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SUMMARY Therapy of invasive infections due to multidrug-resistant Enterobacteriaceae
(MDR-E) is challenging, and some of the few active drugs are not available in many
countries. For extended-spectrum �-lactamase and AmpC producers, carbapenems are
the drugs of choice, but alternatives are needed because the rate of carbapenem resis-
tance is rising. Potential active drugs include classic and newer �-lactam–�-lactamase in-
hibitor combinations, cephamycins, temocillin, aminoglycosides, tigecycline, fosfomycin,
and, rarely, fluoroquinolones or trimethoprim-sulfamethoxazole. These drugs might be
considered in some specific situations. AmpC producers are resistant to cephamycins,
but cefepime is an option. In the case of carbapenemase-producing Enterobacteriaceae
(CPE), only some “second-line” drugs, such as polymyxins, tigecycline, aminoglycosides,
and fosfomycin, may be active; double carbapenems can also be considered in specific
situations. Combination therapy is associated with better outcomes for high-risk patients,
such as those in septic shock or with pneumonia. Ceftazidime-avibactam was recently
approved and is active against KPC and OXA-48 producers; the available experience
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is scarce but promising, although development of resistance is a concern. New drugs
active against some CPE isolates are in different stages of development, including
meropenem-vaborbactam, imipenem-relebactam, plazomicin, cefiderocol, eravacycline,
and aztreonam-avibactam. Overall, therapy of MDR-E infection must be individualized
according to the susceptibility profile, type, and severity of infection and the features of
the patient.

KEYWORDS multidrug resistance, antimicrobial therapy, extended-spectrum
�-lactamases, carbapenemases, bloodstream infections, mortality

INTRODUCTION

The emergence and spread of multidrug-resistant (MDR) and extensively drug-
resistant (XDR) Enterobacteriaceae have become a public health problem in recent

decades (1). Enterobacteriaceae are common pathogens and common causes of differ-
ent types of community- and hospital-acquired infections, so antimicrobial resistance in
these bacteria has significant potential impacts on antibiotic use and patient outcomes.
Treatment of infections caused by MDR and XDR Enterobacteriaceae is challenging, with
limited antimicrobials available and limited evidence of their efficacy. The previous
paradigm, with a specific drug serving as the drug of choice across most clinical
situations, no longer holds. Meanwhile, an increasing body of knowledge suggests that
therapy can be individualized in accordance with the source and severity of infection
and the susceptibility profile of the bacteria, among other factors. In order to help
physicians make decisions for treatment of infections caused by MDR and XDR Enter-
obacteriaceae, a review of the available data is necessary.

The objective of this article is to review the potential therapeutic options for the
treatment of infections due to extended-spectrum-�-lactamase (ESBL)-, AmpC-, and
carbapenemase-producing Enterobacteriaceae. This review includes mainly clinical
studies, prioritizing controlled studies when available, and includes noncomparative
studies only when these provide information relevant to specific populations. In vitro
and animal studies are also included only if considered necessary in the absence
of clinical studies. The target infections are invasive ones, such as hospital-acquired
pneumonia (HAP), complicated urinary tract infections (cUTI), complicated intra-
abdominal infections (cIAI), and any bacteremic infection. MDR has been defined for
epidemiological purposes as acquired nonsusceptibility to at least one agent in three
or more antimicrobial categories, and XDR has been defined as nonsusceptibility to at
least one agent in all but two or fewer antimicrobial categories (2). Here, however, we
consider the most important MDR and XDR Enterobacteriaceae with specific mecha-
nisms of resistance, such as those that produce ESBLs, AmpC �-lactamases, and
carbapenemases, which are typically MDR according to the above criteria because of
the �-lactamases produced but are also frequently resistant to some non-�-lactam
antibiotics and so represent a therapeutic challenge. Also, most studies refer to bacteria
that produce these mechanisms of resistance.

Readers should be aware that randomized controlled trials (RCT) are scarce in this
field. Most available clinical studies are observational in design (frequently retrospective
cohort studies) or are case series and anecdotal reports. RCT data on specific syn-
dromes, based on MDR Enterobacteriaceae analyzed post hoc, are also considered.
However, many studies suffer from important limitations, including potential selection
and information biases as well as a lack of adequate control for confounding. Lack of
statistical power is also a major consideration in studies not finding differences in
efficacy between compared drugs.

Information is stratified into empirical and targeted therapy categories wherever
possible. Nonetheless, decisions about empirical therapy should be made in accor-
dance with local rates for the pathogens considered, together with individual risk
factors and infection severity. Because of important differences in local epidemiology,
rules about when empirical therapy against specific resistant bacteria should be started
cannot be generalized.
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The use of one or another drug may depend on the results of susceptibility testing.
While this is beyond the objective of this review, it should be noted that the determi-
nation of the MIC for some antimicrobials may not be fully reliable, depending on the
methods used; also, a �1 dilution variability in MIC determination is accepted. Finally,
the breakpoints for susceptibility recommended by the Clinical and Laboratory Stan-
dards Institute (CLSI) and the European Committee for Antimicrobal Susceptibility
Testing (EUCAST) differ for some antimicrobials.

Finally, while it is taken for granted that the general principles for the manage-
ment of infectious diseases apply, the paramount importance of these principles
cannot be stressed enough and include support therapy when needed, rapid and
effective source control whenever possible, and consideration of patient character-
istics (immunosuppression, renal function, etc.), the severity of systemic inflamma-
tory response syndrome, and the source of infection for the selection of an
antimicrobial regimen (Figure 1).

THERAPY AGAINST ESBL- AND AmpC-PRODUCING ENTEROBACTERIACEAE

Both ESBL and AmpC producers are typically resistant to some or all cephalosporins,
but they exhibit some differences, as follows. ESBLs are inhibited by �-lactam inhibitors
and do not hydrolyze cephamycins, while AmpC enzymes are not inhibited by classic
�-lactam inhibitors and confer resistance to cephamycins but do not efficiently hydro-
lyze cefepime (3–5). ESBLs are typically encoded by plasmid-borne genes (3, 4), whereas
AmpC can be encoded by plasmid genes or be produced as a result of derepression of
chromosomal genes in some Enterobacteriaceae (typically Enterobacter spp., Serratia
marcescens, Citrobacter freundii, Providencia spp., and Morganella morganii). The latter
will test as susceptible to cephalosporins if AmpC production is not derepressed, but
resistance can develop while on treatment with these drugs (5). Finally, chromosomally
encoded AmpC can be overproduced in Escherichia coli (5). Since some laboratories do
not routinely identify the specific mechanism of resistance to cephalosporins, as this is
not recommended for the purpose of treatment decisions by CLSI or EUCAST (but only
for epidemiological reasons) and the type of cephalosporinase cannot always be
differentiated phenotypically, both ESBL and AmpC producers are reviewed here. Most
available information concerns ESBL-producing Enterobacteriaceae (ESBL-E); potentially
active drugs against these bacteria are reviewed in Table 1.

