin immunoprecipitation/LC/MS/MS analysis using wild-type 
and −475 mutant oligonucleotides (−463 to −487; 25 bp) was conducted to identify potential binding tran-
scription factors. The chromatin immunoprecipitation analysis flow is summarized in Fig. 3. Compared with the 
wild-type oligonucleotide, 26 proteins were up-regulated and 74 proteins were down-regulated (2-fold changes, 

SNP Location SNP rs number

Normal CKD

control

(n = 162)(n = 162)

−118 (62985115) T > T/C rs58244957 0 1

−171 (62985168) G > G/T rs57350702 0 1

−244 (62985241) G > G/A 1 1

−475 (62985472) T > T/G 2 14*

−775 (62985772) C > C/T 1 2

−777 (62985774) C > C/G 0 2

−786 (62985783) T > C/T 1 2

−791 (62985788) C > C/T rs978103765 1 2

−811 (62985808) C > C/T rs1014912263 0 1

−1073 (62986070) A > C/A 2 0

Table 2.  The results of polymorphism frequency of study subjects by direct sequencing. ()Location of human 
chromosome 11. *P = 0.003, Fisher’s exact test.

Figure 2.  Promoter efficiency analysis by luciferase activity assay. (A) Plasmids for luciferase activity were 
constructed by inserting a synthetic 5′ regulatory region of OAT1 (−1 to −1196) into the pGL4.17 vector. The 
wild-type and −475 mutant plasmids differed only in the nucleotide at the −475 position. (B) The results of the 
luciferase activity assay are shown. Cell lysates of HK2 cells transfected with reporter plasmids were harvested 
for luciferase activity analysis. (C) The results of real-time PCR for luciferase and 18S RNA. The RNA samples 
from HK2 cells transfected with reporter plasmids were analyzed by real-time PCR, and the PCR products 
were analyzed semi-quantitatively by electrophoresis. Each reaction for (B) and (C) was repeated in triplicate. 
(*P = 0.019; #P = 0.003).
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2 peptides identified) by the −475 mutant oligonucleotide. Functional ontology analysis showed that 17 of the 
proteins with altered expression were classified under transcription regulation (Table 3).

Hepatoma-derived growth factor (HDGF) is known as a transcription repressor16,17. LC/MS/MS results 
showed that the −475 mutant oligonucleotide significantly down-regulated HDGF binding (Table 3). Alignment 
analysis of the HDGF binding site of the SMYD1 promoter (30 nt) with the 5′ regulatory region of OAT1 (−463 
to −487, 25 nt) revealed 43.3% sequence identity over a 30 nt overlap. In addition, the nucleotide at the −475 
position of OAT1 was conserved in the HDGF binding site on the SMYD1 promoter (Fig. 4A)17. Southwestern 
blot analysis with HDGF produced by in vitro translation and synthetic wild-type and −475 mutant oligonucle-
otides (−463 to −487, 25 bp) showed that the −475 mutant oligonucleotide significantly down-regulated HDGF 
binding (Fig. 4B). To define the regulatory effects of HDGF on OAT1 expression, expression of OAT1 by HK2 
cells over-expressing HDGF was analyzed by Western blot. Compared with control cells, cells over-expressing 
HDGF had significantly decreased OAT1 expression (Fig. 4C). These results suggest that the −475 SNP of OAT1 
might down-regulate HDGF binding, resulting in over-expression of OAT1.

To define the association of HDGF with kidney malformation, HDGF-deficient zebrafish embryos were 
obtained by injection of antisense morpholino oligonucleotides. The zebrafish embryos were produced from 
the green fluorescent kidney transgenic zebrafish line Tg(wt1b:egfp), which enables easier observation of kid-
ney malformations. The results showed that embryos derived from HDGF3-MO injection displayed more mal-
formed kidney phenotypes at 48 hpf than did embryos of the uninjected control group (defect rate 23.1% vs. 
3.3%, n = 30; Fig. 5C,D). Differences in defects in the glomerulus, pronephric tube, and pronephric duct were 
observed between the uninjected control and HDGF3-MO-injected groups, particularly in fish with severe 
defects (Fig. 5A,B). These results indicate that HDGF3 expression is essential for kidney development.

