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Abstract

Mitochondria within a cell exist as a population in a dynamic morphological continuum. The 

balance of mitochondrial fusion and fission dictates a spectrum of shapes from interconnected 

networks to fragmented individual units. This plasticity bestows the adaptive flexibility needed to 

adjust to changing cellular stresses and metabolic demands. The mechanisms that regulate 

mitochondrial dynamics, their importance in normal cell biology, and the roles they play in disease 

conditions are only beginning to be understood. Dysfunction of mitochondrial dynamics has been 

identified as a possible disease mechanism in Parkinson’s disease. This chapter will introduce the 

budding field of mitochondrial dynamics and explore unique characteristics of affected neurons in 

Parkinson’s disease that increase susceptibility to disruptions in mitochondrial dynamics.

2.1 Introduction

Mitochondrial Dynamics refers to the observation that mitochondria within the individual 

cell go through fusion and fission events. Visually, this results in a morphological spectrum 

with contrasting degrees of elongation and fragmentation. Plasticity bestows the adaptive 

flexibility needed to adjust to changing cellular stresses and metabolic demands. Constant 

network remodeling also establishes a mechanism for quality control of the mitochondrial 

population with important ramifications for long-term function and health.

While our understanding of mitochondrial dynamics is just beginning, descriptions of 

morphological transitions by mitochondria can be traced to reports dating back nearly a 

century. In 1914, Lewis and Lewis elegantly describe witnessing fusion and fission events 

along with an incredible range of structures exhibited by mitochondria in cultured cells 

(Lewis and Lewis 1914). The body of knowledge surrounding mitochondrial dynamics has 

expanded greatly from these early studies and this chapter provides a brief introduction into 

this exciting field.
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2.2 Mitochondrial Dynamics Proteins

The state of balance between four dynamin-related proteins essentially controls 

mitochondrial fusion and fission. From yeast to humans, these highly conserved enzymes 

share homologous GTPase and transmembrane regions that form complexes and alter the 

curvature of the mitochondrial membranes. It is the relative activities of oppositional forces 

that together determine mitochondrial morphology. Complete network fragmentation can 

result from increased expression or activation of fission proteins. However the mitochondrial 

network will also fragment if fusion activity is inhibited. Similarly, elongated tubular 

networks occur with enhanced fusion activity as well as through blockage of fission. These 

extremes are reminders that antagonism between counteracting enzymatic forces sets the 

shape of mitochondria and therefore must always be considered simultaneously when 

deciphering network morphology.

2.3 Fusion

Fusion is categorized into two forms and three mitochondrial localized GTPases control the 

difference between transient and complete fusion events. Transient fusion involves only 

outer membranes while complete fusion requires merging of both inner and outer 

membranes. A complete fusion event occurs with a rapid diffusion of soluble mitochondrial 

components followed by a more gradual mixing of membrane elements (Twig et al. 2006; 

Partikian et al. 1998; Karbowski et al. 2004a; Jakobs et al. 2003; Jakobs 2006; Arimura et al. 

2004; Busch et al. 2006). This process is believed to bestow complementation between units 

and increased homogeneity over the network. Complementation is a key mechanism by 

which mitochondria can rescue a damaged unit within the network. The effect of loss of 

fusion has been assessed in several model systems. Network fragmentation and 

susceptibility to apoptosis, decreased mitochondrial membrane potential and oxygen 

consumption, and increased ROS production are seen with blocking fusion and underscore 

its importance in maintaining mitochondrial integrity.

Two homologous proteins known as mitofusin 1 and mitofusin 2 (Mfn1 and Mfn2) function 

together to merge the outer membranes of mitochondria. Both proteins share relevant 

functional domains and connect adjacent membranes through coiled-coil antiparallel 

homotypic (Mfn1–Mfn1) and heterotypic (Mfn1–Mfn2) dimers. The GTPase activity of 

Mfn1 is higher compared to Mfn2, thus the relative proportion of dimer combinations has 

important functional consequences for fusion rates within the cell (Chen et al. 2003; Koshiba 

et al. 2004). Turnover occurs in part by polyubiq-uitination-mediated recruitment of 

chaperone proteins, such as p97, which mediate retrotranslocation of mitofusins and 

promote their proteasomal degradation (Tanaka et al. 2010a ). Curiously, Mfn2 appears to 

have other crucial functions in the cell beyond mitochondrial fusion. One such function is 

tethering mitochondria and endoplasmic reticulum during calcium exchange between the 

organelles (de Brito and Scorrano 2008). In neurons, Mfn2 has been shown to play a role in 

motility by connecting mitochondria to the Miro/Milton transport complex (Misko et al. 

2010).
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Inner mitochondrial membranes are joined via the protein encoded by Optic Atrophy type 1 

gene (OPA1) (Song et al. 2009). Expression of OPA1 is highly regulated at the 

transcriptional level with eight possible isoforms available through alternative splicing (Song 

et al. 2007). Imported OPA1 protein localizes to the intermembrane space and is further 

processed by several proteases to produce five additional isoform variations (Ehses et al. 

2009). Functional differences between isoforms are not entirely understood but it is known 

that both long and short forms of OPA1 are needed to maintain fusion capacity (Song et al. 