FIG 1 Aspects to be considered in the decision-making process for antimicrobial therapy of patients with
infections due to ESBL-, AmpC-, or carbapenemase-producing Enterobacteriaceae.
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Carbapenems

Carbapenems have traditionally been considered the drugs of choice for infections
caused by enterobacteria producing ESBL and AmpC enzymes (3–5) because they are
not affected by these resistance mechanisms. Furthermore, in the case of ESBL-E, they
have been associated with lower failure rates than those for other drugs, mostly
cephalosporins and fluoroquinolones. A meta-analysis that included 21 observational
studies of bacteremic infections caused by ESBL-E up to January 2012 showed that
mortality rates for patients who had received empirical or definitive treatment with
carbapenems were lower than those for patients treated with cephalosporins, fluoro-
quinolones, or aminoglycosides; the differences were not significant for �-lactam–�-
lactamase inhibitor (BLBLI) combinations (6). Note that many of the studies included in
the meta-analysis had significant limitations, including a lack of control for confound-
ing, and it was not always clear whether bacteria were susceptible to the noncarbap-
enem drugs used. There is very little published experience involving children. A small
retrospective study in South Korea included children with ESBL-E UTI treated with
carbapenems (4 patients) or “other drugs” (23 patients) and those who switched from
a carbapenem to another drug (15 patients); the “other drugs” were cefotaxime,
piperacillin-tazobactam, and amikacin (7). All patients were cured, and times to defer-
vescence were similar. Studies comparing carbapenems to specific drugs are reviewed
in specific subsections.

Regarding Enterobacteriaceae harboring chromosomal blaAmpC, a recent meta-
analysis that included studies with limitations did not find that carbapenems were
clearly superior to fluoroquinolones, cefepime, or BLBLIs. In most studies reviewed, 20
to 35% of isolates included showed the derepressed AmpC phenotype (8). The data for
plasmid-mediated AmpC producers are scarce.

In summary, the available data still suggest that carbapenems are the reference
drugs for treatment of these infections. Nonetheless, the same assumption probably
contributed to the significant worldwide increase in the consumption of carbapenems
(9), which may be partly linked to the subsequent spread of carbapenem resistance. It
is therefore important to take a closer look at potential alternative drugs.

Among carbapenems, most published articles have tended to focus on imipenem
and meropenem (3, 6, 10). With respect to other group 2 carbapenems, a post hoc
analysis of patients with infections due to ESBL-E included in an RCT comparing
doripenem and other drugs against cUTI, cIAI, and HAP analyzed the outcomes of those
receiving doripenem (25 patients) or comparators (levofloxacin, imipenem, and
piperacillin-tazobactam) (29 patients); the efficacies were similar, but the numbers
involved were clearly very limited (11).

Ertapenem is the only group 1 carbapenem, does not have clinically relevant activity
against Pseudomonas aeruginosa or Acinetobacter baumannii, and may exert lower
selection pressure for resistance on these bacteria than that with other carbapenems
(12); such a potential ecological advantage would be lost in environments with high
rates of carbapenem-resistant Enterobacteriaceae (CRE) (13), for which the selection
pressure would be similar or even higher. Five observational studies were found
comparing ertapenem with other carbapenems in bloodstream infections (BSI) due to
ESBL producers. There were no significant differences in terms of prognosis for either
empirical or targeted therapy (14–18). In one study, however, subgroup analyses of
patients who presented with severe sepsis or septic shock showed a trend toward
increased mortality with ertapenem (18). A potential explanation for this would be the
lower probability of attaining the pharmacokinetic-pharmacodynamic (PK-PD) target in
these patients by using the standard dose of 1 g daily. The most common source of
infection in all these studies was UTI, and patients with HAP were underrepresented.
This is relevant because the probability of PK-PD target attainment with ertapenem has
been shown to be low for patients with early-onset ventilator-associated pneumonia
(VAP) and hypoalbuminemia (19). A noncomparative study analyzed 20 patients with
VAP caused by ESBL-E (mostly Klebsiella pneumoniae), and clinical and microbiological
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success rates were 80% and 75%, respectively (20). An open, single-center RCT com-
pared deescalation to ertapenem versus continuation with a group 2 carbapenem,
including imipenem, meropenem, doripenem, or biapenem, in patients with infections
due to ESBL-E (32 and 34 patients, respectively) (21); 40% had a UTI and 16% had HAP.
Overall, 50% of patients were bacteremic, and the ESBL-E was Klebsiella pneumoniae in
32% of cases. There were no significant differences in clinical cure (94% with ertapenem
and 79% with other carbapenems), microbiological eradication (100% and 96%, respec-
tively), or mortality (9% and 29%, respectively). With respect to children, data from two
noncomparative studies of UTI due to ESBL-E gave promising results (22, 23). Ertap-
enem is also suitable for outpatient parenteral antimicrobial therapy (OPAT); experience
so far comes from uncontrolled studies showing good results (24–27) and one study
comparing it with oral fosfomycin (discussed below) (28).

Results from in vitro models suggest that regrowth occurs in isolates with a MIC of
1 mg/liter (intermediate susceptibility) exposed to ertapenem (29) and that resistant
subpopulations of ESBL-producing E. coli may emerge during therapy at 1 g/day, while
a dose of 1.5 to 2 g/day shows better bacterial killing (30). Contrary to expectations,
extended infusions or fractionated dosing showed no benefits. Development of resis-
tance to ertapenem (31–33) and other carbapenems (34) during or after treatment with
ertapenem has been described anecdotally, mostly as a consequence of porin loss in
complex infections. In any case, caution may be needed in using ertapenem for
high-inoculum infections with inadequate source control or that are impossible to
control/remove. In such circumstances, the use of a higher dose or an alternative drug
would seem reasonable.