Discussion
The central role of the kidney in the elimination of potential internal or external toxins from the blood into 
the urine is well documented. Substrates for OAT1 are varied and range from the classic small organic anion 
para-aminohippurate to several clinically important drugs, herbicides, and endogenous substances. For these rea-
sons, there has been much interest in the possibility that polymorphisms in SLC22A6 may be partially responsible for 
variation in the handling and efficacy of many commonly used drugs and toxins that are transported by OAT114,18,19.

Substantial evidence indicates that OAT1 activity is critical in renal function and injury. A key role for OAT1 
in the handling of uremic toxins derived from the gut microbiome was identified using Oat1-knockout mice20. 
The results of studies in Oat1-knockout mice suggest that uremic toxins and solutes are significantly retained 
in Oat1-knockout mice. On the other hand, OAT1 activity also has important roles in the pathogenesis of 
drug-related kidney injury. In vivo studies with Oat1-knockout mice verified that disruption of OAT1 activity can 
prevent renal toxicity of drugs or chemicals21,22. In Oat1-knockout mice, the loss of function of OAT1 was asso-
ciated with decreased renal accumulation of arachidonic acid and lessened the severity of renal injury compared 
to wild-type animals8.

In a previous study with an ethnically diverse sample of 96 individuals, only one polymorphism was found 
in the 5′ regulatory region of OAT119. In our study population (n = 324), there were 10 SNPs. Furthermore, our 
study also indicated that polymorphisms in the 5′ regulatory region of human OAT1 had significant clinical asso-
ciations with CKD. Our results suggest that subjects with the −475 SNP (T > T/G) of OAT1 have increased risk of 
CKD. Our study also found that the −475 SNP with T to G transversion could increase OAT1 promoter activity 
that might result in increased OAT1 expression. OAT1 plays a major role in the renal uptake of uremic toxins on 

Figure 3.  Chromatin immunoprecipitation analysis flow. Biotin-labeled synthetic oligonucleotides 
(−463 to −487) with or without the −475 mutation (T to G) were incubated with HK2 nuclear extracts. 
Chromatin immunoprecipitation was performed with an anti-biotin antibody. The Coomassie blue-stained 
immunoprecipitated protein lysates are shown. The immunoprecipitated protein lysates were further subjected 
to LC/MS/MS analysis.
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the basolateral membrane of renal tubules. Previous studies have indicated that OAT1 expression is associated 
with intracellular accumulation of organic anion toxins in the renal tubular cells of patients with CKD7. It has 
also been shown that transporter molecules such as OAT1 transport anionic uremic toxins into cells, where they 
accumulate and can cause oxidative stress and ultimately kidney injury23–25. Our results suggest that increased 
OAT1 expression due to the −475 SNP with T to G transversion might increase intracellular organic anion ure-
mic toxins accumulation such that it exceeds the excretion rate, resulting in nephrotoxicity (Fig. 6).

Another important finding of our study was that the −475 SNP of OAT1 with T to G transversion could 
decrease HDGF binding. HDGF is considered a multi-functional protein and is suggested to have important 
roles in organ development26. HDGF shows proliferative activity, and expression of HDGF has been reported in 
many different tumor types and correlated with prognosis27,28. HDGF is also known as a transcription repressor. 
A microarray study with mouse primary aortic vascular smooth muscle cells demonstrated that expression of 
HDGF significantly down-regulated a large group of genes and increased expression of a relatively small num-
ber of genes17. Similarly, our study demonstrated that over-expression of HDGF could down-regulate OAT1 
expression in cultured kidney cells, indicating that HDGF might be a transcription repressor for OAT1. The 
findings above suggest that the −475 SNP of OAT1 with T to G transversion might increase OAT1 expression by 
down-regulating HDGF binding to the OAT1 promoter thus lessening the transcriptional repression of OAT1.