2007; Duvezin-Caubet et al. 2006). In both soluble and membrane associated forms, OPA1 

exists in a complex with mitofusins (Cipolat et al. 2004). This interaction is crucial for 

complete fusion as cleavage of OPA1 disrupts the complex and limits mitochondria to only 

transient fusion events. In this way, proteolytic removal of long isoforms provides a 

mechanism for creating network fragmentation in response to stress (Griparic et al. 2007). 

The specific molecular signals that trigger processing of OPA1 remain largely a mystery but 

clearly both induction of apoptosis and dissipation of mitochondrial membrane potential 

induce OPA1 cleavage (Gottlieb 2006; Guillery et al. 2008; Lee et al. 2004; Olichon et al. 

2007). This effect may represent a stopgap attempt to limit spread of damaged material 

within the mitochondrial network by isolating units that pose a risk or have been selected for 

mitophagy.

2.4 Fission

Fission is crucially involved in numerous important cell pathways including mitochondrial 

inheritance by daughter cells during cellular division, differentiation of post-mitotic cells 

such as neurons and cardiomyocytes, mitophagy, and forms of cell death (Lee et al. 2004, 

2011a; Yu et al. 2005; Gomes and Scorrano 2008; Mendl et al. 2011; Grohm et al. 2010; 

Karbowski 2010; Jourdain et al. 2009; Wilkerson and Sankar 2011; Choudhary et al. 2011; 

Kane and Youle 2010; Shroff et al. 2009; Ishihara et al. 2009; Frank et al. 2001). Loss of 

fission results in increased mitochondrial connectivity, loss of mtDNA, bioenergetic 

deficiency, and alterations in apoptosis (Landes and Martinou 2011; Westermann 2010; 

Sheridan and Martin 2010; Parone et al. 2008). One cytosolic GTPase performs the division 

of fused mitochondria. Dynamin-related protein 1 (Drp1) translocates to mitochondrial 

scission sites and polymerizes into structures that surround the perimeter of the organelle 

(Fukushima et al. 2001). Polymerization activates the GTPase domain of Drp1, which 

literally causes constriction and pinching of a single unit into two individual daughters 

(Legesse-Miller et al. 2003). Sub-cellular localization and activity of Drp1 is regulated by 

several post-translational modifications, such as phosphorylation, ubiquitination, 

nitrosylation, and sumoylation (Figueroa-Romero et al. 2009; Cho et al. 2009; Wang et al. 

2011a; Santel and Frank 2008; Braschi et al. 2009; Taguchi et al. 2007).

Network fragmentation occurs in response to various factors including intracellular calcium 

levels, mitochondrial membrane potential, and ATP availability (Yoon et al. 2003; Kong et 

al. 2005). For example, the calcium-sensitive phosphatase calcineurin promotes fission by 

dephosphorylating cytosolic Drp1, which causes translocation to mitochondria (Scorrano 

2005). Two additional proteins that reside on the outer mitochondrial membrane act together 

as a receptor for organizing Drp1 to sites of fission. Mitochondrial fission 1 protein (hFis1) 

is a transmembrane protein that marks sites of division (Yu et al. 2005; Koch et al. 2005; 
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Serasinghe and Yoon 2008; Otera et al. 2010; James et al. 2003). Mitochondrial Fission 

Factor (Mff) interacts with hFis1 and serves as an adaptor that recruits Drp1 to promote 

polymerization (Otera et al. 2010). Recent studies have demonstrated that Mff is required for 

fission but hFis1 is dispensible (Otera et al. 2010; Huang et al. 2011a). This surprising 

finding suggests the existence of other proteins that can supersede hFis1 and act as 

alternative receptors for Mff and Drp1.

In summary, there are three key steps for mitochondrial fragmentation. First is the 

localization of fission adaptor proteins, such as hFis1 and Mff, to fission sites. Second Drp1 

must be recruited from the cytosol and polymerize at fission sites. Finally, there must be an 

accompanying inhibition of fusion through cleavage of long Opa1 isoforms within 

mitochondria. These are the three minimal steps that are required for a continuous network 

of fused mitochondria to transition towards fragmentation.

2.5 Approaches for Measurement of Mitochondrial Dynamics

While early observational studies describe mitochondrial fusion and fission, direct 

experimental proof was first obtained using polyethylene glycol (PEG)-mediated cell fusion 

assays (Legros et al. 2002; Neuspiel et al. 2005). In this method, two separate cultures of 

cells have their mitochondria labeled with different molecular probes, such as green and red 

fluorescent proteins (GFP, RFP). Combining the two cell populations in the presence of PEG 

detergent promotes fusion of plasma membranes and subsequent mixing of mitochondrial 

populations. Fluorescence heterogeneity is detected in the resultant pool, with cells 

containing mitochondria purely expressing GFP or RFP while other units display a mixture 

of both colors. These studies provide direct proof of fusion between individual mitochondria 

but significant practical limitations of the methodology left ample room for improvement. 

Recently, more physiologically relevant studies have employed an expanded arsenal of 

probes in the form of dyes and proteins that allow precise, detailed data collection on a wide 

range of parameters.