Classic BLBLIs

ESBLs are inhibited by �-lactam inhibitors (3, 4), and classic BLBLIs, such as
amoxicillin-clavulanic acid, ampicillin-sulbactam, piperacillin-tazobactam, ticarcillin-
sulbactam, and cefoperazone-sulbactam, are active against ESBL producers in the
absence of other mechanisms of resistance. Nonetheless, �-lactamase hyperproduction
and coproduction of plasmid-mediated AmpC enzymes, among other factors, can affect
inhibitor activity. BLBLI resistance rates in ESBL producers show important geographical
differences and are high in some areas (35–37). Furthermore, some automated systems
may fail to detect resistance to piperacillin-tazobactam, as described for isolates
coproducing CTX-M-15 and OXA-1 (38).

There have been concerns about the efficacy of BLBLIs against infections due to
susceptible ESBL producers (3), even though similar concerns do not exist for Entero-
bacteriaceae producing other �-lactamases, such as TEM-1 or SHV-1. The arguments for
such concerns include the inoculum effect with piperacillin-tazobactam. This effect,
however, also occurs with non-ESBL-E organisms and is therefore not related to ESBL
production (39). Animal model studies have suggested that the activity of piperacillin-
tazobactam against ESBL producers depends, as expected, on the level of exposure and
that use of low doses (3.375 g every 6 h) is insufficient (40–42), but they have also
confirmed in vivo that a higher inoculum is associated with lower efficacy (43, 44). It
should be noted that amoxicillin-clavulanic acid is not affected by the inoculum effect
in vitro or in vivo (39, 43). Finally, some anecdotal failures with piperacillin-tazobactam
have been described (45).

In regard to comparative clinical studies, a post hoc analysis of several prospective
Spanish cohorts of patients with bacteremia caused by ESBL-producing E. coli did not
find that in vitro-active BLBLIs (piperacillin-tazobactam and amoxicillin-clavulanic acid)
had a deleterious impact on mortality or length of stay compared to that with
carbapenems for either empirical or targeted therapy (46). The study included specific
definitions for exposure, and control for confounding variables was performed by
multivariate analysis with use of a propensity score for receiving BLBLI. For interpreta-
tion purposes, the following important aspects of this study should be considered: only
E. coli cases were included, the source of the BSI was the biliary or urinary tract in more
than half of patients, high doses of piperacillin-tazobactam were used (mainly 4.5 g
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every 6 h), and the MIC of piperacillin-tazobactam was �4 mg/liter for 65% of patients
treated with this antibiotic. Two meta-analyses published in 2015, one including all
pathogens (47) and the other restricted to ESBL producers (6), did not find superiority
of carbapenems over BLBLIs. However, a later study in the United States that included
patients with BSI due to ESBL producers, mostly K. pneumoniae, found higher mortality
with empirical piperacillin-tazobactam than with carbapenems after controlling for
confounders (48). In that study, only patients receiving a carbapenem as definitive
treatment were included; those who continued with piperacillin-tazobactam as defin-
itive treatment (who were probably doing well) were excluded, which may have caused
a selection bias. The most frequent dosage of piperacillin-tazobactam was 3.375 g every
6 h, and the MIC of piperacillin-tazobactam was �4 mg/liter for only 40% of isolates. A
small study including only patients with Proteus mirabilis BSI found higher mortality for
patients treated with piperacillin-tazobactam, but there was no control for confounders
(49). Several other studies in which carbapenems did not show superiority over BLBLIs
in patients with BSI were performed later (50–53). Two of these deserve further
comment. One was an analysis of the international retrospective cohort INCREMENT,
which compared 170 and 195 patients treated empirically with BLBLIs and carbapen-
ems, respectively, and 92 and 509 patients treated with the respective definitive
therapies (51). In the overall and subgroup analyses, BLBLIs did not show higher rates
of mortality or clinical failure than those with carbapenems. The other was also a
retrospective international cohort study (BICAR), performed with neutropenic patients
and including 48 and 126 patients treated empirically with a BLBLI (mostly piperacillin-
tazobactam) and a carbapenem, respectively; the patient numbers for targeted therapy
were 17 and 234, respectively. Thirty-day mortality rates were 20.8% and 13.4% for
empirical BLBLIs and carbapenems, respectively, and 5.8% and 15.8% for the respective
targeted therapies (53). Treatment with a BLBLI was not shown to be associated with
worse outcomes than those with carbapenems in multivariate analysis or after propen-
sity score matching of patients. Other studies that included only UTI showed similar
results (54, 55). An open randomized controlled trial performed in 3 hospitals compared
the efficacies of piperacillin-tazobactam (4.5 g every 6 h) and ertapenem (1 g per day)
in patients with UTI due to ESBL-E (56). Patients with obstruction of the urinary tract or
prostatitis were excluded. Thirty-three patients were included in each arm; 27% and
21%, respectively, were bacteremic and 24 and 33%, respectively, had septic shock. The
rates of clinical success, microbiological success, and mortality were 94%, 97%, and 6%,
respectively, with piperacillin-tazobactam and 97%, 97%, and 6%, respectively, with
ertapenem.

It is possible that not all BLBLIs are equally effective, with differences due to the
inhibitory capacity of the �-lactamase inhibitor or to the activity of the �-lactam. There
are nevertheless very few comparative data for different BLBLIs. As shown above,
piperacillin-tazobactam, but not amoxicillin-clavulanic acid, shows reduced activity at
high inoculum concentrations both in vivo and in vitro (39, 43). In the Spanish post hoc
analysis of prospective cohorts of patients with BSI due to ESBL-producing E. coli, the
30-day mortality rate was 11.4% with piperacillin-tazobactam (4/35 patients) and 8.1%
with amoxicillin-clavulanic acid (3/37 patients) (46). For susceptible isolates, the MIC
distributions with piperacillin-tazobactam were extremely wide, with 10, 8, 4, 6, and 7
isolates showing MICs of �1, 2, 4, 8, and 16 mg/liter, respectively, while all isolates
showed a MIC of 4 or 8 mg/liter with amoxicillin-clavulanic acid. A subsequent analysis
showed differences in mortality according to the MIC of piperacillin-tazobactam (0/18
patients for isolates with MICs of �2 mg/liter and 36.8% for isolates with MICs of �2
mg/liter; relative risk [RR] � 0.13; 95% confidence interval [CI] for RR, 0.01 to 0.98) (57);
note that all mortality was in patients with sources other than the urinary tract. A
randomized controlled study (MERINO trial) comparing piperacillin-tazobactam with
meropenem for the treatment of cephalosporin-resistant Enterobacteriaceae is recruit-
ing at the time of this writing (58). Data for other BLBLIs, such as ampicillin-sulbactam,
are lacking.
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The above data strongly suggest that, in many situations, BLBLIs are suitable
alternatives to carbapenems for the treatment of many invasive infections caused by
ESBL producers if the intended BLBLI is active in vitro. The data are more solid for cUTI
and biliary tract infections, including bacteremia. We still recommend a carbapenem for
patients with high-inoculum infections (for example, undrained abscesses or pneumo-
nia) or for patients with septic shock, for whom there are few available data. The
recommended dosage for piperacillin-tazobactam is 4.5 g every 6 h, or possibly 4.5 g
every 8 h if administered by extended infusion (59). Also, amoxicillin-clavulanate seems
to be a good option for susceptible isolates in countries where this drug is available for
intravenous administration. There are too few data on other BLBLIs to provide recom-
mendations.