In the present study, we identified a clinical association between SNPs of OAT1 and CKD. Our study demon-
strated that SNPs of OAT1 can alter the transcriptional regulation of OAT1, which might affect CKD outcomes. 
Despite the low PCR error rate, this study may have been confounded by PCR errors that may have caused false 
SNP signals. Collectively, our data provide the first evidence of the clinical significance of SNPs of OAT1 on CKD 
and suggest that testing SNPs of OAT1 might serve as a valuable tool for CKD prevention and therapy.

Methods
Study subjects.  A case-control study was conducted with sex- and age-matched groups. The inclusion cri-
terion was adults aged >18 but <80 years. Patients were excluded from the study if they had diabetes mellitus, 
autoimmune disease, malignant disease, polycystic kidney disease, organ transplantation, infections requiring 
admission to the hospital in the past 3 months or an unwillingness to participate in the study. In total, 162 nor-
mal subjects and 162 subjects with CKD (eGFR < 30 ml/min/1.73 m2) were recruited into the study. This study 
adhered to the Declaration of Helsinki and was approved by the Ethics Committee of the Institutional Review 
Board at Chang Gung Memorial Hospital (Approval No. 103-0344C). Informed consent for all participants (162 
normal subjects and 162 subjects with CKD) was obtained and kept at the Chang Gung Memorial Hospital.

Leukocyte chromosomal DNA preparation.  In brief, leukocytes were separated from a specimen of whole 
human blood by mixing the specimen with a hypotonic EDTA solution (1 mM). White blood cells were separated by 
centrifugation. The chromosomal DNA was extracted with an automatic nucleic acid extraction system according to 
the product instructions (LabTurbo 96 Standard System, Taigen Bioscience Corporation, Taipei, Taiwan).

Chromosomal DNA sequencing and polymorphism identification.  The 5′ regulatory region of 
OAT1 (−1196 to +88 relative to the transcription start site) was amplified by polymerase chain reaction (PCR) 
with chromosomal DNA. PCR was performed in 25 µL SYBR Green PCR Master Mix (Applied Biosystems, 
Waltham, MA) containing 0.6 mol/L primers (Table 4) and 1 µg DNA using an iQ5 PCR detection system 
(Bio-Rad, Berkeley, CA). Then, the PCR products (500 ng) were identified and purified by gel electrophoresis and 

Protein-ID Protein Name Mass(Da) pI Fold change

Q13185 Chromobox protein homolog 3 < sp|Q13185|CBX3_HUMAN> 20811.42 5.23 −100

Q06710 Paired box protein Pax-8 < sp|Q06710|PAX8_HUMAN> 48217.73 7.72 −100

P51858 Hepatoma-derived growth factor < sp|P51858|HDGF_HUMAN> 26788.29 4.7 −100

O60869 Endothelial differentiation-related factor 1 < sp|O60869|EDF1_HUMAN> 16237.49 9.95 −100

Q9Y330 Zinc finger and BTB domain-containing protein 12 < sp|Q9Y330|ZBT12_HUMAN> 49147.5 7.26 −100

Q32MQ0 Zinc finger protein 750 < sp|Q32MQ0|ZN750_HUMAN> 77360.57 8.45 −100

P42568 Protein AF-9 < sp|P42568|AF9_HUMAN> 63351.38 8.77 −100

P82979 SAP domain-containing ribonucleoprotein < sp|P82979|SARNP_HUMAN> 23539.62 6.12 −100

P16402 Histone H1.3 < sp|P16402|H13_HUMAN> 22218.71 11.02 −100

P04908 Histone H2A type 1-B/E < sp|P04908|H2A1B_HUMAN> 14004.3 11.05 −3.58

Q96I24 Far upstream element-binding protein 3 < sp|Q96I24|FUBP3_HUMAN> 61509.23 8.61 −2.348

