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Abstract

The widely used influenza subunit vaccine would benefit from increased protection rates in 

vulnerable populations. Skin immunization by microneedle (MN) patch can increase vaccine 

immunogenicity, as well as increase vaccination coverage due to simplified administration. To 

further increase immunogenicity, we used granulocyte-macrophage colony stimulating factor 

(GM-CSF), an immunomodulatory cytokine already approved for skin cancer therapy and cancer 

support treatment. GM-CSF has been shown to be upregulated in skin following MN insertion. 

The GM-CSF-adjuvanted vaccine induced robust and long-lived antibody responses cross-reactive 

to homosubtypic and heterosubtypic influenza viruses. Addition of GM-CSF resulted in increased 

memory B cell persistence relative to groups given influenza vaccine alone and led to rapid 

lung viral clearance following lethal infection with homologous virus in the mouse model. Here 

we demonstrate that successful incorporation of the thermolabile cytokine GM-CSF into MN 

resulted in improved vaccine-induced protective immunity holding promise as a novel approach 

to improved influenza vaccination. To our knowledge, this is the first successful incorporation of 

a cytokine adjuvant into dissolvable MNs, thus advancing and diversifying the rapidly developing 

field of MN vaccination technology.
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1. Introduction

Influenza A virus is a common respiratory pathogen that causes seasonal outbreaks, 

epidemics and occasional pandemics. Although influenza illness mostly presents with 

benign symptoms in healthy populations and resolves within 7–10 days, it can become life­

threatening in elderly adults, pregnant women, infants and people with chronic conditions 

[1–3]. Annual infection rates for seasonal influenza are 5–10% for adults and 20–30% 

for children [4]. Of the many influenza subtypes, H1N1 has the highest prevalence in 

laboratory-confirmed influenza-like illness (ILI), while H3N2 disproportionately affects 

individuals ≥65-years of age causing higher morbidity and mortality rates [5].

Influenza vaccination is the most effective public health strategy for reducing influenza 

mortality rate and economic burden of treatment and hospitalization costs and lost 

productivity and wages [6, 7]. However, during the 2015–2016 flu season influenza 

vaccination demonstrated modest protection against ILI, with an overall effectiveness of 

47% [8]. In addition to the need for increased immunogenicity, current influenza vaccination 

approaches face obstacles such as limited duration of immunity and lack of protection in 

high risk groups, such as young children and the elderly, as well as low coverage and 

participation in vaccination [9–11].

Skin vaccination by microneedle (MN) patch has the potential to overcome the afore­

mentioned hurdles observed in vaccination strategies by generating superior immune 

responses to vaccine antigen and increasing access to vaccination through improved 

vaccination logistics and greater patient acceptance [12–15]. MN vaccine patches 

have specifically been shown to enhance influenza vaccination, including increased 

immunogenicity [12, 13, 16], improved acceptability [17, 18] and long-lasting stability 

outside the cold-chain [19]. Additionally, a recent phase I clinical trial showed that 

influenza vaccination by MN patch administered by study personnel or self-administered by 

study participants was well tolerated, strongly immunogenic and overwhelmingly preferred 

compared to intramuscular (IM) vaccination [20].

We previously demonstrated that influenza vaccination by MN patch leads to accelerated 

viral clearance and increased recall immune responses when compared to IM vaccination 

[21, 22]. Antigen delivery with this novel platform targets the skin-resident antigen­

presenting cells (APCs) and drives robust activation and mobilization of innate and adaptive 

immune cells [23]. Cytokines shape the immune response by modulating the function of 

cellular targets, making them potential adjuvants for vaccines. Thus, inclusion of cytokines 

within vaccine-containing MNs could further boost vaccine effectiveness.

Granulocyte-macrophage colony stimulating factor (GM-CSF) is a monomeric 24 kDa 

cytokine that promotes the maturation of granulocytes and macrophages from bone marrow 

progenitor cells [24] and is secreted by a wide array of immune cells, keratinocytes, 

eosinophils, neutrophils, and endothelial cells [25]. GM-CSF is particularly active in the 

skin, recruiting epidermal dendritic cells (DC) such as Langerhans cells into draining lymph 

nodes and enhancing activation and antigen presentation [26, 27]. These properties have 
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made GM-CSF an effective therapy to treat neutropenia in cancer and AIDS patients for 

the past 20 years [28, 29] and a molecule of interest for adjuvant purposes in therapeutic 

vaccinations against skin cancers and autoimmune skin disorders [30, 31]. However, despite 

the potential for successful use as an adjuvant and demonstrated safety in cancer clinical 

trials [32–34], development of GM-CSF as an adjuvant in vaccines against infectious 

microorganisms has been limited by variability in effectiveness [35].

Due to the immunomodulatory effects and activation of skin immune cells by GM-CSF, we 

hypothesized that incorporation of this cytokine in MN patches containing influenza subunit 

vaccine will increase immunogenicity compared to vaccine alone. This is further motivated 

by prior findings that GM-CSF was identified as a potential adjuvant from a panel of 

cytokines and chemokines that were upregulated in the skin following insertion of influenza 

vaccine-coated MN arrays [36]. We tested our hypothesis in the BALB/c mouse model using 

both intradermal (ID) injection and MN patch delivery. We elaborate on previous work 

showing the efficacy of MN patches as an improved vaccination technology and develop a 

pipeline for testing novel adjuvants to enhance the potency of this emerging technology.

2. Materials and methods

2.1. Cells and virus stocks

Madin-Darby canine kidney (MDCK) cells (ATCC, Manassas, VA) were maintained in 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Mediatech, Herndon, VA) containing 10% 

fetal bovine serum (Thermo, Rockford, IL). Influenza virus stocks A/Brisbane/59/2007 

(H1N1), A/California/07/2009 (H1N1), and A/Udorn/307/1972 (H3N2) were propagated 

in MDCK cells. Egg-grown subunit monovalent influenza vaccines, A/Brisbane/59/2007, 

A/California/07/2009, A/Christchurch/16/2010 and A/Victoria/210/2009 (A/Perth/16/2009­

like) were generously provided by Seqirus (Maidenhead, UK). Vaccine processing 

for MN patch fabrication (reconstitution of lyophilized preparation and concentration), 

determination of protein concentration and assay of hemagglutinin (HA) content were 

carried out as previously described [13]. The following in-house MDCK-grown viruses were 

used for our studies: H1N1 A/California/07/2009, A/California/10/1978, A/FM/1/1947; 

and H3N2 A/Texas/50/2012, A/Victoria/210/2009, and A/Aichi/2/1968. Mouse adapted A/

California/07/2009 and A/Udorn/307/1972 (H3N2) viruses were serially passaged in lungs 

of BALB/c mice. The LD50 was determined using the Reed-Muench formula [37] and 

the viral titers were determined by plaque assay [38]. Viruses were sequenced at Operon­

MWG (Huntsville, AL) and Macrogen (Seoul, South Korea) and assembled via ClustalW 

alignment algorithms in MegAlign (DNASTAR Lasergene v7.0, Madison, WI) and BioEdit 

(Ibis Biosciences, Carlsbad, CA) software.