In regard to organisms harboring chromosomally carried blaAmpC genes, a meta-
analysis of BSI caused by Enterobacter, Citrobacter, and Serratia species showed that
treatment with piperacillin-tazobactam was not associated with increased mortality
compared to that with carbapenems (8). A retrospective cohort study studied 165
patients with BSI due to these microorganisms, 85% of which were in fact AmpC producers.
Eighty-eight patients received targeted therapy with piperacillin-tazobactam and 77 with
meropenem or cefepime (60). Mortality rates were 10% and 12%, respectively, while in 41
propensity-matched pairs, mortality rates were 15% and 7%, respectively (odds ratio [OR] �

0.50; 95% CI � 0.13 to 2.0). We found no comparative studies of plasmid-mediated AmpC
producers. Despite the major limitations of the studies included, the results suggest that an
in vitro-active BLBLI would be effective against these organisms.

Newer BLBLIs (Ceftolozane-Tazobactam and Ceftazidime-Avibactam)

Ceftolozane-tazobactam combines a new cephalosporin (ceftolozane) with en-
hanced antipseudomonal activity with a classic �-lactamase inhibitor (tazobactam). The
drug was approved by the FDA and the European Medicines Agency (EMA) for
treatment of cIAI (in combination with metronidazole) and cUTI, including pyelone-
phritis. This compound has been shown to be active in vitro against �90% and 42 to
98% of ESBL-producing E. coli and K. pneumoniae isolates, respectively (61). One study
analyzed the outcomes for 150 patients with infection due to ESBL-E in pivotal trials of
ceftolozane-tazobactam against cUTI (the comparator was levofloxacin) and cIAI (the
comparator was meropenem) (62). Rates of clinical cure and microbiological eradication
were higher with ceftolozane-tazobactam (98.1% and 72.2%, respectively) than with
levofloxacin (82.6% and 47.8%, respectively) against cUTI; 82% of isolates were suscep-
tible to ceftolozane-tazobactam, whereas only 25% were susceptible to levofloxacin.
Against cIAI, ceftolozane-tazobactam and meropenem outcomes were similar (clinical
cure rates were 95.8% and 88.5%, respectively; the same percentages were found for
microbiological eradication).

Ceftazidime-avibactam combines a well-known third-generation cephalosporin with
a new (non-�-lactam) �-lactamase inhibitor. It was recently approved by the FDA and
the EMA for treating cUTI and cIAI (the latter in combination with metronidazole); the
EMA also includes an indication for HAP and other infections due to Gram-negative
bacteria with limited treatment options. Avibactam inhibits class A enzymes, including
ESBLs and Klebsiella pneumoniae carbapenemases (KPC), as well as class C and some
OXA �-lactamases, but is not active against metallo-�-lactamases (MBLs) (61). In the
pivotal trial against cUTI, ceftazidime-avibactam and doripenem were compared. Clin-
ical cure among patients with ceftazidime-resistant isolates (mostly due to ESBL pro-
duction) was 89.3% (67/75 patients) with ceftazidime-avibactam and 89.3% (75/84
patients) with doripenem (63). In the pivotal trial for treatment of cIAI, ceftazidime-
avibactam plus metronidazole showed a rate of clinical response against ceftazidime-
nonsusceptible Enterobacteriaceae (around 80% were ESBL producers) similar to that
with meropenem (81.8% [36/44 patients] versus 85.5% [53/62 patients]) (64), and it
showed an efficacy similar to that of the best available therapy (mostly carbapenems)
in a pathogen-directed trial of patients with cUTI and cIAI caused by ceftazidime-
resistant Enterobacteriaceae (65).

Rodríguez-Baño et al. Clinical Microbiology Reviews

April 2018 Volume 31 Issue 2 e00079-17 cmr.asm.org 8

http://cmr.asm.org


The available data therefore support the efficacy of both new BLBLIs against
susceptible ESBL producers in patients with cUTI, and also of ceftazidime-avibactam
against cIAI, although it should be noted that the resistance rate among ESBL producers
is higher for ceftolozane-tazobactam than for ceftazidime-avibactam (61). However,
because of their potential added value against XDR organisms (XDR P. aeruginosa in the
case of ceftolozane-tazobactam and KPC- or OXA-48-producing Enterobacteriaceae in
the case of ceftazidime-avibactam), it seems prudent to reserve these drugs for these
particular organisms. We found no studies providing clinical data on infections caused
by AmpC producers.

Oxyiminocephalosporins (Cefotaxime, Ceftriaxone, Ceftazidime, and Cefepime)

According to present breakpoints recommended by EUCAST (66) and CLSI (67),
some ESBL-E are susceptible to cephalosporins (68, 69). Producers of TEM and SHV
types of ESBLs are susceptible to cefotaxime more frequently than CTX-M producers
are, and the opposite is the case for ceftazidime and cefepime. This is because different
ESBL types vary in the ability to hydrolyze specific cephalosporins (3, 4). The proportion
of AmpC producers (by either plasmid-borne genes or derepressed or hyperexpressed
chromosomal genes) that are susceptible to cephalosporins (except cefepime) is lower
(70).