P18754 Regulator of chromosome condensation < sp|P18754|RCC1_HUMAN> 44837.83 7.17 −2.238

O15446 DNA-directed RNA polymerase I subunit RPA34 < sp|O15446|RPA34_HUMAN> 54985.6 8.66 100

Q96IZ0 PRKC apoptosis WT1 regulator protein < sp|Q96IZ0|PAWR_HUMAN> 36567.51 5.35 100

O14776 Transcription elongation regulator 1 < sp|O14776|TCRG1_HUMAN> 123901.03 8.71 100

Q9UIF8 Bromodomain adjacent to zinc finger domain protein 2B < sp|Q9UIF8|BAZ2B_HUMAN> 240459.17 6.13 100

Q6P1N0 Coiled-coil and C2 domain-containing protein 1 A < sp|Q6P1N0|C2D1A_HUMAN> 104062.48 8.22 100

Table 3.  Results of LC/MS/MS analysis. There were 26 proteins up-regulated and 74 proteins down-regulated 
by −475 mutants. Among these targets, 17 proteins were functionally classified as transcription regulation. 
Those transcription regulation proteins were listed. (Fold change: −475 mutant vs. wild type).
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sequenced with a capillary automatic DNA sequencing machine (ABI 3730, Thermo Fisher Scientific, Waltham, 
MA). Five primers (Table 4) were designed to complete sequencing of the 5′ regulatory region of OAT1. The 
sequencing results were analyzed by Sequencing Analysis software (v.5.3; Applied Biosystems, Waltham, MA). 
The 5′ regulatory polymorphisms of OAT1 were analyzed with Lasergene v7.2 software (DNASTAR, Madison, 
Wisconsin). The sequences of NT-167190.1 from the NCBI databank were used as the reference sequences. The 
SNP locations on chromosome 11 were obtained from the Ensembl database (http://asia.ensembl.org/index.
html). The rs numbers of the polymorphisms detected by sequencing were obtained from the dbSNP database 
(https://www.ncbi.nlm.nih.gov/snp)29.

Figure 4.  HDGF down-regulated OAT1 expression. (A) Alignment analysis of the HDGF binding site of 
the SMYD1 promoter (30 bp) with the 5′ regulatory region of OAT1 (−463 to −487, 25 bp) revealed 43.3% 
sequence identity over a 30 nt overlap. The nucleotide at the −475 position of the OAT1 promoter was identical 
to that of the SMYD1 promoter (arrow). (B) Southwestern blot analysis was performed using synthetic wild-
type and −475 mutant oligonucleotides (−463 to −487, 25 bp). The loading control was stained with ethidium 
bromide. The Southwestern blot was blotted with HDGF synthesized by in vitro translation followed by an 
anti-HDGF antibody. The Western blot for HDGF synthesized by in vitro translation is shown. Positive signals 
of Southwestern blotting are indicated by black arrows. The wild-type oligonucleotide had a higher binding 
intensity than the −475 mutant oligonucleotides. (C) The Western blotting results for HDGF and OAT1 are 
shown. HK2 cells over-expressing HDGF were used as the positive control. Cells transfected with empty vector 
and those cultured under normal conditions were used as negative controls. The results indicate that over-
expression of HDF down-regulated OAT1 expression in HK2 cells. The relative ratios vs. vector control after 
normalization with actin are plotted.

Figure 5.  HDGF3 and kidney development in a zebrafish model. (A,B) The phenotypes of zebrafish kidneys 
with and without HDGF3 morpholino antisense oligonucleotide injection were investigated (n = 30 for each 
group). At 48 hpf, the zebrafish kidneys were viewed via fluorescent microscopy and the deformity rates were 
analyzed. (C,D) The kidney deformity rates of zebrafish with and without HDGF3 morpholino antisense 
oligonucleotide injection were 23.08% vs. 3.33% (Fisher’s exact test: P < 0.001).

http://asia.ensembl.org/index.html
http://asia.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov/snp
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Sequence alignment.  Multiple protein and DNA sequence alignments were performed using MAFFT 
(Multiple Alignment using Fast Fourier Transform) with the default parameter settings (http://www.ebi.ac.uk/
Tools/msa/mafft/).