2.2. Animals

Eight-week-old female BALB/c mice (Charles River Laboratories, Wilmington, MA) were 

bred and housed in a biosafety level 1 facility at Emory University’s Division of Animal 

Resources and viral infection experiments were performed on animals housed in a biosafety 

level 2 facility at Emory University’s Division of Animal Resources. All experiments 

were conducted in accordance with protocols approved by Emory University’s Institutional 
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Animal Care and Use Committee (IACUC) in accordance with guidelines with the United 

States Federal Animal Welfare Act (PL 89-544) and subsequent amendments.

2.3. Immunizations and infections

Vaccines and adjuvant were prepared in sterile Ca2+ and Mg2+ deficient phosphate-buffered 

saline (PBS). Mice were intradermally (ID) vaccinated with a tuberculin syringe on the 

caudal site of dorsum with 1 or 3 μg HA H1N1 A/California/07/2009 subunit vaccine alone 

or 1 μg HA mixed with 100 ng recombinant murine GM-CSF (PeproTech, Rocky Hill, NJ). 

Mice were infected intranasally (IN) under isoflurane anesthesia with 25xLD50 (1500 p.f.u.) 

mouse-adapted A/California/07/2009 virus 2 months post vaccination.

The optimal GM-CSF concentration for microneedle (MN) vaccination was determined by 

an initial screen of GM-CSF doses (5, 20, 100 ng) administered ID with 1 μg HA of H3N2 

(A/Victoria/210/2009 (A/Perth/16/2009-like)) subunit vaccine and was compared to 1 μg HA 

or 5 μg of the same vaccine without adjuvant. Sera was collected 90 days post vaccination 

(d.p.v.), and mice were infected IN with mouse adapted A/Udorn/307/1972 (H3N2) at a dose 

of 4xLD50 (35 plaque forming units (p.f.u.)) 4 months post vaccination.

The best route of adjuvanted vaccine delivery was selected by comparing magnitude and 

breadth of immune responses induced by MN, ID or IM immunization of mice with A/

California/07/2009 subunit vaccine. Skin surfaces for MN patch vaccination were prepared 

as previously described [39]. Mice were anesthetized using xylazine/ketamine cocktail and 

MN patches were applied with direct pressure for 1 min and left in place for 20 min. 

Unused and used patches were analyzed by ELISA for vaccine and adjuvant content 

to determine delivery efficiency. Sera was collected 28, 90, and 120 d.p.v. Mice were 

infected with 25xLD50 (1500 p.f.u.) mouse-adapted A/California/07/2009 virus 4 months 

post vaccination.

Cellular immune responses in MN vaccinated cohorts of mice with blank patches or patches 

containing monovalent subunit vaccine (A/Christchurch/16/2010, a A/California/07/2009­

like strain), at 1 μg HA, 3 μg HA, or 1 μg HA mixed with 100 ng recombinant murine 

GM-CSF. Mice were challenged with 10xLD50 (600 p.f.u.) homologous mouse-adapted 

A/California/07/2009 virus one month post vaccination. In survival studies, animals were 

monitored daily for morbidity (body weight loss, hunched posture, ruffled hair and 

decreased mobility) and mortality for 2 weeks. Mice that lost 25% of their weight were 

euthanized according to IACUC guidelines. An independent cohort of mice from each group 

was euthanized at 4 days post-infection to harvest lungs, spleens and lymph nodes.

2.4. Microneedle patch fabrication

MN patches were fabricated in a two-step process with polydimethylsiloxane (PDMS) 

molds as previously described [13]. To measure stability of GM-CSF in the presence of 

excipients a first-cast solution was prepared containing recombinant GM-CSF (PeproTech, 

Rocky Hill, NJ) in 3% w/v poly-vinyl alcohol (PVA, Millipore, Bellerica, MA) in 

combination with one or more of the following: 0.1% w/v bovine serum albumin (BSA, 

Sigma), 10% w/v trehalose (Sigma), 1% w/v carboxymethyl cellulose (CMC, Spectrum, 

New Brunswick, NJ). A second-cast solution was prepared containing 18% w/v PVA and 
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18% w/v sucrose (Sigma). MN patches were prepared by sequentially casting the first-cast 

solution to fill the mold cavities and the second-cast solution to cover the mold surface 

(corresponding to the MN patch backing). The MN patches were removed from the molds 

and attached to adhesive paper discs. Patches were inspected via light microscopy for 

integrity and uniformity. Blank placebo patches were made identically, except no antigen 

was in the first-cast solution. Influenza HA concentration was measured by a modified SRID 

assay [13, 40].

To measure stability of GM-CSF in the presence of influenza vaccine, the first-cast solution 

was prepared containing A/Brisbane/59/07 and murine recombinant GM-CSF in 3% w/v 

poly-vinyl alcohol (PVA; Sigma-Aldrich St Louis, MO) or in combination with 10% w/v 

trehalose (Sigma) and 3% PVA. Based on pilot delivery efficiency data after microneedle 

insertion [13], we encapsulated 20 ng GM-CSF per patch for a final working dose of 10 ng 

and 7 μg HA for a working concentration of 5 μg.

2.5. Bioactivity assays for GM-CSF

Bioactivity of GM-CSF was tested with proliferation assays using 2 cell types: murine 

bone marrow cells harvested from naïve female mice and TF-1 human erythroleukemia cell 

line (ATCC® CRL-2003, Manassas, VA). TF-1 cell growth and survival is dependent on 

GM-CSF or IL-3 [41]. Cells were treated with either solubilized or dried and reconstituted 

microneedle coating solutions mixed with GM-CSF. Bone marrow was collected from the 

femurs of two naïve mice, centrifuged at 1000 RPM for 7 min, and incubated in RBC 

Lysing Buffer Hybri-Max (Sigma-Aldrich, St. Louis, MO) for 10 min. Cells were washed 

and re-suspended in RPMI with 10% FCS and 1% Penicillin-Streptomycin RPMI (Corning 

Cellgro, Thermo Fisher Scientific, Waltham, MA). Bioactivity was tested in bone marrow 

cells using: (i) first-cast solution (with 10% trehalose) without GM-CSF, (ii) GM-CSF 

suspended in RPMI-10 (200 μl of 200 ng/μl) (iii) first-cast solution mixed with 1:1 with 

GM-CSF (to reach a final concentration of 100 μg), with GM-CSF and (iv) first-cast solution 

with GM-CSF dried in microcentrifuge tubes and re-suspended in 200 μl RPMI-10. After 2 

days, cells were imaged via Axio Scope software (Carl Zeiss Microscopy, LLC, Thornwood, 

NY). Cell activation and proliferation was visualized with light microscopy throughout the 

incubation period. Every 2 days the cells were supplemented with RPMI-10. Following a 

4-day incubation, we determined viable cells in proliferation with the colorimetric Promega 

Cell Titer 96® AQueous One Solution Cell Proliferation Assay (Promega, Madison, WI). 