Before 2010, Enterobacteriaceae with cephalosporin MICs of �8 mg/liter were
considered susceptible. Patients with BSI due to ESBL-E treated with cephalosporins
had worse outcomes than expected, even when isolates showed MICs within the range
of susceptibility (71), which prompted the recommendation to report all ESBL-E as
resistant. However, PK-PD stochastic models suggested that the breakpoints for ceph-
alosporins were too high and that outcome was dependent only on the probability of
attaining the PK-PD target, regardless of ESBL production (72, 73). As a result, EUCAST
and CLSI lowered the susceptibility breakpoints of cephalosporins for Enterobacteria-
ceae (as of 2017, isolates with MICs of �1 mg/liter are susceptible according to EUCAST
breakpoints [66]; breakpoints according to CLSI are �1 mg/liter for cefotaxime, �2
mg/liter for cefepime, and �4 mg/liter for ceftazidime [67]), and it is recommended to
report the susceptibility as found, irrespective of ESBL production.

Clinical data on outcomes for patients with infections caused by ESBL-E who were
treated with active cephalosporins versus other options are limited and sometimes
contradictory (68, 74–79). Goethaert et al. found similar mortality rates for 21 and 23
patients with BSI due to TEM-23-producing Enterobacter aerogenes who were treated
empirically with cefepime (2 g every 8 h) and carbapenems, respectively (74). Most
patients received combination therapy, and there was no adjustment for confounders.
Chopra et al. found an adjusted OR for mortality of 1.66 (95% CI � 0.71 to 3.87) for
patients treated with cefepime (dose not specified) compared to that for carbapenems
in patients with ESBL-E BSI (76). Lee et al. found higher mortality with cefepime (1 to
2 g every 8 h) than with carbapenems, using multivariate analysis and propensity score
matching (77). The outcomes were somewhat worse for isolates with cefepime MICs of
2 to 8 mg/liter than for those with MICs of �1 mg/liter. Finally, Wang et al. found a
trend toward higher mortality with cefepime (2 g every 8 h) than that with carbapen-
ems in a propensity score-matched analysis (hazard ratio [HR] � 2.87; 95% CI � 0.88 to
9.41) (78). In a study of Enterobacter cloacae bacteremia, ESBL production was inde-
pendently associated with increased mortality in patients treated with cefepime, even
after controlling for the MIC (79). Another study evaluated the impact of the cefotaxime
or ceftriaxone MIC on the outcomes for 409 patients with community-onset bacteremia
due to community-onset BSI due to Enterobacteriaceae (mostly E. coli) who were treated
empirically with these drugs (80); 94% of isolates were susceptible (MICs of �1
mg/liter). Patients with susceptible isolates had a lower risk of mortality in adjusted
analysis, but no comparisons with different drugs were given. The arguments against
the use of cephalosporins include the inoculum effect shown in in vitro and in vivo
models (44, 81–83) and the possibility of hyperexpression of blaESBL genes (84).
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In view of the data available so far, we would not recommend using a cephalosporin
with in vitro susceptibility as targeted therapy for patients with invasive infections due
to ESBL producers. For patients who received an active cephalosporin empirically, we
recommend switching to an alternative drug as targeted therapy, except for stable
patients with nonobstructive UTI or if the source of infection has been removed. If a
cephalosporin is to be used, a high dose is recommended.

AmpC producers are usually susceptible to cefepime unless other mechanisms of
resistance also exist. An observational study of BSI due to Enterobacter cloacae found a
higher mortality for patients treated with cefepime than for those treated with carbap-
enems when the isolates had MICs of 4 to 8 mg/liter (79). The meta-analysis mentioned
found no significant differences in outcomes for patients with BSI caused by Entero-
bacteriaceae harboring chromosomally encoded AmpC who were treated with cefepime or
carbapenems, although only a minority of patients included had isolates with dere-
pressed AmpC (8). Tamma et al. compared mortality rates for hospitalized patients with
blood, bronchoalveolar lavage, or intra-abdominal fluid cultures growing AmpC-
producing Enterobacter spp., Serratia spp., or Citrobacter spp. with derepressed AmpC
and treated with cefepime (1 to 2 g every 8 h) or meropenem; after comparing 32
propensity score-matched pairs, no effect on mortality was demonstrated (31% and
34%, respectively) (85). This contrasts with the fact that cefepime is also less active in
vitro and in vivo with high inocula of AmpC producers (86–88). More clinical compar-
ative studies of cefepime against derepressed AmpC mutants and plasmid-mediated
AmpC producers are needed.

In summary, at high doses, cefepime seems to be a reasonable alternative to
carbapenems for the treatment of invasive infections caused by susceptible Enterobac-
teriaceae with chromosomally encoded AmpC. There is very little experience regarding
the efficacy of cefepime against plasmid-mediated AmpC producers.

Cephamycins

The inability of ESBLs to efficiently hydrolyze cephamycins, which include cefoxitin,
cefotetan, cefmetazole, moxalactam, and flomoxef, means that cephamycins are active
against ESBL producers in the absence of other resistance mechanisms (2). Cephamy-
cins are not active against AmpC producers. The use of these drugs was discouraged
after early anecdotal reports of development of resistance in ESBL producers during
treatment due to porin loss (89, 90). Later, several observational studies comparing the
efficacies of cephamycins (mainly flomoxef and cefmetazole) and carbapenems in
infections due to ESBL producers were published (91–97). The studies included patients
with BSI, predominantly UTI, and one included only patients with pyelonephritis (93). In
all but two studies (95, 96), there were small numbers of patients treated with
cephamycins, ranging from 7 to 29. Only one study showed worse outcomes with these
drugs (92), but most had limited or inadequate control for confounders and low
statistical power. In most of the studies, the patients who received carbapenems
seemed to be more seriously ill. Matsumura et al. found similar mortality rates among
patients receiving targeted therapy for 59 patients treated with flomoxef or cefmeta-
zole and 54 treated with carbapenems, after propensity score adjustment (95). Lee et
al. found similar mortality rates with flomoxef and carbapenems when the MIC of
flomoxef was �1 mg/liter but not when it was 4 to 8 mg/liter (96).

The available data suggest that cephamycins may be an alternative to carbapenems
for some nonsevere infections, particularly UTI, where they can serve as carbapenem-
sparing options. More data are needed for other types of infection and more seriously
ill patients. In any case, high doses and close follow-up are recommended.