The tracking of dyes that accumulate within mitochondria in a membrane potential 

dependant manner, such as Tetramethylrhodamine ethyl ester perchlorate (TMRE), was a 

significant advancement in the study of mitochondrial dynamics. Confocal imaging studies 

of cells labeled with TMRE reveal stable mitochondrial membrane potentials maintained for 

a period of 40–80 s followed by a sudden drop of more than 15 mV (Loew et al. 1993). 

These studies were pioneering in our understanding of mitochondrial biology but limited by 

an inability to assure that the detected mitochondrion did not fuse and/or divide during the 

recording time. For example, fission can occur without movement of the two daughter 

mitochondria or involve only the inner (but not the outer) mitochondrial membrane (Twig et 

al. 2006; Malka et al. 2005). Therefore fission cannot be reliably identified by observation of 

separation of a mitochondrion into two segments. Similarly, the repositioning of a 

mitochondrion to become juxtaposed to another mitochondrion is not an indication that a 

fusion event occurred (Twig et al. 2006). The use of photoactivatable proteins was a 

breakthrough because it overcame these technical difficulties of imaging individual 

organelles that move and change morphology within a complex architecture (Betzig et al. 

2006; Patterson and Lippincott-Schwartz 2002).
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The creation of tools that allow laser-mediated photoactivation of mitochondrial matrix-

targeted GFP (mtPA-GFP) facilitates improved biophysical and morphologic measurements 

as it is nontoxic for the cells and can therefore be used to make observations over an 

extended period of time (Karbowski et al. 2004a; Arimura et al. 2004; Busch et al. 2006). 

Overall fusion rates for a cell can be quantified by activating the mtPA-GFP in a subset of 

the mitochondrial population and then tracking diffusion of the fluorescence signal over 

time, as the mtPA-GFP spreads to non-activated fusion partners. While fusion rates vary 

across cell types and conditions, several studies have shown that when 10–20% of 

population is activated, the mtPA-GFP equilibrates across the entire network in 

approximately 45 min (Karbowski et al. 2004a, b; Twig et al. 2008a). This is predicted to 

result in homogeneity in protein content and function across the mitochondrial population. 

In addition to analyzing the properties of the entire mitochondrial network within a cell, 

mtPA-GFP can be used to assess attributes of an individual mitochondrion. These observable 

characteristics include the size, shape, membrane potential, motility, and temporal properties 

of fusion. For example, photoactivation of a selected mitochondrion enables real time 

tracking of that individual. Long-term monitoring of single mitochondrial units with 

activated mtPA-GFP in INS1 and COS7 cells has allowed for direct quantification of fusion 

rates. These studies revealed the frequency of fusion to be once every 5–20 min per 

mitochondrion (Twig et al. 2008a). The duration of fusion events is typically brief, lasting 

~100 s and followed by fission (Arimura et al. 2004; Twig et al. 2008a). Thus mitochondria 

spend most of their time as individual solitary units. These studies provided the groundwork 

for a concept of the mitochondrial life cycle consisting of two stages, the pre-fusion period 

(solitary period) and the post-fusion period when mitochondria are connected together 

(networked period).

The combination of both TMRE and mtPA-GFP has two significant additional benefits in 

measuring biophysical properties of mitochondria (Twig et al. 2006; Molina and Shirihai 

2009). First, it provides means for accurate determination of organelle boundaries that can 

be easily followed despite movement within a dense mitochondrial network. It is also 

beneficial because it allows comparison of the fluorescence intensities of the two probes to 

get a ratiometric value. This offers a tool for quantification of changes in membrane 

potential that are independent of exact focal plane. By avoiding the need to perform repeated 

imaging through the entire z-axis, monitoring can be done with greatly reduced 

phototoxicity. The combination approach with TMRE and mtPA-GFP extends the 

permissible recording periods for tracking mitochondria within a cell from minutes to hours. 

This advancement helped reveal that mitochondria maintain stable membrane potential 

during their solitary period for up to 2 h (Twig et al. 2008a; Wikstrom et al. 2007).

One major limitation of direct user-based microscopy studies is they tend to be labor 

intensive and therefore not amenable to high-throughput screening. Recent description of an 

innovative cell-free fusion assay addresses this shortcoming with a luciferase-based 

approach that will allow large-scale screens of modifiers of mitochondrial dynamics 

(Schauss et al. 2010). Specifically, the assay is based on a bimolecular complementation 

approach using both mitochondrial targeted yellow fluorescent protein (YFP) and luciferase 

constructs separated by a leucine zipper. The two split proteins are expressed separately in 

large cultures of cells from which mitochondrial populations are isolated and purified. 
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During the assay the two populations of mitochondria are mixed and through fusion the split 

proteins are able to combine to form functional molecules. This new system holds great 

promise as it provides multiple highly quantifiable readouts. Linking luciferase activity to 

fusion events provides a much-needed tool for rapid, large-scale screening of conditions that 

affect mitochondrial dynamics. The methods described here provided important insights into 

mitochondrial biology yet they likely represent a mere beginning, as creative new 

approaches expand boundaries in this emerging field.