An additional liquid vaccine formulation control was included to ensure that the fabrication 

process did not cause a loss in activity.

Bioactivity of GM-CSF (10 ng delivery concentration) encapsulated in MN patches was 

tested in TF-1 cells with formulations used in the mold: 1) 0.1% w/v albumin 2) 0.1% 

albumin and 10% w/v trehalose 3) 1% CMC w/v and 10% trehalose or 4) 1% w/v gelatin for 

4 days. Three patches from each group were resuspended in 200 μl of RPMI-10 to overlay 

the cells. An additional liquid formulation control for each group was included to ensure 

that the fabrication process did not cause a loss in activity. As a second liquid control, we 

air-dried the same formulations in microtubes and reconstituted them in RPMI-10. At the 
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end of 3-day incubation period cell proliferation was tested with Promega cell proliferation 

assay.

Subsequently bioactivity of GM-CSF with vaccine and MN excipients was measured in 

TF-1 cells by resuspending MN fabricated with GM-CSF (10 ng delivery concentration) 

and subunit influenza vaccine (A/Brisbane/59/2007) (5 μg HA delivery concentration) 

in RPMI-10. The following controls were used in TF-1 cell proliferation: 1) GM-CSF 

dissolved in 200 PBS μl 2) GM-CSF with 0.1% BSA in RPMI-10 3) GM-CSF with 10% 

trehalose in RPMI-10 4) GM-CSF with vaccine and 10% trehalose in RPMI-10. At the 

end of 3-day incubation period cell proliferation was tested with Promega cell proliferation 

assay.

2.6. Characterization and quantitation of humoral immune responses

Serum samples were collected at 14, 28, 56 or 60, 90 and 120 (d.p.v.). Antibody titers 

were quantified with ELISA as described previously with biotinylated anti-IgG, IgG1, 

IgG2 antibodies (Southern Biotech, Birmingham, AL) against 100 ng/well monovalent 

H1N1 A/California/07/2009 subunit vaccine, A/Christchurch/16/2010 subunit vaccine, 

or recombinant HA A/California/07/2009 from BEI Resources (Manassas, VA) [42]. 

Hemagglutination inhibition (HAI) assays were performed according to the WHO laboratory 

diagnostics manual using washed turkey red blood cells [43]. Virus-neutralizing (VN) 

antibody titers were determined by microneutralization assay for A/Perth/16/2009 and A/

California/07/2009, as described previously [22]. IgG titers against chimeric HA proteins 

containing exotic HA head subtypes and commonly found seasonal HA stalks were 

measured to determine the antibody targets from H1N1 vaccinated mice; these chimeric 

proteins (cH6/1 and cH14/3) were created in a baculovirus system as described previously 

[44]. Influenza-specific antibody avidity was measured by ELISA in the presence of 

increasing concentrations (0–2.0 M) of the chaotropic agent guanidine thiocyanate (GTC) 

(Sigma), as previously described [42]. The avidity index was determined using Prism 7.03 

Software (GraphPad, La Jolla, CA) by calculating the molar concentration of the chaotropic 

agent required to reduce the initial optical density by 50%.

2.7. Antigen-specific cellular activity in spleen, lungs, and bone marrow

Lymphocytes were isolated from spleen and lung tissue 7 and 14 d.p.v. and 4 days 

post infection (d.p.i.). Bone marrow was isolated from mice 60 days d.p.v. Antibody 

secreting cells (ASCs) were quantified by overlaying 1 × 106 cells/well in ELISPOT 

plates coated with 200 ng/well H1N1 A/Christchurch/16/2010. ASCs were incubated at 

37 °C for 16 h, washed, and then influenza-specific antibodies were detected using isotype­

specific, biotinylated murine Ig antibodies. Cytokine secreting cells (CSC) were quantified 

by overlaying 5 × 105 cells/well in ELISPOT plates (EMD Millipore, Burlington, MA) 

coated with 100 ng/well of capture antibody (BD Biosciences, San Jose, CA). Cells were 

incubated with 200 ng/well H1N1 A/Christchurch/16/2010 for 48 h at 37 °C. ASC and 

CSC plates were washed and incubated with 100 ng/well biotinylated detection antibodies 

(IL-4 and IFN-γ, BD Biosciences; IgA, IgM, and IgG, Southern Biotech, Birmingham, 

AL) and developed with streptavidin-HRP and diaminobenzidine. Spots were counted via 
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ImmunoSpot Reader 5.0 (Cellular Technology Limited, Shaker Heights, OH), normalized to 

1 × 106 cells/well and plotted with GraphPad Prism software.

2.8. Flow cytometry identification of activated cellular subsets

Skin draining (inguinal) lymph nodes were collected at 7 d.p.v. to evaluate the presence of 

activated T follicular helper cells (Tfh) and germinal center (GC) B cells by flow cytometry. 

Single-cell suspensions were incubated with anti-mouse CD16/32 antibody for 10 min on 

ice. Cells were then incubated with CD3ε (145-2C11), CD4 (GK1.5), PD-1 (29F.1A12), 

CXCR5 (L138D7), CD19 (6D5), Fas (Jo2) and GL7 (GL7) on ice for 30 min. Antibodies 

were purchased from BioLegend (San Diego, CA) and BD Biosciences (San Jose, CA). 

Cells were washed and fixed in 2% paraformaldehyde. Samples were acquired on a LSR II 

flow cytometer (BD Biosciences) and data were analyzed with FlowJo (FlowJo LLC, BD, 

Franklin Lakes, NJ) (Suppl Fig. 1).

2.9. Quantification of cytokines following infection

Lungs were weighed and homogenized in 0.5 ml DMEM and 1× Halt Protease Inhibitor. 

Lysates were diluted in 1× PBS and cytokines (GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, 

IL-10, TNF-α) were quantified via a BioPlex Pro Mouse Cytokine 8-plex Assay (Bio-Rad, 

Hercules, California) at the Emory Vaccine Center Virology Core and normalized for 

dilution factor and original tissue concentration.

2.10. Measurement of lung viral titers

Viral titers in lung homogenates were quantified via plaque assay in MDCK cells [39]. Viral 

titers were assessed per gram of tissue.