Temocillin

Temocillin is active against Enterobacteriaceae and is stable against hydrolysis by
ESBLs and AmpC �-lactamases; it has little useful activity against Pseudomonas spp. (98,
99). Unfortunately, it is currently available for intravenous use in only a few countries
(such as the United Kingdom and Belgium), and there is very little published experience
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regarding its use against these pathogens. In a murine model of UTI, the efficacy of
temocillin was similar to that of imipenem against CTX-M-15-producing E. coli (100).
Balakrishan et al. (101) reported 92 patients with infections due to Enterobacteriaceae
(41 had UTI and 42 BSI from diverse sources) who were treated with temocillin; 53 of
the isolates were ESBL or derepressed AmpC producers. Clinical and microbiologial cure
rates were 86% and 84%, respectively. In a crude analysis, ESBL or AmpC production
had no impact on outcome. No clinical studies have been found comparing temocillin
with carbapenems or other antibiotics in infections caused by ESBL- or AmpC-
producing Enterobacteriaceae. Its efficacy seems to correlate with higher doses (2 g
every 12 h), although recent pharmacokinetic-pharmacodynamic data suggest 2 g
every 8 h (or in continuous infusion) as the optimal dose for a susceptibility breakpoint
of �16 mg/liter (102). More clinical studies, and particularly RCT, are needed to
establish the role of temocillin in the treatment of ESBL and AmpC producers.

Aminoglycosides

Data on the effectiveness and limitations of aminoglycosides in treating Enterobac-
teriaceae infections can be extrapolated to infections caused by ESBL or AmpC pro-
ducers. A systematic review and meta-analysis showed that aminoglycosides had
efficacies similar to those of comparators against urinary infections but lower efficacies
against other types of infection (103). From a general perspective, the aminoglycoside–
�-lactam combination for the treatment of sepsis is disappointing, as it does not seem
to provide any extra benefit but increases the risk of toxicity (104). The results of a
recent observational study also showed that even short-course (median, 2 days)
adjunctive empirical gentamicin increased the risk of renal toxicity but did not protect
against mortality in patients with severe sepsis or shock in an area with low resistance
rates (and, in fact, the addition of gentamicin did not increase the probability of
appropriate coverage) (105). Importantly, the proportions of patients treated with
vancomycin among those receiving and not receiving gentamicin in that study were
41% and 18%, respectively, although its effect was controlled for in multivariate
analysis. It is not known whether the results would be different in areas with high rates
of ESBL-E or for patients without shock or not receiving vancomycin. Using INCREMENT
cohort data, Palacios-Baena et al. compared the empirical use of drugs other than
carbapenems or BLBLIs (86 patients; 43 received an aminoglycoside) and carbapenems
(249 patients) for BSI due to ESBL producers for mortality, clinical cure, and length of
hospital stay. No significant differences (or trends) in any outcome were shown (106).
Toxicity was not formally evaluated, but significant toxicity would be expected to
have some effect on length of stay. Smaller studies of cancer patients with BSI (107)
and children with UTI (108) also showed a reasonable effectiveness of aminogly-
cosides against ESBL-producing organisms in these populations. Finally, the vari-
ability in serum concentrations achieved may be important for isolates presenting
MICs near the breakpoint in critically ill patients, since therapeutic failure against
susceptible strains may be expected in these patients if the pharmacodynamic
target is not reached (109).

In view of the above-mentioned findings, it seems that using aminoglycosides adds
toxicity rather than benefits, and therefore they cannot be recommended as empirical
drugs in areas with low rates of resistance to �-lactams or other first-line drugs.
Nonetheless, they may still be considered an empirical option in carbapenem-sparing
regimens (as monotherapy or combined with a narrower-spectrum �-lactam) in areas
where ESBLs and/or AmpC are prevalent, particularly in UTI and sepsis. In any case, the
aminoglycoside should immediately be changed to a better-tolerated drug once the
susceptibility results are available.

Among the aminoglycosides, amikacin usually provides better coverage against
ESBL and AmpC producers (110). Plazomicin is a new aminoglycoside with good activity
against ESBL and AmpC producers (111, 112) and is reviewed in the section on
carbapenemase producers.
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Tigecycline

Tigecycline is a glycylcycline and, as such, is not affected by ESBLs or AmpC
�-lactamases. Tigecycline exhibits predominantly bacteriostatic activity. Its spectrum of
activity includes Gram-positive bacteria, Enterobacteriaceae (except for members of the
Proteae family), A. baumannii, and anaerobes. It is not active against P. aeruginosa (113).
The drug is approved in Europe and the United States for the treatment of complicated
skin and skin structure infections and cIAI; in the United States, it is also approved for
community-acquired bacterial pneumonia. Importantly, both the FDA and the EMA
issued warnings because the drug was associated with an increased risk of mortality
and clinical failure in meta-analyses of randomized trials (114–117). Hence, tigecycline
was recommended only when other options were not available or were unsuitable.
Although there is scant clinical experience with infections caused by ESBL producers
(118–120), the results would be expected to be similar to those with non-ESBL
producers. Because tigecycline is more frequently needed for the treatment of
carbapenem-resistant Enterobacteriaceae (CRE), more information is provided in the
relevant section.

Fosfomycin

Fosfomycin is an old antibiotic which remains active against most ESBL- and
AmpC-producing E. coli and K. pneumoniae (and other MDR Enterobacteriaceae) isolates
(121, 122). An oral formulation of fosfomycin trometamol is available in some countries
and has been used extensively for the treatment of uncomplicated UTI; it also shows
good efficacy against cystitis caused by ESBL-producing strains (123–126). An obser-
vational study compared fosfomycin trometamol (89 patients) administered at 3 g
every 48 or 72 h with ertapenem (89 patients) as a step-down regimen in patients with
invasive infections due to ESBL producers (28); readmission rates were similar (14.6%
and 13.5%, respectively).

