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This editorial refers to ‘Multiple common comorbidities pro-
duce left ventricular diastolic dysfunction associated with
coronary microvascular dysfunction, oxidative stress, and myo-
cardial stiffening’ by O. Sorop et al., pp. 954-964.

A substantial proportion of patients with heart failure have a left ventric-
ular (LV) ejection fraction (EF) in the ‘normal’ range, a form of the syn-
drome that is termed heart failure with preserved ejection fraction
(HFpEF). Patients with HFpEF have significant morbidity and mortality
but unlike heart failure with reduced EF, there are currently no effective
validated therapies. HFpEF is therefore an important area for further re-
search. Patients with HFpEF have cardiac and extra-cardiac manifesta-
tions, including LV diastolic dysfunction, abnormal heart rate and rhythm,
microvascular dysfunction, increased aortic stiffness, and abnormal
ventriculo-vascular coupling, which impair systolic and diastolic reserve
capacity upon exercise." The underlying pathophysiology is incompletely
understood, in part because HFpEF is highly heterogenous and may not
represent a single condition. Patients with HFpEF frequently have
comorbidities such as hypertension, obesity, Type Il diabetes, hyperlipi-
daemia, and renal disease (Figure 7). However, not all patients have all
comorbidities and the unpredictable interplay between different comor-
bidities is likely to result in multiple HFpEF phenotypes. Indeed, unbiased
cluster analysis of densely phenotyped HFpEF patients suggests the pres-
ence of distinct ‘phenogroups’ with different clinical characteristics and
outcomes.?

Clinical studies to investigate the pathomechanisms involved in HFpEF
have typically involved small numbers of highly selected patients sub-
jected to invasive physiological assessment and cardiac biopsy-based
analyses. A recent extensively-promoted model based on such studies
posits that comorbidities induce systemic inflammation and vascular en-
dothelial dysfunction as a consequence of an abnormal balance between
reactive oxygen species (ROS) production and nitric oxide (NO) bio-
availability.3 Consequent abnormalities of NO/cyclic GMP (cGMP)/pro-
tein kinase G (PKG) signalling are proposed to drive increased
cardiomyocyte stiffness and interstitial cardiac fibrosis, thereby leading
to LV diastolic dysfunction, as well as abnormalities in the lungs, kidneys,
and skeletal muscle that contribute to clinical dysfunction. The

generalisability of this hypothesis is debatable given the small sample
sizes, the marked heterogeneity of clinical HFpEF, and the well-recog-
nized limitations of endomyocardial biopsy-based analyses in patients,
but it serves as a useful basis for more detailed investigation.

Experimental animal models that allow deeper analysis of the patho-
genesis of HFpEF would clearly be valuable. Rodent models that have
been employed include the DOCA-salt model of hypertension and mod-
els of obesity and/or diabetes.* The advantage of these models is the abil-
ity to use genetic modification to investigate mechanisms but the
disadvantage is the difficulty in mimicking the clinical characteristics of hu-
man HFpEF in small animals. In this issue, Sorop et al.> report a porcine
model in which a combination of comorbidities led to LV diastolic dys-
function with preserved EF. These authors used a combination of
streptozotocin-induced diabetes, surgical renal intervention to induce
kidney dysfunction and hypertension, and a high fat/high salt diet in a rela-
tively small group of animals, but which were followed up for 6 months
and intensively investigated. The authors were able to document key ab-
normalities including evidence of systemic inflammation, coronary endo-
thelial dysfunction, an increase in ROS levels, a decrease in NO with
evidence of NOS uncoupling, and an increase in cardiomyocyte passive
stiffness and myocardial fibrosis.

Sorop et al’ should be congratulated for a detailed study which will
be of particular interest to those investigating the potential role of ab-
normal NO signalling in HFpEF. They found evidence of eNOS uncou-
pling in their model; i.e. a change from dimeric to monomeric eNOS
which leads to superoxide instead of NO production and is implicated in
diverse cardiovascular pathologies. eNOS uncoupling involves a vicious
cycle in which superoxide further impairs eNOS activity both by deplet-
ing the essential co-factor tetrahydrobiopterin and inhibitory phosphor-
ylation of eNOS at residue Y657. The authors report good evidence
that a substantial proportion of myocardial superoxide originated from
uncoupled NOS enzymes, based on the efficacy of the NOS inhibitor L-
NAME, although data to support NADPH oxidases as an important
source was less convincing. Interestingly, no significant changes were
found in cGMP levels or the activities of PKG and phosphodiesterase 5
(which degrades cGMP), raising the question as to how (or if) the re-
duced NO bioavailability is linked to LV diastolic dysfunction (and
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Figure | Proposed framework for the investigation of HFpEF as a heterogenous condition. The patient-specific interplay among those comorbidities that
are present (A) will influence the pathophysiological mechanisms at play (B). These in turn will determine the precise pattern of the clinical phenotype (C).
Stratification of patients with HFpEF, both to inform underlying pathophysiology and ultimately to select effective treatment, could be based on a combina-
tion of factors (D). The selection of animal models and interpretation of data obtained in such models would be optimized by consideration of such a

framework.
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different from the data reported in human studies®’). The authors also
investigated changes in the giant cytoskeletal protein, titin, which is con-
sidered to be a key determinant of passive cardiomyocyte stiffness. Titin
abnormalities could be involved in HFpEF through three processes—an
isoform-shift from the N2BA to N2B form, altered phosphorylation and
oxidative modification—the first two of which have been found in car-
diac biopsies from HFpEF patients.é‘8 While Sorop et al” found increased
expression of the N2B titin isoform, consistent with increased passive
stiffness, no titin hypo-phosphorylation was found—which is suggested
to be related to decreased NO/PKG activity and again raises the ques-
tion as to the precise relationship between changes in NO signalling
and diastolic dysfunction. Indeed, a significant limitation of this study is
that its design did not allow mechanistic links to be established among
the different abnormalities. Other limitations include the use of streptozo-
tocin to induce diabetes, which probably does not closely mimic the
human setting—as suggested by Sorop et al’s findings that cardiomyocyte
size and body weight were both reduced in their model rather than being
increased as might be expected. With regard to inflammation, the authors
measured systemic TNFao levels but it would have been informative to
also quantify myocardial cytokines and inflammatory cell infiltration.

A more general critique of the model reported by Sorop et al® is
whether the approach of combining multiple comorbidities in this manner
is the best way to model HFpEF? It is highly unlikely that any single model
can adequately map the pathophysiology of all HFpEF. For example, a dif-
ferent porcine model to induce LV diastolic dysfunction reported by
Schwarzl et al’ used a combination of DOCA-salt hypertension and a
western diet, and found some different abnormalities such as significant
cardiomyocyte hypertrophy and titin hypo-phosphorylation. In our opin-
jon, a combination of approaches is required to significantly advance our
knowledge of the pathogenesis of HFpEF and develop effective treat-
ments. Phenotype-specific large animal models promise to be an impor-
tant component of the armamentarium, allowing initial assessment of new
therapeutic approaches targeted against specific pathways, while a more
rigorous clinical phenotyping, experimental investigation and classification
of patients with HFpEF is also required (Figure 7).
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