2.11. Statistics

For ELISA, ELISPOT and cell-based assays, the statistical significance of differences 

between two groups was calculated by two-tailed unpaired Student’s t-test. Log2 converted 

HAI and VN titers were analyzed with one or two-way ANOVA with Bonferroni post-hoc 

test. Unless otherwise stated, antibody assays were performed in duplicate. For survival 

curves, statistics were calculated using a Log-rank (Mantel-Cox) test. Non-linear regression 

analyses were performed to determine the IC50 (95% confidence interval). A p-value < 0.05 

was considered significant.

3. Results

3.1. Intradermal vaccination screen identified GM-CSF as a promising adjuvant in 
microneedle influenza immunization

The efficacy of GM-CSF as vaccine adjuvant for skin immunization was initially carried 

out with ID injection studies. The dose of 100 ng for GM-CSF was based on published 

literature [45]. The immune responses elicited to unadjuvanted A/California/07/2009 subunit 

vaccine at low or high dose (1 μg HA and 3 μg HA respectively) were compared to those 

induced by adjuvanted low dose vaccine (Fig. 1). Mice that received the adjuvanted vaccine 

demonstrated 4-fold higher anti-A/California/07/2009 HAI titers (p = 0.07) when compared 
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to mice vaccinated with low dose unadjuvanted vaccine and similar HAI titers compared to 

the high-dose vaccinated group (p = 0.025) at 8 weeks post-vaccination (Fig. 1A).

Infection of all vaccinated groups, 2 months post-vaccination with 25xLD50 homologous 

virus, conferred complete protection of the GM-CSF/1 μg HA and the unadjuvanted 3 μg 

HA vaccine groups (p = 0.04 when comparing survival rates to unadjuvanted 1 μg vaccine 

group) (Fig. 1B) and minimal morbidity with 5% body weight loss by day 6 (Fig. 1C). In 

contrast, the group immunized with low-dose unadjuvanted vaccine showed 80% mortality 

and 20% body weight loss by the survivors. We observed that addition of GM-CSF as an 

adjuvant can boost protective immune responses comparable to a three-fold higher vaccine 

dose, thereby conserving the amount of vaccine required for protection.

H3N2 influenza A viruses are known to cause significant disease burden worldwide and 

the H3N2 strains in inactivated trivalent influenza vaccine have lower efficacy than the 

H1N1 strains. Hence, we assessed GM-CSF’s ability to boost immune responses to a 

monovalent H3N2 subunit vaccine using a series of GM-CSF concentrations to optimize the 

adjuvant dose-response curve. Mice were ID vaccinated with 1 μg HA or 5 μg HA H3N2 

A/Victoria/210/2009 (A/Perth/16/2009-like) and a range of GM-CSF concentrations (5, 20, 

100 ng) (Fig. 2). Administration of 100 ng GM-CSF with 1 μg HA vaccine doubled the VN 

titers when compared to unadjuvanted low-dose vaccine at 90 d.p.v. (Fig. 2A). Following 

infection with 4xLD50 of A/Udorn/307/1972 4 months post-vaccination, the co-delivery of 

100 ng GM-CSF increased survival rates (Fig. 2B) and prevented significant body weight 

loss of infected survivors (Fig. 2C) relative to mice that received a low-dose vaccine alone. 

Thus, we demonstrated that the adjuvanted formulation can improve protective immunity in 

a second clinically significant influenza subtype.

3.2. Effect of MN patch formulation on GM-CSF’s ability to induce proliferation of bone 
marrow cells

The proliferative capacity of recombinant murine GM-CSF was initially tested in bone 

marrow cells (Fig. 3A). Cells were stimulated with increasing concentrations of GM-CSF 

(0.6–400 ng per well) and supernatants were collected at 60 and 120 min of incubation 

to test for proliferation. We observed a time-dependent and dose-dependent response that 

was more significant above concentrations of 25 ng of GM-CSF/well. The maximum bone 

marrow proliferation occurred after 120 min of cellular exposure at 200 ng GM-CSF.

Since MN patch fabrication may affect the bioactivity of GM-CSF, we measured the ability 

of GM-CSF to induce activation and proliferation of bone marrow cells before and after 

incorporation and drying in casting solutions used to fabricate MN patches (Fig. 3B). 

Bone marrow cells in culture were overlaid with casting solution alone (Fig. 3Ba), murine 

recombinant GM-CSF dissolved in PBS (Fig. 3Bb), GM-CSF dissolved in first-casting 

solution (Fig. 3Bc) and GM-CSF in first-casting solution, air dried and resuspended in 

culture medium (Fig. 3Bd). Visualization of cells with light microscopy showed that 

inclusion of GM-CSF in the first-casting solution in either liquid or dried formulation caused 

distinct morphological changes in bone marrow cultures similarly to GM-CSF dissolved in 

PBS, suggesting that the cytokine retained its biological activity. We also found that the 

same formulations induced bone marrow cell proliferation and increased the overall cell 
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numbers 4-fold compared to the control (Fig. 3C). Thus, GM-CSF remained stable upon 

casting processes fundamental to MN production and retained the capacity to proliferate 

bone marrow cells following reconstitution.

3.3. Stability and bioactivity of GM-CSF following MN patch fabrication with excipients

We next analyzed whether GM-CSF (10 ng delivery concentration) would retain bioactivity 

following incorporation in MN patches using different formulations. The formulations 

included trehalose CMC, or gelatin, which have previously been used as structural and 

stabilizing excipients in MN patch fabrications [13, 46] and BSA alone or mixed with 

trehalose. Bioactivity of reconstituted patches was compared to lyophilized GM-CSF 

dissolved in PBS and from reconstituted dried solution. Bioactivity was determined by 

overlaying solutions on TF-1 cells and measuring proliferative capacity (Fig. 4A). Among 

the formulations studied, MN patches containing 10 ng GM-CSF and fabricated using 

casting solutions comprised of 0.1% albumin and 10% trehalose generated the highest 

cellular proliferation within the standard curve (0.31–20 ng/ml). Formulations that induced 

the highest cellular proliferation in Fig. 4A were reformulated with vaccine, excipients, and 

GM-CSF in order to validate bioactivity following co-incorporation of vaccine and adjuvant 

(Fig. 4B).

Next, we tested the bioactivity of 10 ng GM-CSF mixed with subunit influenza vaccine (A/

Brisbane/59/2007) (5 μg delivery concentration) and encapsulated in MN patches to enhance 

TF-1 cell proliferation. These patches were dissolved in RPMI-10 and overlaid on TF-1 

cells for 3 days. Bioactivity was compared to patches containing GM-CSF alone, GM-CSF 

formulated with BSA or trehalose and GM-CSF mixed with vaccine and trehalose (Fig. 4B). 

Cells cultured in the presence of RPMI-alone were the negative control group. Each group of 

reconstituted patches was compared to the same formulation in solution. Since reconstituted 

patches induced cell proliferation at similar levels, we concluded that the formulation that 

stabilized the adjuvants was also suitable for influenza vaccine.