The intravenous formulation is available in Spain, France, Germany, and Austria,
among other countries. In a recent meta-analysis, the efficacy of fosfomycin in ran-
domized trials (most of which were performed more than 15 years ago) was similar to
those of comparators for treatment of diverse infectious syndromes, and the drug was
well tolerated (127). One of the main problems with this drug is the potential emer-
gence of resistance during therapy, which seems to be less frequent in E. coli than in
other bacteria (128). Recent studies suggest that what actually happens is selection of
resistant mutants already present when therapy is started (129). Because of this, for
severe infections, fosfomycin has traditionally been recommended for use in combi-
nation with other drugs (126, 128). The most appropriate dosing schedules range from
4 g every 6 to 8 h to up to 8 g every 8 h (129, 130). For monotherapy, the drug has been
tested as empirical therapy (6 g every 8 h) in an RCT of cUTI, including pyelonephritis;
a preliminary report of the trial showed that fosfomycin met the noninferiority criteria
against piperacillin-tazobactam for overall success (131). It is also being tested com-
pared to ceftriaxone or meropenem as targeted therapy in an RCT of bacteremic UTI
due to multidrug-resistant E. coli (132). Until the results of these studies are fully
available, no recommendation can be made about the use of this drug for mono-
therapy against ESBL or AmpC producers.

Fluoroquinolones and Trimethoprim-Sulfamethoxazole

Fluoroquinolone resistance is very frequent among ESBL producers (3, 4) but is not
universal. In most cases, resistance is due to chromosomal mutations. Some isolates
may also show low-level resistance due to the presence of plasmid-mediated quinolone
resistance (PMQR) mechanisms (133).

Tumbarello et al. found that 8 of 16 patients with BSI due to ESBL-E who were
treated with ciprofloxacin died. The MICs of ciprofloxacin for all these patients were 0.5
to 1 mg/liter (134). Endimiani et al. described worse results with ciprofloxacin than with
imipenem for a small cohort of patients with BSI due to TEM-52-producing K. pneu-
moniae, which was associated with the fact that the MICs of ciprofloxacin were
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frequently higher than 0.25 mg/liter (135). According to these data, the current EUCAST
susceptibility breakpoint (�0.25 mg/liter) seems to be more appropriate than the
breakpoint of �1 mg/liter recommended by CLSI, at least for ESBL-E. The study by
Palacios-Baena et al. mentioned above, which examined the outcomes for patients with
BSI due to ESBL-E who were treated empirically with active drugs other than BLBLIs or
carbapenems, included 19 patients treated with a fluoroquinolone as the only active
drug according to CLSI breakpoints, and the mortality rate was 10.5%, similar to that for
patients treated with carbapenems (106).

With respect to the impact of PMQR mechanisms, data from an animal model
suggest a reduced efficacy of ciprofloxacin or levofloxacin. The presence of qnr genes
also increased the mutant prevention concentration (MPC) (136–141). The clinical
impact of PMQR mechanisms has been studied in only a few observational studies, with
discrepant results. The available data are difficult to interpret, as many isolates also had
other mechanisms of resistance and a small number of patients were treated with
quinolones (142–144). However, because PMQR (particularly qnr genes) is common in
ESBL-E (133), caution is needed in treating patients with quinolones, particularly using
CLSI breakpoints.

A small proportion of ESBL-E isolates are susceptible to trimethoprim-sulfamethoxazole.
Although no clinical studies specifically investigating the efficacy of this drug were found,
the results are expected to be similar to those for non-ESBL producers, and it may therefore
be an option mainly for cUTI.

THERAPY AGAINST CARBAPENEM-RESISTANT ENTEROBACTERIACEAE

CRE may arise due to carbapenemase production (currently the most frequent
mechanism) or to the combination of permeability problems with production of other
�-lactamases, such as ESBLs or AmpC (145–152). Carbapenemases are rapidly spreading
worldwide and fall into 3 main groups: KPC enzymes, belonging to Ambler class A;
MBLs, belonging to molecular class B and including NDM, VIM, and IMP enzymes,
among many others; and OXA enzymes, belonging to class D (in Enterobacteriaceae,
OXA-48 is the most prevalent one). Their epidemiology is heterogeneous, and their
capacity to hydrolyze carbapenems and other �-lactams is similarly variable (145–147).
The most frequent carbapenemase-producing Enterobacteriaceae (CPE) organism so far has
been K. pneumoniae, which causes infections predominantly identified as health care-
associated infections. The treatment options against these infections are very limited. The
most frequently used active antimicrobials so far have been “second-line” agents, including
polymyxins, tigecycline, fosfomycin, and (occasionally) aminoglycosides (145–152). Some
isolates are susceptible to minocycline, doxycycline, chloramphenicol, trimethoprim-
sulfamethoxazole, and temocillin (152–156). The new �-lactamase inhibitors, avibactam
and vaborbactam, inhibit KPC (avibactam also inhibits OXA-48) but not MBLs (61, 152).

Because the options are so limited, all potentially active drugs should be tested in
vitro. For many patients, it is necessary to create individualized antibiotic therapy
regimens in line with the source and severity of infection, susceptibility testing data,
and information available from in vitro, in vivo, and clinical studies (see below) (149,
157). Dose modification may also be necessary (Table 2). As with all pathogens, careful
evaluation of the clinical significance of a CRE isolate is assumed in order to prevent
unnecessary treatment (154). A summary of recommendations for regimens to be
considered in the treatment of CRE according to the data presented in the following
subsections is found in Table 3. It should be noted that many carbapenemase produc-
ers also coproduce ESBLs, and the impact of the production of both enzymes on
treatment is not well established.

Monotherapy versus Combination Therapy

As the efficacy of some frequently in vitro-active drugs against CPE in monotherapy,
such as the polymyxins, tigecycline, or fosfomycin, is doubtful (see below), the use of
combination therapy for the management of infections caused by these organisms has
been explored with the objective of investigating the potential synergistic or additive
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effects of certain combinations of antimicrobials. Many in vitro studies and some in vivo
studies have investigated the effects of double and triple combinations of drugs with
different mechanisms of action (158–210). A systematic review of studies of in vitro
synergy of polymyxins and carbapenems showed synergy against 50% of carbapenem-
resistant isolates (95% CI � 30 to 69%) in time-kill studies (less when the checkerboard
or Etest method was used). Combinations were also associated with less development
of resistance to colistin in vitro, but data about carbapenems were not provided (211).
Antagonism was infrequent. Overall, KPC-producing K. pneumoniae was studied most
often. Some conclusions that can be drawn from the data in these studies are as
follows: (i) it is difficult to extrapolate findings due to heterogeneity in methodologies,
overrepresentation of KPC producers, concurrent mechanisms of resistance, bacterial
species, clones, susceptibilities of isolates, and concentrations of antimicrobial agents
tested; (ii) the effects of the most frequently tested combinations varied widely; (iii)
triple combinations (colistin with carbapenem and rifampin or tigecycline, colistin with
double carbapenems) seemed to provide synergistic effects more frequently, although
these were less frequently studied, with diverse effects in different strains; (iv) the
synergistic effects of combinations including meropenem were more frequent when
the MIC was �16 mg/liter; and (v) combinations including colistin and rifampin (with
or without carbapenems) were frequently synergistic against colistin-resistant isolates.
Individual testing to guide therapy in cases with very limited options is desirable, but
delays in providing results, the intrinsic difficulties of such studies, and a lack of
evidence of clinical correlation should be taken into account.