2.6 Benefits from Mitochondrial Dynamics

Responsive mitochondrial dynamics is an essential part of an array of cellular processes 

including mitosis, fuel sensing, ATP production, mitophagy, and apoptosis (Arimura et al. 

2004; Twig et al. 2008a; Nakada et al. 2001a, b; Skulachev 2001; Liesa et al. 2008; Molina 

et al. 2009). In some situations, entire network fragmentation is necessary to facilitate 

autophagic clearance of mitochondria (mitophagy), such as during erythrocyte maturation, 

sperm mitochondria in oocyte fertilization and apoptosis dependant on PTP opening 

(Takano-Ohmuro et al. 2000; Shitara et al. 2000; Elmore et al. 2001). On a local level, fusion 

allows mixing and complementation between two units. In a fused state, exchange of 

components such as solutes, metabolites, and soluble proteins occurs rapidly (Partikian et al. 

1998; Arimura et al. 2004; Chen et al. 2003, 2005; Chen and Chan 2005; Shaw and Nunnari 

2002; Griffin et al. 2006) while membrane embedded proteins and mitochondrial DNA 

spread more slowly (Twig et al. 2006; Legros et al. 2004; Gilkerson et al. 2008; Wikstrom et 

al. 2009). The ability of mitochondria to fuse together reduces content heterogeneity and 

thus is a first line of defence against dysfunction (Legros et al. 2002; Chen et al. 2005, 2011; 

Legros et al. 2004; Hori et al. 2011; Chan 2006; Ono et al. 2001; Mazzoni and Falcone 

2011).

Maintaining quality control through mitochondrial dynamics simultaneously optimizes 

bioenergetic efficiency and reduces risks associated with oxidative phos-phorylation by 

removal of damaged material. For example, inhibition of mitochondrial fission leads to an 

increase in oxidized proteins along with decreased maximal oxygen consumption rates 

during uncoupled respiration. These findings suggest the accumulation of oxidized material 

is due to a loss of clearance rather than increased production of ROS. Failure to properly 

remove damaged components impairs mitochondrial function and limits reserve capacity. 

These outcomes are particularly important for long-lived cells with high metabolic demands.

The dependence of quality control on fission may stem from the ability to generate unequal 

daughter units. Most fission events produce heterogeneous daughters with opposite 

membrane potential “de flections,” usually greater than 5 mV. Oxidized and damaged 

material is also inequitably distributed and this ability to regularly create uneven fission 

events suggests a selective mechanism of intra-mitochondrion segregation and separation. 

The net effect of numerous cycles of asymmetric divisions and selective isolation is the 

ability to concentrate undesirable material within a minimal number of units. Damage laden 

mitochondria ultimately get isolated and prevented from fusing with the rest of the network 

through reduction in fusion proteins (Twig et al. 2008a, b). In various cell types, loss of 

membrane potential leads to the polyubiquitination and proteasomal degradation of proteins 
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associated with the mitochondrial outer membrane, such as Miro and mitofusins. In addition 

to degradation of individual proteins, ubiquitination serves to recruit autophagy-related 

scaffold adaptors, such as p62 and HDAC6 (Huang et al. 2011b; Lee et al. 2011b ). These 

scaffold proteins bind to polyubiquitin chains and serve essentially as receptors for 

autophagosomes to facilitate lysosomal degradation of the mitochondrial unit through 

mitophagy. Blocking autophagy is sufficient to cause a buildup of damaged material 

including mitochondria, particularly in energy intensive tissues such as brain, heart, liver, 

kidney, and pancreatic beta cells (Twig et al. 2008a ; Jung and Lee 2009 ; Taneike et al. 

2010; Kimura et al. 2011 ). It is worth noting in these cases that dysfunctional mitochondria 

accumulate without requiring any additional toxins or mitochondrial stressors. 

Mitochondrial turnover is a major proportion of the basal autophagic processing within cells, 

especially those with elevated metabolic demands. Long-lived post-mitotic cells with 

chronic high levels of turnover are inherently vulnerable to disruptions in the quality control 

pathway (Terman et al. 2010).

2.7 Regulation of Mitochondrial Dynamics

Multiple levels of cell signaling are involved in regulating mitochondrial dynamics. Despite 

its complexity, the system can be broken down into two simple categories, global and local 

regulation (Hyde et al. 2010). Figure 2.1 illustrates regulatory elements during the 

mitochondrial lifecycle and Table 2.1 lists examples of global and local control during 

fusion, fission, and the solitary period. Control derived from the cellular macroenvironment 

that affects the entire mitochondrial network is categorized as global regulation of 

mitochondrial dynamics, such as during the cell cycle (Lee et al. 2004; Taguchi et al. 2007; 

Scarpulla 2002a; Arakaki et al. 2006 ). At different stages of mitotic cell division there is 

transcriptional control of dynamics proteins that lead to opposite extremes in network 

morphology. A concert of transcription factors mediates increases in mitochondrial mass, 

respiratory capacity, and energy production that are required during S phase (Scarpulla 

2002a, b). Accordingly, there is hyperfusion of the network during G1-S phase while hyper-

fragmentation occurs in late S and M phases.

Local regulation occurs at the level of the microenvironment of an individual mitochondrion. 