Mechanical stability of MN patches formulated for GM-CSF delivery was also studied. 

MN patches containing a red dye were fabricated using a casting solution comprising 

0.1% albumin and 10% trehalose and applied to skin. Before application, the red dye was 

localized mostly in the MNs and not in the patch backing (Fig. 4Ca). After application to 

the skin, the MNs (and red dye) dissolved in the skin (Fig. 4Cb). Altogether, these results 

demonstrate that MN patches were fabricated with GM-CSF that retained bioactivity and 

could be used to puncture and dissolve in skin.

3.4. Humoral and protective immune responses following delivery of recombinant murine 
GM-CSF-adjuvanted H1N1 vaccine

We previously demonstrated that MN patch delivery of antigen in skin can augment immune 

responses to influenza vaccination. The goal of this study was to determine if incorporation 

of GM-CSF into MN patches could induce superior and dose-sparing immune responses 

compared to conventional vaccination (IM or ID) without adjuvant. Mice were vaccinated 

either cutaneously (MN patches or ID injection) or systemically (IM injection) with the 

same vaccine (H1N1 A/California/07/2009) whereas the GM-CSF dose was 100 ng per 
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patch and 200 ng for the IM and ID routes as determined in the in vitro bioactivity studies 

(Fig. 3).

While MN patch vaccination generated superior vaccine-specific IgG responses when 

compared to IM and ID routes at 28, 90 and 120 d.p.v., we observed no differences in IgG 

titers among low- or high-dose unadjuvanted vaccine or in the presence of GM-CSF (Fig. 

5A). In contrast, the immunopotentiating effects of GM-CSF were demonstrated in antibody 

cross-reactivity of MN patch vaccinated mice against a heterologous (homosubtypic) 

seasonal influenza strain H1N1 A/New Caledonia/20/1999 (Fig. 5B) and the heterosubtypic 

H3N2 A/Brisbane/10/2007 strain (Fig. 5C). The adjuvanted vaccine induced equivalent 

antigen-specific IgG serum titers to high vaccine doses at 120 d.p.v. Notably, vaccination in 

the presence of 2-fold higher dose GM-CSF generated comparable responses across ID and 

IM groups at 75% lower titers than those achieved with MN patch vaccination.

These data indicate that MN patch vaccination induced robust long-lived antibody 

responses, and that co-administration with GM-CSF further potentiated heterologous 

immune responses after MN patch vaccination, but not after ID or IM vaccination. Thus, the 

combination of MN patch vaccination and GM-CSF adjuvantation may play an important 

role on increasing breadth of immunity.

While all vaccinated groups showed protection (higher than 80%) (Fig. 6A, C, E) 

following infection with homologous virus 4 months post-vaccination, only the MN group 

demonstrated least body weight losses (Fig. 6B) compared to the ID group (Fig. 6D) or IM 

group (Fig. 6F). Contrary to the initial ID vaccination data (Fig. 1) where administration 

of GM-CSF with low dose of vaccine improved protection compared to vaccine alone, in 

this experiment all vaccinated groups irrespectively of route of administration survived lethal 

infection. These findings are likely due to antibody maturation, considering that the infection 

study in this experiment took place 4 months post vaccination compared to 2 months in the 

initial ID vaccination study.

3.5. Longevity of antibody responses to MN vaccination with subunit influenza vaccine and 
GM-CSF

To assess the potential of GM-CSF to enhance long-term humoral and cellular immune 

memory, we fabricated MN patches containing low dose, high dose or low dose 

H1N1 vaccine (A/Christchurch/16/2010, A/California/07/2009-like) with GM-CSF in an 

experimental design similar to the initial screening experiments in which we demonstrated 

superior immune responses after MN patch vaccination compared to the needle and syringe 

approach (Fig. 7A).

We found that GM-CSF-adjuvanted patches increased by 2-fold A/California/07/2009­

specific HAI titers up to 12 weeks post-vaccination (Fig. 7B) and enhanced IgG binding 

avidity to subunit vaccine (Fig. 7C), showing improved antibody specificity for the 

influenza antigen compared to non-adjuvanted patch vaccination. Addition of GM-CSF 

to the low-dose vaccine formulation augmented more than two-fold the levels of anti-A/

Christchurch/16/2010 IgG antibodies when compared to the same dose of vaccine alone 

(p = 0.004 at 10 weeks and p = 0.001 for 12 weeks post-vaccination) (Fig. 7D). When 
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comparing the IgG1 titers between the same groups, we found a 2-fold difference by week 

10 post-vaccination (p = 0.05), which was further increased by week 12 (p = 0.003). 

Notably, the adjuvanted formulation also induced 4-fold higher IgG1 responses than the 

unadjuvanted high-dose vaccine by week 12 (p = 0.003) (Fig. 7E). Although we did not 

see similar statistically significant differences in IgG2a titers among vaccinated groups due 

to a higher spread of responses, the antibody levels followed the same trend as in IgG1 

subclass (Fig. 7F). Thus, the inclusion of GM-CSF in MN patches increased the production, 

specificity and duration of antibodies in response to influenza vaccination.

Given the increase in long-term antibody expression for GM-CSF-adjuvanted MN patches, 

we also investigated whether mice vaccinated against influenza virus with GM-CSF had 

increased systemic B cell activation and memory responses. Indeed, co-administration of 

vaccine with GM-CSF doubled the number of influenza-specific IgM-secreting cells (Fig. 

8A) and tripled the number of influenza-specific IgG-secreting cells (Fig. 8B) relative 

to non-adjuvanted low dose vaccine at 14 d.p.v. Most importantly, GM-CSF increased 

the number of vaccine-specific IgG-secreting cells in the bone marrow 60 d.p.v by 

50% compared to all non-adjuvanted groups (Fig. 8C–D). These results, combined with 

serological analysis, demonstrate that GM-CSF improved the development of humoral 

immunity through increased antibody avidity and IgG subtype expression, systemic IgM 

and IgG cell activation, and maintenance of vaccine-specific IgG-secreting cells in the bone 

marrow.

3.6. T cell activation in the inguinal lymph nodes (ILN) and spleen

Protective immune responses to influenza virus infection require both antibody responses 

to neutralize free virus and facilitate its opsonization and virus-specific cellular responses 

to kill infected cells and coordinate immune responses [47]. Healthy adults expressing 

higher numbers of vaccine-specific CD8+ IFN-γ-secreting cells were less likely to have 

enhanced viral pathogenesis during the 2009 H1N1 pandemic [48]. Thus, we investigated 

whether GM-CSF-adjuvanted vaccination could boost the number of activated T cells in 

draining inguinal lymph nodes (ILN) and the numbers of systemic vaccine-specific cytokine 

secreting cells. GM-CSF adjuvant-containing patches tripled the frequency of activated 

follicular CD8+ T cells (CD8+CXCR5+PD-1+) as early as day 7 (Fig. 9A–E). In contrast, 

GM-CSF did not increase the frequency of CD4+ T follicular helper cells (CD4+, CXCR5+, 

PD-1+) (Suppl. Fig. 2A). These findings suggest that GM-CSF adjuvant improves protective 

immunity following vaccination by enhancing activation of virus-specific CD8+ cytotoxic 

lymphocytes (CTLs).