Figure 6.  Mechanism of expression regulated by the −475 regulatory polymorphism of OAT1 in chronic 
kidney injury. The −475 regulatory polymorphism of OAT1 diminished the binding of HDGF, which 
functioned as a transcription repressor. Renal tubular cells with the −475 regulatory polymorphism had 
increased OAT1 expression, which resulted in increased transport of organic anion uremic toxins into cells. 
Cellular accumulation of organic anion uremic toxins caused cytotoxicity and resulted in kidney injury.

http://www.ebi.ac.uk/Tools/msa/mafft/
http://www.ebi.ac.uk/Tools/msa/mafft/


www.nature.com/scientificreports/

8SCIeNTIfIC Reports |  (2018) 8:8085  | DOI:10.1038/s41598-018-26460-y

Promoter activity assay.  Wild-type and −475 mutant (T > G) oligonucleotides (−1 to −1196 of OAT1) 
were artificially synthesized and cloned into the polycloning sites (Xhol and Hind III) of the pGL4.17[luc2/Neo] 
vector (Promega, Fitchburg, Wisconsin). The wild-type and −475 mutant constructs were verified by sequenc-
ing (Supplemental Fig. S2). The luciferase activity of cell lysates was measured by the Luciferase Assay System 
(Promega) according to the product instructions and analyzed by a luminometer (Microplate Luminometer, 
Promega, Fitchburg, Wisconsin) (delay time: 2 seconds; read time: 10 seconds). Luciferase mRNA was quantified 
by real-time PCR with the primers listed in Table 4.

Cell culture and transfection.  HK2 cells were obtained from ATCC and cultured as suggested by ATCC. 
Cultured cells at ∼70% confluence were transfected with plasmids using Lipofectamine (1:1 ratio DNA to 
Lipofectamine) (Thermo Fisher Scientific, Waltham, MA). For HDGF over-expression, the cells were transfected 
with an HDGF open reading frame-containing plasmid (Lenti ORF clone of human HDGF, transcript variant 1, 
Myc-DDK-tagged; OriGene Technologies, Inc., Rockville, MD) The transfected cells were harvested and analyzed 
48 hours after transfection.

