Table 1.
DCNN structure properties before and after pruning.
Layer | Num. of Neurons | Num. of Nodes (filter size) | Num. of Parameters |
---|---|---|---|
Before pruning | |||
C1 | 61,504 | 64 (11 × 11) | 23,296 |
C2 | 43,200 | 192 (5 × 5) | 307,392 |
C3 | 18,816 | 384 (3 × 3) | 663,936 |
C4 | 12,544 | 256 (3 × 3) | 884,992 |
C5 | 12,544 | 256 (3 × 3) | 590,080 |
F1 | 4096 | 9,441,280 | |
F2 | 4096 | 16,781,312 | |
F3 | 1000 | 4,097,000 | |
F4 | 100 | 100,100 | |
F5 | 2 | 202 | |
Total | 148,608 |
Convolutional: 1,152 Fully-connected: 9,294 |
32,889,590 |
After pruning | |||
C1 | 15,376 | 16 (11 × 11) | 5,824 |
C2 | 1,350 | 16 (5 × 5) | 6,416 |
C3 | 786 | 16 (3 × 3) | 2,320 |
C4 | 786 | 16 (3 × 3) | 2,320 |
C5 | 786 | 16 (3 × 3) | 2,320 |
F1 | 4096 | 593,920 | |
F2 | 4096 | 16,781,312 | |
F3 | 1000 | 4,097,000 | |
F4 | 100 | 100,100 | |
F5 | 2 | 202 | |
Total | 19,084 |
Convolutional: 80 Fully connected: 9,294 |
21,591,734 |
Decrease in number of neurons: 87.2% | Decrease in number of parameters: 34.4% |