To determine whether inclusion of GM-CSF in MN patches leads to the increased generation 

of vaccine-specific T cells, we enumerated vaccine-specific IFN-γ and IL-4 producing 

lymphocytes in ILN at 7 and 14 d.p.v. By day 14, the GM-CSF/low-dose vaccine group 

induced a 3-fold increase in the number of IFN-γ secreting lymphocytes when compared 

to placebo (p = 0.02), low dose (p > 0.05) and high dose vaccine groups (p = 0.03) (Fig. 

9F). Mice receiving adjuvanted vaccine showed a 50% enhancement in the number of IL-4 

secreting lymphocytes (Suppl. Fig. 2B). Thus, in addition to previous results demonstrating 

the increase of vaccine-specific antibodies, the use of GM-CSF as an adjuvant in MN 
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patches also exerted a positive effect on CTL activation and vaccine-specific IFN-γ and IL-4 

secreting cell numbers, providing a range of cellular and humoral immune responses for an 

effective response to influenza viral infection.

3.7. Antibody response to H1N1 and H3N2 viruses

Effective influenza vaccination must demonstrate long-lasting and broadly neutralizing 

immune responses against commonly circulating influenza virus strains in order to reduce 

disease burden [49]. Breadth of immunity adds value to current seasonal influenza vaccines 

and it is the goal of successful universal vaccine candidates [50]. In order to measure the 

range of influenza-specific antibody responses elicited in animals that received the vaccine 

alone or in combination with GM-CSF, serum collected 3 months post-vaccination was 

tested for binding to various HAs within the same subtype (H1N1, group 1) or different 

subtype (H3N2, group 2).

With the exception of significantly higher antibody IgG titers to a homologous-like 

virus (anti-A/California/07/09) (Fig. 10A), the GM-CSF adjuvanted vaccine generated 

comparable IgG titers to un-adjuvanted vaccine against homosubtypic strains (Suppl. Fig. 

3A, B). Interestingly, the adjuvanted vaccine induced 3-fold increase of IgG antibodies 

against 3 circulating H3N2 strains; A/Texas/50/2012 (Fig. 10B), A/Victoria/210/2009 

(Suppl. Fig. 3C), A/Aichi/2/1969 (Suppl. Fig. 3D) relative to non-adjuvanted vaccine. Using 

recombinant baculovirus proteins containing rare HA heads (H6 and H14) and common 

seasonal stalks (H1 and H3), it was possible to determine whether the inclusion of GM-CSF 

as an adjuvant increased the number of antibodies able to bind to H1 and H3 stocks. 

While the combination of GM-CSF with low vaccine dose did not increase the antibody 

response to H1 stalks compared to vaccine alone (Fig. 10C), it significantly increased the 

titer of antibodies binding to H3 stalks (Fig. 10D). These data suggest that the mechanism 

by which GM-CSF adjuvants increase antibody binding to H3N2 viruses is likely related 

to enhanced reactivity with H3 stalk rather than the H3 head or receptor binding domain. 

Thus, co-administration of GM-CSF with a licensed influenza vaccine encapsulated in MN 

patches generated antibodies with significant cross-reactivity, demonstrating the potential of 

this adjuvant to expand immune protection across various influenza subtypes.

3.8. Viral growth and immune responses to lethal challenge following MN patch 
vaccination with GM-CSF adjuvant

To determine the effect of skin vaccination with GM-CSF on protective immunity and 

identify the implicated mechanisms, mice were infected 30 days post-vaccination with 

10xLD50 A/California/07/2009. Survival and weights changes were monitored for 14 days 

post-infection. A second infected cohort of mice was sacrificed at 4 days post-infection to 

determine viral titers and cytokine profiles in the lungs and assess vaccine effectiveness 

in accelerating viral clearance and reducing virus-induced inflammation. Although all 

vaccinated groups maintained their weight and survived lethal infection (data not shown), 

immunization with adjuvanted vaccine induced a 2.7-log reduction in viral titers when 

compared to mice vaccinated with placebo MN patches (p = 0.02), whereas immunization 

with high-dose vaccine was 42% less effective (2.5-log reduction in viral titers) (p = 0.02). 
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Mice vaccinated with low-dose vaccine in the absence of GM-CSF had one-log decrease in 

titers compared to placebo infected mice (p = 0.03) (Fig. 11A).

Lung lysates taken from vaccinated mice 4 days after lethal infection and tested for eight 

major Th1, Th2 and inflammatory cytokines showed significant expression of IL-4, IL-2 

and GM-CSF. These cytokines were significantly elevated following lethal infection of 

mice that received adjuvanted vaccine when compared to the other vaccinated groups (Fig. 

11B–D). Early expression of GM-CSF in the lungs has been shown to promote alveolar 

macrophage activation and recruitment in order to reduce viral replication [51, 52]. These 

findings may explain efficient viral clearance seen shortly after infection (Fig. 11A). In 

contrast, IL-2 and IL-4 play important roles in reducing CTL-mediated immunopathogenesis 

[53] and promoting tissue repair through activation of innate lymphoid cells, respectively 

[54]. These studies point to a potential role of GM-CSF in influenza vaccination by MN 

patch to elicit a unique signature of cytokines that promote elimination of virus from the 

respiratory compartment while reducing byproduct inflammation and tissue damage due to 

an overactive immune system.

4. Discussion

Skin immunization is an innovative route of vaccination which takes advantage of a potent 

network of antigen-presenting cells (APCs) and other innate immune cells in skin that can 

interact with naive T and B cells proximal to the site of vaccination in draining lymph 

nodes [55–58]. We have previously reported the importance of langerin+ dendritic cells 

(DCs) in modulating adaptive immune responses following cutaneous MN vaccination 

[59]. GM-CSF can recruit and activate APCs [60] and is a potent inducer of NF-κB 

expression and nitric acid synthase in epithelial DCs [61]. CD103+ langerin+ DCs have 

shown GM-CSF dependent activation of follicular CD4+ T helper cells that subsequently led 

to the expression of IFN-γ and IL-17 [62]. Thus, the presence of GM-CSF as an adjuvant 

is critical for enhancing the potency of vaccines with limited immunogenicity, such as 

the licensed subunit influenza vaccine, by promoting antigen capture and DC and T cell 

activation and regulation [63, 64].

