Skip to main content
. Author manuscript; available in PMC: 2019 May 1.
Published in final edited form as: Phys Med Biol. 2018 May 1;63(9):095005. doi: 10.1088/1361-6560/aabb5b

Table 1.

DCNN structure properties before and after pruning.

Layer Num. of Neurons Num. of Nodes (filter size) Num. of Parameters
Before pruning
C1 61,504 64 (11 × 11) 23,296
C2 43,200 192 (5 × 5) 307,392
C3 18,816 384 (3 × 3) 663,936
C4 12,544 256 (3 × 3) 884,992
C5 12,544 256 (3 × 3) 590,080
F1 4096 9,441,280
F2 4096 16,781,312
F3 1000 4,097,000
F4 100 100,100
F5 2 202
Total 148,608 Convolutional: 1,152
Fully-connected: 9,294
32,889,590
After pruning
C1 15,376 16 (11 × 11) 5,824
C2 1,350 16 (5 × 5) 6,416
C3 786 16 (3 × 3) 2,320
C4 786 16 (3 × 3) 2,320
C5 786 16 (3 × 3) 2,320
F1 4096 593,920
F2 4096 16,781,312
F3 1000 4,097,000
F4 100 100,100
F5 2 202
Total 19,084 Convolutional: 80
Fully connected: 9,294
21,591,734
Decrease in number of neurons: 87.2% Decrease in number of parameters: 34.4%