Fission events are controlled checkpoints for generation of polarized and depolarized 

mitochondria; therefore changes in membrane potential distribution are a mechanistic 

example of local regulation (Twig et al. 2008a; Wikstrom et al. 2007). Loss of membrane 

potential and ATP production causes cleavage and degradation of fusion proteins by 

mitochondrial proteases and the proteasome (Song et al. 2007; Chan and Chan 2011; Chan 

et al. 2011). Decreased fusion capacity results in increased time spent in the solitary phase, 

and if membrane potential is not recovered, the mitochondrion enters into the pre-autophagic 

pool (Cipolat et al. 2004, 2006; Baricault et al. 2007; Twig and Shirihai 2011; Rambold et al. 

2011a).

Another crucial local regulator of mitochondrial dynamics is the degree of movement of an 

individual mitochondrion (Twig and Shirihai 2011). Movement greatly increases the chances 

of fusion perhaps in part because microtubule transport aligns mitochondria (Twig et al. 

2010). Alignment facilitates pole interaction between mitochondria and thus increases the 
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likelihood of tethering between mitofusins. Motility depends on the calcium-sensitive 

mitochondrial Rho GTPase (Miro), which connects mitochondria to the ATP-dependant 

motor enzymes, dynein and kinesin (Boldogh and Pon 2007; Fehrenbacher et al. 2004; 

Saotome et al. 2008). Milton is a protein that complexes with Miro and is also required for 

transport of mitochondria (Glater et al. 2006; Rice and Gelfand 2006). Calcium binding to 

Miro inhibits motility by causing detachment of the motor protein complex from 

microtubules (Wang and Schwarz 2009a, b; Wang et al. 2011b). Calcium exchangers, 

serving a role in calcium buffering, are dependant on ATP, resulting in a dependency of the 

buffering capacity on mitochondrial ATP synthesis. This is leading to the detachment of 

mitochondria in calcium rich spots, thus creating a localized mechanism for selective 

delivery of mitochondria to cellular regions with unmet ATP needs (Yi et al. 2004). Elevated 

levels of cytosolic calcium inhibit motility by binding to Miro and decreased supply of ATP 

lowers the activity of ATPase-driven motor proteins. Kinesins themselves are unaffected by 

calcium levels, so by coupling both ATP availability and local calcium concentrations this 

local regulation specifically impacts mitochondrial movement and not general microtubule 

transport.

In neurons, proper distribution of mitochondria is of the upmost importance. The degree of 

dendritic arborization correlates with mitochondrial content and is dependant on Miro 

activity (Macaskill et al. 2009; Russo et al. 2009). Mitochondria with high membrane 

potential and elevated ATP production travel anterogradely to synaptic regions where there 

is a very high demand for energy (Miller and Sheetz 2004). Appropriately, global elevation 

of ADP levels in neurons increases delivery of mitochondria to synapses (Mironov 2009). 

On the contrary, there is fast retrograde transport of depolarized mitochondria with low 

membrane potential back to the soma to facilitate lysosomal degradation (Boldogh and Pon 

2007; Gerencser and Nicholls 2008; Hollenbeck and Saxton 2005). In addition to supplying 

ATP, mitochondria fulfill a crucial role by buffering cytosolic calcium. The abundant 

neurotransmitter glutamate activates ionotropic NMDA receptors resulting in local increases 

in calcium influx. This relationship establishes an important regulatory mechanism for local 

inhibition of mitochondrial transport by Miro at active synaptic sites (Saotome et al. 2008; 

Wang and Schwarz 2009b; Macaskill et al. 2009).

The transcriptional and post-translational regulation of OPA1 serves as an excellent final 

example of both global and local control of mitochondrial dynamics. Through global 

signaling pathways, alterations in gene transcription can create eight isoforms of OPA1 

(Landes et al. 2010). The distinct functions of the different forms of OPA1 are not well 

understood but clearly they can perform unique activities such as stabilizing cristae and 

protecting mtDNA (Semenzato et al. 2011; Merkwirth et al. 2008; Frezza et al. 2006; 

Elachouri et al. 2011; Yu-Wai-Man et al. 2010). A shift in isoform production affects all 

mitochondria undergoing protein import and therefore represents a form of global 

regulation. On the other hand, imported OPA1 is cleaved to produce variants of different 

lengths by several mitochondrial proteases, including MPP, OMA1, PARL, and Yme1L 

(Song et al. 2007, 2009; Ehses et al. 2009; Cipolat et al. 2004, 2006; Griparic et al. 2007; 

Guillery et al. 2008; Ishihara et al. 2004). This proteolytic processing is dependant on 

membrane potential, metal ion levels, and ATP availability. Both long and short isoforms are 

required for proper inner membrane fusion and so represents a means of local regulation. 
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For example, stress-induced cleavage of OPA1 long isoforms by OMA1 can disrupt 

interaction with Mfn1 and thereby block complete fusion (Ehses et al. 2009; Cipolat et al. 

2004, 2006; Guillery et al. 2008). In this way, OPA1 is regulated both at the global and local 

levels to control fusion of mitochondria.

2.8 Mitochondrial Dynamics and Pathology

Alterations to mitochondrial fusion and fission have been demonstrated in several 

pathological conditions including neurodegeneration, obesity, and type II diabetes. 