In this study, we investigated the role of GM-CSF to increase the efficiency of skin dendritic 

cells APCs and the recruitment and priming of antibody-secreting B cells and CD8+ 

follicular T cells in primary and secondary lymphoid tissues. Here we demonstrate stable 

co-incorporation of GM-CSF with influenza vaccine in MN patches that can be used to 

enhance the vaccine-specific humoral and cellular immune responses. We identified that ID 

administration of GM-CSF with H1N1 or H3N2 vaccines, improved antibody responses and 

protection against viral challenge [65, 66]. We then identified the formulations for efficient 

vaccine and adjuvant co-encapsulation within MN patches and delivery in the skin. We also 

identified adjuvant concentrations required for cellular activation, cytokine stabilization and 

bioreactivity.

Importantly, we demonstrated the superiority of MN patch vaccination over ID and IM 

vaccination in enhancement of vaccine-specific antibody responses. Mice cutaneously 

immunized with H1N1 influenza vaccine and GM-CSF as adjuvant via ID and MN routes 
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showed increased protection with lower morbidity and mortality rates following lethal 

infection, a phenomenon not seen in IM vaccination. These findings suggest that GM-CSF 

has unique properties as an adjuvant within the skin that can be exploited when developing 

MN patch delivery technologies.

Examination of the immune response to GM-CSF as an adjuvant showed increased 

activation of antigen-specific IFN-γ secreting cells following vaccination, which may 

explain the persistence of IgG2a antibodies 4 months post-vaccination [67]. Following 

lethal infection, mice vaccinated against H1N1 virus in the presence of GM-CSF effectively 

controlled viral growth. Importantly, GM-CSF-adjuvanted H1N1 vaccination improved 

serum cross-reactivity with a homosubtypic (H1N1) and heterosubtypic (H3N2) viral 

strains. The broadly cross-reactive antibodies elicited in the presence of adjuvants were 

directed against the hemagglutinin stalk region. Ultimately, influenza immunization with 

a trivalent or quadrivalent vaccine co-encapsulated with appropriate adjuvants such as GM­

CSF in a MN patch could significantly reduce disease burden due to strain mismatch or drift 

within an influenza season.

The role of GM-CSF in driving more potent humoral or cellular immune responses has been 

debated. Previous DNA vaccination studies in rhesus macaques showed that influenza HA 

responses were improved by the inclusion of recombinant rhGM-CSF [68]. Intramuscular 

vaccination with GM-CSF encoded in a viral vector increased the frequency of APCs but 

decreased the antigen-specific CD8+ T cell responses in the draining lymph node [69]. In 

our studies, MN patch vaccination with GM-CSF increased the number of CD8+ follicular T 

cells in ILN, highlighting the usefulness of administering this cytokine as an adjuvant during 

vaccination. Our findings are in alignment with data reported by Chou et al. on co-delivery 

of GM-CSF with hepatitis B subunit vaccine to skin in a biodegradable hydrogel [70]. The 

authors demonstrated that presence of GM-CSF increased antibody response to the vaccine 

and vaccine-specific T cell proliferation in addition to improved activation of APCs in the 

draining lymph node.

GIFT fusokines, engineered to have peptides from multiple cytokines, have been generated 

to combine the APC stimulation capabilities of GM-CSF with T cell differentiation signaler 

IL-4 [71]. These fusokines have shown promise in prophylactic HIV vaccination studies in 

guinea pigs when anchored via glycolipids to virus-like particles (VLPs) [72]. These reports 

and our present findings suggest that the potency of GM-CSF as an adjuvant is dependent on 

administration route and formulation. To our knowledge, this is the first example of the use 

of MN patches to deliver a bioreactive cytokine as an adjuvant that can augment effective 

systemic and mucosal immune responses elicited to influenza vaccine.

5. Conclusions

In this study, we repurposed a cytokine already approved for clinical use for stimulating 

immune cell repopulation following chemotherapy for use as an adjuvant for skin 

immunization [73, 74]. Our preclinical studies in mice showed enhanced immunogenicity 

of influenza vaccine with recombinant murine GM-CSF administered with a MN patch, 

proposing a novel use for this cytokine as an active molecular adjuvant. Additionally, our 

Littauer et al. Page 14

J Control Release. Author manuscript; available in PMC 2018 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



process provides a pipeline to examine other active recombinant molecules as adjuvants 

and to optimize combined adjuvant doses for maximized vaccine efficacy and mucosal 

immunity. Lastly, these data demonstrate the usefulness of GM-CSF as an adjuvant in a 

single context; however, an effective adjuvant strategy may likely employ a combination of 

cytokines, TLR ligands or STING agonists [75, 76].
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Fig. 1. 
Adjuvantation with 100 ng GM-CSF in intradermal H1N1 A/California/07/09 subunit 

vaccination improves antibody responses and enhances protection to lethal virus challenge. 

BALB/c mice (n = 4) were vaccinated ID with PBS, 1 μg HA, 3 μg HA, or 1 μg HA/100 ng 

GM-CSF. (A) Serum influenza-specific HAI titers are plotted at 8 weeks post-vaccination. 

Statistics for panel (A) were performed with Mann-Whitney test. Mice were challenged with 

25xLD50 homologous virus 3 months post-vaccination and (B) survival and (C) body weight 
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changes were recorded for 13 days. Percent body weight values are expressed as mean ± 

SEM. Statistics for panel (B) were performed with Mantel-Cox test.
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Fig. 2. 
GM-CSF is an effective adjuvant at low doses in H3N2 vaccinations. Mice were vaccinated 

ID with 1 μg HA H3N2 A/Victoria/210/2009 with a range of GM-CSF concentrations: 5 ng, 

20 ng, and 100 ng. A high vaccine dose (5 μg) was used as a control for superlative immune 

responses. Serum virus-neutralizing (VN) titers were assessed at 90 d.p.v. Vaccinated mice 

were challenged with 4xLD50 mouse-adapted H3N2 A/Udorn/307/1972 for (C) survival and 

(D) body weight changes. VN titers were expressed as GMean ± 95% CI. Percent body 
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weight values are expressed as mean ± SEM. Statistics for survival were performed with 

Mantel-Cox test.
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Fig. 3. 
GM-CSF retains proliferative capacity in bone marrow cells following MN patch fabrication 

and dissolution. (A) Dose-responsive cellular activation of bone marrow cells by murine 

GM-CSF in PBS at 60 and 120 min. (B) Bone marrow cells (5 × 105 cells/well) from naïve 

mice were incubated for 48 h with (a) “first-cast” casting solution, (b) GM-CSF dissolved 

in PBS, (c) GM-CSF mixed 1:1 with casting solution, or (d) GM-CSF in casting solution 

air-dried in microcentrifuge tubes and reconstituted in PBS. Bioactivity was measured by 

determining cell proliferation at 48 h post-exposure. (C) Bone marrow cells grown in tissue 

culture were imaged at 48 h post-exposure to GM-CSF in formulations described in (B).
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Fig. 4. 
GM-CSF retains bioactivity following fabrication with a range of MN excipients. (A) The 

effect of first-cast solution excipients on GM-CSF stability and bioactivity was assessed by 

the proliferative capacity of GM-CSF using TF-1 cells. Triplicate MN patches containing 