Chromatin immunoprecipitation and LC/MS/MS analysis.  The nuclear extract of HK2 cells (1 × 106 
cells) was prepared with nuclear extraction reagents (NE-PER Nuclear and Cytoplasmic Extraction Reagents, 
Thermo Fisher Scientific) and incubated with biotin-labeled synthetic oligonucleotides (−463 to −487) with 
or without the −475 mutation (T to G). Chromatin immunoprecipitation was performed using an anti-biotin 
antibody (Abcam, Cambridge, Massachusetts). The nuclear protein extract was analyzed by 12.5% SDS-PAGE. 
After electrophoresis, the gels were stained with VisPRO 5 minutes Protein Stain kit (Visual Protein, Taiwan). 
After staining, the gels were washed in Milli-Q water and stored at 4 °C until processing for in-gel digestion. The 
gel lanes corresponding to the sample were cut into 5 slices, and each slice was processed for in-gel digestion 
according to the Shevchenko method. Briefly, each slice was washed/dehydrated three times in 50 mM ammo-
nium bicarbonate (ABC, pH 7.9)/50 mM ABC +50% acetonitrile (ACN). Subsequently, cysteine bonds were 
reduced by incubating slices in 10 mM dithiothreitol for 1 h at 56 °C and alkylated by incubating slices in 50 mM 
iodoacetamide for 45 min at room temperature (RT) in the dark. After two subsequent wash/dehydration cycles, 
the slices were dried for 10 min in a vacuum centrifuge (ThermoFisher, Breda, The Netherlands) and incubated 
overnight with 6.25 ng/μL trypsin in 50 mM ABC at 25 °C. Peptides were extracted into 100 μL of 1% formic 
acid and then extracted twice into 100 μL of 50% ACN in 5% formic acid. The volume was reduced to 50 μL in a 
vacuum centrifuge before LC-MS/MS analysis. Peptides were separated using an Ultimate 3000 nanoLC system 
(Dionex LC Packings, Amsterdam, The Netherlands) equipped with a 20 cm × 75 μm i.d. fused silica column 
custom packed with 3 μm 120 Å ReproSil Pur C18 aqua (Dr. Maisch, GMBH, Ammerbuch-Entringen, Germany). 
After injection, peptides were trapped at 30 μL/min on a 5 mm × 300 μm i.d. Pepmap C18 cartridge (Dionex LC 
Packings, Amsterdam, The Netherlands) in 2% buffer B (buffer A, 0.05% formic acid in MQ; buffer B, 80% ACN 
and 0.05% formic acid in MQ) and separated at 300 nL/min in a 10–40% buffer B gradient over 60 min. Eluting 
peptides were ionized at 1.7 kV in a Nanomate Triversa Chip-based nanospray source using a Triversa LC coupler 
(Advion, Ithaca, NJ). Intact peptide mass spectra and fragmentation spectra were acquired on a LTQ FT hybrid 
mass spectrometer (Thermo Fisher). Intact masses were measured at a resolution of 50 000 in the ICR cell using 
a target value of 1 × 106 charges. In parallel, following an FT prescan, the top 5 peptide signals (charge-states 2+ 
and higher) were submitted to MS/MS in the linear ion trap (3 amu isolation width, 30 ms activation, 35% nor-
malized activation energy, Q-value of 0.25 and a threshold of 5000 counts). Dynamic exclusion was applied with a 
repeat count of 1 and an exclusion time of 30 s. MS/MS spectra were searched against the Homo sapiens SwissProt 
2013_05 database (540,052 sequences; 191,770,152 residues) using Sequest (version 27, rev 12), which is part of 
the BioWorks 3.3 data analysis package (Thermo Fisher). MS/MS spectra were searched with a maximum allowed 
deviation of 10 ppm for the precursor mass and 1 amu for fragment masses. Methionine oxidation and cysteine 

OAT1 PCR

FP1 (forward) CAAGGCTGCAGTGTGCCAAGATTGT

FP3 (reverse) TCCCTTGCAGCTTCTCCTCACTTTG

OAT1 promoter

FP1 (forward) CAAGGCTGCAGTGTGCCAAGATTGT

FP2S(forward) AGACACTATGGACAGAAGACAAT

FP3S (forward) GGGCACCCTGTAATTTCCCTGGCAA

RP1S(reverse) CGTCATACAATGTCGGGTGATTC

1013R(reverse) GGGATCTATTGGACCTATTTGT

Luciferase

5′ primer AGACGCCAA AAACATAAAGAAAGGCCCGGC

3′ primer TATAAATGTCGTTCGCGGGCGCAACTGCAA

Human 18S rRNA

5′ primer CTACCACATCCAAGGAAGCA

3′ primer TTTTTCGTCACTACCTCCCCG

Table 4.  Lists of primers.



www.nature.com/scientificreports/

9SCIeNTIfIC Reports |  (2018) 8:8085  | DOI:10.1038/s41598-018-26460-y

carboxamidomethylation were allowed as variable modifications. Two missed cleavages were allowed, and the 
minimum number of tryptic termini was 1. After database searching, the DTA and OUT files were imported into 
Scaffold (versions 1.07 and 2.01) (Proteome Software, Portland, OR). Scaffold was used to organize the data and 
to validate peptide identifications using the Peptide Prophet algorithm. Only identifications with a probability 
>95% were retained. Subsequently, the Protein Prophet algorithm was applied, and protein identifications with a 
probability >99% with 1 or 2 peptides in at least one of the samples were retained. The LC/MS/MS data were ana-
lyzed by DAVID functional annotation tools (http://david.abcc.ncifcrf.gov/tools.jsp) and Metacore 6.1 software 
(GeneGo pathways analysis) (http://www.genego.com).