Mutations in genes that encode for fusion proteins provide the clearest connection between 

mitochondrial dynamics and disease. Charcot-Marie-Tooth (CMT) disease Type 2A is 

caused by mutations in MFN2 and results in peripheral nervous system dysfunction (Ching 

et al. 2010; Casasnovas et al. 2010; Ouvrier and Grew 2010; Feely et al. 2011). The most 

common form of hereditary optic neuropathy is caused by mutations in OPA1 (Ferre et al. 

2009; Nochez et al. 2009; Yu-Wai-Man et al. 2011a, b). These diseases confirm the 

importance of mitochondrial fusion in cell survival and also illustrate the existence of 

selective susceptibility amongst neuronal subtypes.

Neurons in general are vulnerable to mitochondrial dysfunction due to extreme energy 

demands coupled with complex, polarized cell structures. Degeneration in Parkinson’s 

disease (PD) occurs selectively in neurons that exemplify these combined susceptibilities 

and genetic studies strongly implicate defects in mitochondrial dynamics and quality control 

(Wang et al. 2011b; Braak and Del Tredici 2008; Braak et al. 2004; Narendra and Youle 

2011; Dagda and Chu 2009; Whitworth and Pallanck 2009). Specific cellular morphological 

characteristics create inherent challenges to the networking of mitochondrial populations 

within PD-sensitive neurons. The A9 dopaminergic (A9-DA) neurons of the substantia nigra 

elegantly illustrate this principle (Braak and Del Tredici 2008; Braak et al. 2004; Ferrer et al. 

2011).

The nigral A9-DA neurons are so polarized and branched that their somas account for less 

than 1% of total cell volume (Sulzer 2007). Massive neuritic arborization occurs in both 

axonal and dendritic compartments such that each A9-DA neuron may contain more than 

300,000 synapses in its axonal field alone (Arbuthnott and Wickens 2007; Matsuda et al. 

2009; Surmeier et al. 2010a, b). Extreme cellular morphology creates a major logistical 

hurdle and heightens susceptibility to disruptions in mitochondrial transport. Dispersion also 

limits protective mechanisms of complementation and quality control by decreasing the 

likelihood of fusion events. Synapses are the most energy-demanding region of the neuron as 

well as being sites of voltage-gated calcium influx. Proper mitochondrial distribution is 

therefore critical not only to provide ATP but also to buffer calcium levels (Oliveira 2010; 

MacAskill et al. 2010).

To reach the pre-synaptic compartment, mitochondria must travel along long, thin, and 

poorly myelinated axons in A9-DA neurons (Braak et al. 2004). Each of these characteristics 

increases both metabolic demand and the parallel risk of oxidative stress. Length correlates 

with surface area and longer axons have increased requirements for ATPase activity by the 

sodium potassium exchanger (Na+/K+ ATPase). Greater distances also increase energy 
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expenditures and travel time for motor proteins bringing cargo back and forth from soma to 

synapse. Longer retrograde transit times for damaged mitochondria autophagocytosed at 

synapses likely increases the risk and extent of oxidative damage en route back to lysosomes 

(Terman et al. 2010; Yue 2007; Yue et al. 2009). Like lanes on a road, width also impacts 

axonal transport. Thin caliber axons are spatially restrained and this reduces capacity for 

delivery of both mitochondria and autophagosomes. Thin A9-DA axons have higher surface 

area to volume ratios and therefore elevated energy demands due to higher basal Na+/K+ 

ATPase activity. Similarly, myelin limits the amount of surface area involved in ion 

exchange and this insulation dramatically impacts energy demands for maintaining ionic 

gradients required axonal conductance. Creating specialized sub-domains of the axon 

permits clustering of mitochondria in energy intensive micro-regions and that may promote 

mitochondrial fusion (Ohno et al. 2011). Poorly myelinated A9-DA neurons require high Na
+/K+ ATPase activity over the entire length of the axon are thereby denied the potential 

benefits of mitochondrial clustering. Collectively, these characteristics of A9-DA neurons 

likely synergize to heighten sensitivity to disruptions in mitochondrial dynamics, motility, 

and mitophagy.

Studies of genetic mutations that cause recessive forms of familial PD support these 

predictions of heightened susceptibility of disruptions in mitochondrial dynamics and 

quality control in A9-DA neurons. Mutations in DJ-1, PINK1, and Parkin cause 

parkinsonism and originally these genes were thought to have disparate functions but 

recently their cellular roles were unified around mitochondrial dynamics and quality control 

(Narendra and Youle 2011; Dagda and Chu 2009; Whitworth and Pallanck 2009; Chu 

2010a; Irrcher et al. 2010; Thomas et al. 2011). Together these genes provide protection 

against the extremes of mitochondrial membrane potential and ROS production. In this 

thermostat analogy DJ-1 targets mitochondria that produce excess ROS with normal to high 

membrane potential. The other extreme is handled by PINK1, which identifies mitochondria 

with little ROS production due to depolarized membrane potential. Parkin acts as a 

downstream effecter of both DJ-1 and PINK1 pathways to facilitate selective autophagic 

clearance of targeted mitochondria.