10 ng GM-CSF fabricated using various excipients in the first-cast solution were dissolved 

in culture medium and overlaid on TF-1 cells. They were compared to GM-CSF in fresh 

solution (Sol A–D) or air-dried and reconstituted in RPMI formulations (Dried A–D). (B) 

The effect of influenza vaccine (5 μg HA delivery dose) on GM-CSF bioactivity when 

co-formulated in MN patches was assessed by TF-1 cell proliferation and compared to 

patches with GM-CSF alone. OD values for panels (A) and (B) are expressed as mean ± 

SEM. Dotted lines indicate upper and lower detection limits of the assay as determined by a 

standard curve, and “sol” and “dried” indicate casting solutions that were directly applied to 

TF-1 cells or dried and reconstituted before application. Each sample was run in duplicates 

in TF-1 cells. Images of MN patches containing sulforhodamine red dye were taken (Ca) 

before and (Cb) after application to skin in mice.
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Fig. 5. 
The inclusion of GM-CSF in MN patches in H1N1 influenza vaccination is dose-sparing 

and generates superior IgG expression against homologous and heterologous HAs compared 

to ID and IM vaccination. BALB/c mice were vaccinated with PBS, 1 μg HA, 3 μg HA 

A/California/07/2009 subunit vaccine or 1 μg HA mixed with 100 ng murine GM-CSF 

in MN patch and 200 ng in solution for IM and ID injection. Serum IgG titers against 

(A) H1N1 A/California/07/2009 are plotted for days 28, 90, and 120 d.p.v. (B) H1N1 
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A/New Caledonia/20/1999-specific and (C) H3N2 A/Brisbane/10/2007-specific IgG titers 

were determined at 120 days post-vaccination. Values are expressed as mean ± SEM.
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Fig. 6. 
H1N1 subunit vaccination with GM-CSF improved protection of mice from lethal H1N1 

influenza challenge. Mice vaccinated with a single dose of A/California/07/2009 subunit 

vaccine via MN (A, B), ID (C, D), or IM (E, F) routes were challenged 17 weeks post­

vaccination with 25xLD50 homologous H1N1 A/California/07/2009 virus. Survival rates (A, 

C, E) and body weight changes (B, D, F) were recorded for 14 days post-challenge. Percent 

body weight values are expressed as mean ± SEM.
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Fig. 7. 
GM-CSF improved antibody responses and avidity when included in MN patch vaccination. 

(A) Cohorts of BALB/c mice were vaccinated with MN patches containing vaccine 

formulation solution (placebo), 1 μg HA, 3 μg HA, or 1 μg HA of A/Christchurch/16/2010 

mixed with recombinant murine GM-CSF. A total of 100 mice (n = 25 per group) 

were used for this study. Serum samples were collected and analyzed at the time points 

depicted. (B) HAI titers against A/California/07/2009 virus (GMean ± 95% CI), and (C) 

antibody avidity against A/Christchurch/16/2010 subunit vaccine (n = 5). Serum binding 

A/Christchurch/16/2010-specific antibody titers were assessed with ELISA; (D) IgG, (E) 

IgG1, and (F) IgG2a (n = 5). Statistics were performed with Mann-Whitney test. Antibody 

values are expressed as mean ± SEM.
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Fig. 8. 
Inclusion of GM-CSF enhanced activation of B cells in spleen and bone marrow. 

Lymphocytes were isolated from the spleen 14 days post-MN vaccination to enumerate 

vaccine-specific ASCs. (A) IgM-secreting cells and (B) IgG-secreting cells were measured 

in ELISpot plates coated with 200 ng vaccine/well and incubated for 16 h post isolation. (C, 

D) Bone marrow (BM) was harvested from mice 60 days post-MN vaccination to quantify 

vaccine-specific IgG SCs. All ASCs were enumerated in ELISPOT plates coated with A/

California/07/2009 recombinant protein and normalized per 1 × 106 lymphocytes or BM 

cells respectively.
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Fig. 9. 
MN patch vaccination with GM-CSF increased CD8+ T cell responses in inguinal lymph 

nodes (ILN) and vaccine-specific IFN-γ responses in the spleen. Inguinal lymph nodes 

and spleens were harvested from mice 7 and 14 d.p.v. and measured for activation and 

vaccine-specific cytokine secretion. CD8+ follicular helper cells (CD8+CDXCR5+PD-1+) 

were determined for each sample, and representative images for (A) placebo, (B) 1 μg HA, 

(C) 1 μg HA, and (D) 1 μg HA are shown. (E) Frequency of CD8+ follicular helper cells 

in ILN were quantified in FlowJo and plotted in GraphPad Prism 7. (E) Vaccine-specific 

IFN-γ were isolated from the spleen at day 7 and enumerated in ELISPOT plates following 
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stimulation with A/Christchurch/16/2010 subunit vaccine. Values are expressed as mean ± 

SEM and statistics were performed with Mann-Whitney test.

Littauer et al. Page 32

J Control Release. Author manuscript; available in PMC 2018 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
GM-CSF adjuvanted MN patch immunization improved cross-reactive neutralization 

responses between homologous and heterologous viral strains. Serum was collected from 

mice 90 days post-A/Christchurch/16/2010 vaccination with dissolving MN. IgG reactivity 

with monovalent subunit vaccines for (A) H1N1 A/California/07/2009 and (B) H3N2 A/

Texas/50/2012 was measured with ELISA. IgG reactivity with chimeric HA proteins was 

measured with ELISA against (C) H1 stalks (cH6/1 Cal/09) and (D) H3 stalks (cH14/3 HK). 

Statistics performed in Mann-Whitney test for comparison of 1 μg HA/GM-CSF vs. 1 μg 

HA groups.
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Fig. 11. 
Th1 cytokine responses to viral infection were increased in GM-CSF-adjuvanted MN 

vaccinated mice. Mice vaccinated with A/Christchurch/16/2010 MN were infected with 

10xLD50 mouse-adapted A/California/07/2009 virus 30 d.p.v. (A) Viral load (p.f.u.) was 

measured in lung lysates 4 days post-infection. Cytokine expression in lung lysates was 

quantified in a Bio-plex Pro Mouse Cytokine 8-plex assay. (B) IL-4 (C) IL-2 and (D) 

GM-CSF levels. Values are expressed as mean ± SEM. Analysis of Mann-Whitney test 

between 1 μg HA and 1 μg HA/100 ng GM-CSF reached statistical significance of p < 0.5 in 

ELISPOT assays for IL-4 and GM-CSF secretion.
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