Western and Southwestern blotting.  Total protein was extracted using a commercial kit according 
to the manufacturer’s instructions (Protein Extraction Kit, Millipore, Billerica, Massachusetts). Then, 30 μg 
of protein from each sample was mixed with sample-loading buffer and loaded onto separate lanes of a 12% 
sodium dodecyl sulfate-polyacrylamide gel. The proteins were electrotransferred onto polyvinylidene fluoride 
membranes (0.2 μm: Immun-Blot, Bio-Rad) and then immunoblotted with antibodies against HDGF (Abcam), 
OAT1 (Abcam), and β-actin (Abcam). The intensity of each band was quantified using NIH Image software 
(Bethesda, Maryland), and the densitometric intensity corresponding to each band was normalized against 
β-actin expression.

HDGF protein for Southwestern blotting was synthesized using purified HDGF mRNA with a eukaryotic 
cell-free protein expression system (TnT® SP6 High-Yield Wheat Germ Protein Expression System; Promega). 
The HDGF mRNA for in vitro translation was obtained by in vitro transcription (HeLaScribe® Nuclear Extract in 
vitro Transcription Grade, Promega) using an HDGF open reading frame-containing plasmid (Lenti ORF clone 
of human HDGF, transcript variant 1, Myc-DDK-tagged; OriGene Technologies, Inc.). The in vitro translation 
product was verified as HDGF by Western blotting and used for Southwestern blotting analysis. The synthetic 
wild-type and −475 mutant oligonucleotides (−463 to −487, 25 bp) (20 μg) were transferred to nitrocellulose 
paper after electrophoresis with 3% ultra-pure agarose gel (Sigma-Aldrich Co. St. Louis, Missouri). After washing 
with PBS buffer, the transferred membrane was hybridized with HDGF protein and then immunoblotted with 
antibodies against HDGF (Abcam).

Fish embryo staging and morpholino injection.  Mature Tg(wt1b:EGFP)30 zebrafish were main-
tained at 28 °C with a photoperiod of 14-h light and 10-h dark in an aquarium supplied with freshwa-
ter and aeration. Embryos were produced using standard procedures31 and were staged according to 
standard criteria (hours postfertilization, hpf)32 or by days postfertilization (dpf). Antisense morpholino oligo-
nucleotides targeting the 5′ untranslated region and the translation initiation site of HDGF (HDGF3ATG-MO: 
5′-GGCGAGCCATGCCGACACAC-3′) were designed and obtained from Gene Tools (Philomath, OR). MOs 
were dissolved in 1× Danieau solution containing 0.5% Phenol red, and 2.3 nl of MO solution of the indicated 
concentration was injected into 1-cell-stage Tg(wt1b:egfp) embryos. All of the embryos were observed under 
a microscope (DM 2500, Leica, Wetzlar, Germany) equipped with a GFP fluorescent module. Pictures of the 
embryos were captured at particular stages with a digital camera (SONY, Tokyo, Japan).

Statistical analyses.  Descriptive statistics were expressed as the means ± standard deviation or percentage 
frequency, as appropriate. Paired t-tests were used to compare the means of continuous variables. Fisher’s exact 
test was used to analyze categorical variances in study subjects. The odds ratio was calculated with Pearson’s 
chi-squared test. A P-value < 0.05 was considered significant (two-tailed). One-way analysis of variance with 
Bonferroni corrections was used to analyze the data of the cell culture study. Data were analyzed using the com-
mercially available SPSS 16.0 statistical software program (SPSS, Chicago, IL).
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