DJ-1 is a cytosolic chaperone protein that translocates to mitochondria in response to 

oxidative stress (Canet-Aviles et al. 2004; Moore et al. 2005; Xiong et al. 2009). Loss of 

DJ-1 function leads to aberrant mitochondrial morphology and function (Irrcher et al. 2010; 

Thomas et al. 2011; Goldberg et al. 2005; Krebiehl et al. 2010) as well as increased 

sensitivity to mitochondrial toxins and ROS (Canet-Aviles et al. 2004; Kim et al. 2004, 

2005; Ved et al. 2005; Zhang et al. 2005; Paterna et al. 2007; Taira et al. 2004 ; Menzies et 

al. 2005 ; Meulener et al. 2005). The protective functions of DJ-1 are dependant on a 

specific cysteine residue located at site 106 and this single amino acid allows DJ-1 to 

function as a cytoplasmic sensor of mitochondrial oxidative stress (Irrcher et al. 2010; 

Canet-Aviles et al. 2004; Blackinton et al. 2005, 2009). In support of this role, mitochondria 

isolated from mice lacking DJ-1 display greater ROS generation and phenotypes associated 

with loss of DJ-1 are reversed with anti-oxidants (Irrcher et al. 2010; Thomas et al. 2011). 

Replacing wild-type protein rescues the phenotypes of DJ-1 knockout cells but not when the 

replacement protein is mutated at site 106. Exactly how DJ-1 regulates mitochondrial ROS 

production is not fully clear but two plausible mechanisms include modulation of complex I 
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activity and regulation of uncoupling protein expression (Hayashi et al. 2009; Guzman et al. 

2010). Additionally, oxidation of DJ-1 results in binding with the cytosolic E3 ubiquitin 

ligase Parkin (Moore et al. 2005). DJ-1 functions upstream in this pathway as Parkin 

overexpression can rescue phenotypes associated with loss of DJ-1 (Irrcher et al. 2010; 

Thomas and Cookson 2009) but not the reverse (Dodson and Guo 2007).

Maintenance of homeostasis within the mitochondrial population is not complete with only 

protection from excess ROS by DJ-1. Production of ROS is connected to membrane 

potential and when a mitochondrion becomes depolarized it decreases ROS output. In this 

situation the dysfunctional mitochondrion would be undetected by the DJ-1-mediated 

quality control mechanism. An additional surveillance mechanism is needed to guard against 

this other potential extreme situation. PTEN-induced kinase 1 (PINK1) is a protein kinase 

with a mitochondrial targeting signal and a putative transmembrane domain (Chu 2010a, b; 

Mills et al. 2008). PINK1 is continuously imported into the intermembrane space where it is 

immediately targeted for degradation by several mitochondrial proteases. This normal 

turnover is interrupted when mitochondria depolarize and PINK1 accumulates, allowing for 

kinase signaling to bring about selective mitochondrial removal (Jin et al. 2010; Narendra et 

al. 2010a). In this way PINK1 provides a mechanism for monitoring mitochondrial function 

that is not based on ROS production. Loss of PINK1 function leads to a buildup of damaged 

mitochondrial material along with decreased membrane potential and ATP synthesis (Dagda 

and Chu 2009 ; Exner et al. 2007 ; Liu et al. 2009, 2011; Grunewald et al. 2009; Marongiu et 

al. 2009; Dagda et al. 2009a, b; Wood-Kaczmar et al. 2008; Gandhi et al. 2009). 

Mitochondrial dysfunction occurs prior to the onset of any neu-rodegeneration in mice 

lacking the PINK1 gene (Gispert et al. 2009; Narendra et al. 2008, 2009, 2010). One 

downstream event of PINK1 stabilization is the binding and phosphorylation of Miro/Milton 

mitochondrial transport complexes (Wang et al. 2011b; Weihofen et al. 2009). This PINK1 

effect may isolate depolarized mitochondria by limiting their transport and help in the 

clearance by mitophagy.

Another consequence of depolarization-induced PINK1 accumulation related to mitophagy 

is the mitochondrial recruitment of Parkin. Cytosolic Parkin is selectively recruited to 

depolarized mitochondria, which facilitates autophagic elimination of the dysfunctional 

units (Narendra et al. 2008, 2009, 2010a) and PINK1 is required for this process (Geisler et 

al. 2010a, b; Vives-Bauza et al. 2010a, b, c; Vives-Bauza and Przedborski 2010). By 

attaching lysine 48 (K48) linked polyubiquitin chains, Parkin promotes proteasomal 

degradation of mitochondrial outer membrane proteins such as Miro, mitofusins, and several 

transporters (Tanaka et al. 2010a, b; Chan and Chan 2011; Chan et al. 2011; Ziviani et al. 

2010; Ziviani and Whitworth 2010; Poole et al. 2008, 2010 ; Tanaka 2010 ). In this way 

K48-mediated proteasomal turnover of outer membrane proteins immobilizes and isolates 

damaged mitochondria to increase the likelihood of autophagic clearance. In addition, 

Parkin also creates recruitment signals for mitophagy via lysine 63-linked (K63) ubiquitin 

chains. Scaffold proteins, such as HDAC6 and p62/SQSTM1, bind to K63-ubiquitin and 

facilitate localization to the aggresome and clearance by mitophagy (Huang et al. 2011b; 

Geisler et al. 2010a; Lee et al. 2010; Okatsu et al. 2010; Narendra et al. 2010b; Ding et al. 

2010a).
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Quality control of mitochondrial performance occurs through two pathways in which either 

DJ-1 or PINK1 utilize Parkin as a downstream effector, summarized in Fig. 2.2. Age of 

onset studies from PD patients support this conceptual hierarchy. Mutations in DJ-1 and 

PINK1 cause an early onset of Parkinson symptoms relative to the sporadic disease (~30–50 

compared to ~60–80 years of age) (Abou-Sleiman et al. 2004; Mizuno et al. 2006). In 

accordance with being downstream in both pathways, Parkin mutations tend to have very 

early disease onset with a large number of juvenile cases occurring before the age of 30 

(Kitada et al. 1998; Nisipeanu et al. 1999, 2001; Oliveri et al. 2001; Lucking et al. 2000).

2.9 Open Questions and Controversies

1. Studies have shown that Mff is required for fission and hFis1 is not (Otera et al. 

2010). This raises the potential for the existence of other mitochondrial outer 

membrane proteins that can bind and anchor Mff for Drp1 recruitment. The 

identity of these additional proteins is not known nor is it known how they differ 

functionally from hFis1. Finally, hFis1 is definitely involved in mitochondrial 

fission but its function is not required. Could hFis1 be important for a specific 

form or aspect of fission, such as in the mechanism behind the generation of 

unequal division?

2. One crucial area of future study is understanding of the regulatory mechanisms 

for mitochondrial dynamics and how they connect to quality control. These are 

of particular interest as therapeutic targets since strategies aimed at maximizing 

upkeep of mitochondrial performance would have broad application across 

health. Can enhancement of mitochondrial dynamics, quality control, and 

turnover be a viable therapeutic strategy for treatment of chronic diseases such as 

diabetes and neurodegeneration?

3. A large portion of publications connecting the DJ-1-PINK1-Parkin pathways 

were performed with cell lines in nonphysiologic conditions. The degree to 

which these pathways exist in neurons, surprisingly, remains a matter of debate 

(Van Laar et al. 2011). It is also worth acknowledging that most patients with 

Parkin mutations lack Lewy Bodies, the intracellular neuropathological 

hallmarks of PD (Ahlskog 2009). Assuming the role of Parkin in neurons is to 

execute mitophagy downstream of DJ-1 and PINK1 signaling, the question of 

what connects Parkin-mediated mitophagy to Lewy Body formation is another 

tantalizing question facing the field of PD research.
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Fig. 2.1. 
Organellar and cellular controls of the mitochondrial life cycle. The mitochondria life cycle. 

(a) The mitochondria life cycle. Mitochondria go through continuous cycles of fusion and 

fission. Each cycle last 5–20 min. Fusion is brief (1) and triggers fission events (2). A 

daughter mitochondrion may maintain intact membrane potential (orange ) or depolarize (3, 

green). When depolarized a subsequent fusion event is unlikely to occur, unless the 

mitochondrial re-polarizes. As a result, depolarized daughter mitochondria remain solitary. 

Depolarized and solitary mitochondria (4) remain for 1–4 h in a pre-autophagic pool before 
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being consumed by the autophagic machinery. (b) The interaction of the mitochondria life 

cycle with the cell cycle—this diagram depicts the normal life cycle of an individual 

mitochondrion during the G0 phase of the cell cycle. The mitochondrion undergoes fusion, 

fission, depolarization, and degradation by autophagy. This process is depicted as one of 

local control whereby mitochondrial events are largely dictated by the local energetic status 

and associated local signals. During the cell cycle global signals cause concerted changes in 

the mitochondrial population, as noted by hyperfusion in the G1-S and fragmentation during 

the M phase. These global population effects are governed by the cellular demand for energy 

required by cell division and the need for homogenization and sequestration of cellular 

components during met-phase. The cell cycle serves as an elegant example of the parities of 

local and global control
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Fig. 2.2. 
The thermostat model of mitochondrial quality control. Separate pathways maintain 

mitochondrial homeostasis by safeguarding against functional extremes. In the cold extreme, 

PINK1 is stabilized within mitochondria upon membrane depolarization leading to increased 

kinase signaling. Alternatively, oxidative activation of cytosolic DJ-1 occurs in response to 

the hot extreme of excess ROS production. Downstream of both PINK1 and DJ-1 pathways 

is the recruitment of the E3 ligase Parkin and attachment of K63 and K48 polyubiquitin 

chains to mitochondrial outer membrane proteins. Damaged mitochondria are isolated and 

immobilized by proteasomal degradation of K48-tagged proteins, such as mitofusins and 

Miro. Proteasomal clearance of mitochondrial translocases prevents repopulation of the 

outer membrane with newly synthesized replacement proteins. Finally, K63 polyubiquitin 

chains selectively identifies mitochondria for autophagic clearance by recruitment of 

scaffold proteins, such as HDAC6 and p62
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