No RCT were found that compared combination therapy with monotherapy for
patients with CPE infections. Designing such a trial would be complex because of the

TABLE 2 Recommended dosing for the most frequently used drugs against carbapenem-resistant Enterobacteriaceae (CRE) for patients
with normal renal functiona

Drug Usual/standard dose(s) Dosing for CRE and comments

Meropenem 1 g/8 h 2 g/8 h by EI (isolates with MICs of 2–8 mg/liter; for isolates
with higher MICs, it is probably not efficacious)

Ertapenem 1 g/24 h Consider 2 g/day for double-carbapenem regimens
Colistinb From the EMA, loading dose, 6–9 MU, and then

9 MU/day in 2–3 doses; from the FDA, 2.5–5
mg of colistin base activity/kg/day

EMA dose is recommended for severe CRE infections; the
need for a loading dose and high continuation dose in
patients without severe infection/shock is controversial

Polymyxin Bc From the FDA, 1.5–2.5 mg/kg/day in 2 doses For mild infections and isolates with MICs of �1 mg/liter,
the FDA dose is probably appropriate; for severe
infections and isolates with MICs of up to 4 mg/liter, a
loading dose of 2–2.5 mg/kg followed by 3 mg/kg/day in
2 doses is recommended (controversially)

Tigecycline 100-mg loading dose and then 50 mg/12 h For HAP, cUTI, BSI, or shock, consider a 200-mg loading
dose and then 100 mg/12 h

Gentamicin, tobramycin 5–7 mg/kg/day For HAP or shock without other options, higher doses (10–
15 mg/kg) might be considered, but the risk of toxicity is
high; TDM is recommended

Amikacin 15–20 mg/kg/day For HAP or shock without other options, higher doses (25–
30 mg/kg) might be considered, but the risk of toxicity is
high; TDM is recommended

Fosfomycin 4 g/6 h to 8 g/8 h Use in combination; high sodium concn
Temocillin 2 g/8–12 h KPC producers are occasionally susceptible; continuous

infusion improves PK-PD target attainment
Aztreonam 1–2 g/8 h MBL producers are susceptible if they are not ESBL or

AmpC producers
Ceftazidime 1–2 g/8 h OXA-48 producers are susceptible if they are not ESBL or

AmpC producers
Ceftazidime-avibactam 2.5 g/8 h KPC and OXA-48 producers are frequently susceptible
Meropenem-vaborbactam 2/2 g/8 h KPC producers are frequently susceptible
aPlease refer to the text for explanations and references. EI, extended infusion; EMA, European Medicines Agency; FDA, U.S. Food and Drug Administration; HAP,
hospital-acquired pneumonia; cUTI, complicated urinary tract infection; BSI, bloodstream infection; MU, million units; TDM, therapeutic drug monitoring; MBL,
metallo-�-lactamase.

bOne million units of colistimethate sodium � 80 mg colistimethate sodium � 34 mg of colistin base activity.
cOne million units of polymyxin B � 100 mg of colistin base activity.
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heterogeneous susceptibilities. Observational studies comparing the outcomes for
patients treated with monotherapy or combination therapy were reviewed, and control
for confounders was taken into account. Most studies focused on or supplied data for
BSI (212–229) (Table 4), while others included other types of infection (213, 215, 227,
230–236) (Table 5). Systematic reviews published in 2014 found major limitations in the
studies analyzed and therefore could not draw strong conclusions (47, 237). Another
systematic review and meta-analysis of infections due to carbapenem-resistant bacteria
(not just Enterobacteriaceae) found lower mortality with colistin combinations than with
colistin monotherapy, although again, the authors drew attention to the limitations of
the studies (238).

Some important methodological issues should be taken into account in analyzing
these data. First, the impact of combination therapy is evaluated mostly as targeted
therapy and therefore has a risk of survivor bias and confounding by indication. Second,
the definitions of exposure to different therapy regimens are heterogeneous, including
diverse criteria for number of days from onset of infection to initiation of treatment,
duration of treatment, and inclusion of inactive drugs in combination regimens in some
studies, as well as different criteria for considering antibiotics to be active (for example,
EUCAST versus CLSI breakpoints and susceptible versus nonresistant status). Third, the
drugs used are diverse, and therefore it is frequently impossible to evaluate whether
specific combinations or drugs in monotherapy are better than others. Fourth, in many
studies, the sample size is very limited. Finally, control for confounders is also frequently
insufficient.

The most frequent type of bacteria included were KPC-producing K. pneumoniae,
although some studies included mainly OXA-48 producers (212, 220, 235), NDM pro-
ducers (219), or noncarbapenemase producers (230). Some studies focused on specific
populations, such as intensive care unit (ICU) patients (221, 230), hematological or
cancer patients (224, 225, 233), or children (219, 232). As Tables 4 and 5 show, some
studies found combination therapy to be associated with lower mortality rates, while

TABLE 3 Summary of recommended regimens for treatment of infections caused by carbapenem-resistant Enterobacteriaceaea

Risk level, therapy type, and isolate susceptibility Drugs

High risk,b combination therapy
Susceptible to a �-lactam (use according to susceptibility) Backbone: ceftazidime-avibactam (preferred) or meropenem-vaborbactam;

alternatively, meropenem (if MIC is �8 mg/liter) or ceftazidime or
aztreonam

Accompanying drug (no data available about the need for combination
therapy if ceftazidime-avibactam or meropenem-vaborbactam is used
as the backbone): colistin, tigecycline, aminoglycoside, or fosfomycin (if
isolate is intermediate to the backbone drug, consider using 2 of these)

Resistant to all �-lactams (including isolates with
meropenem MICs of �8 mg/liter), susceptible to at
least 2 drugs, including colistin

Backbone: colistin
Accompanying drug: tigecycline, aminoglycoside (high risk of

nephrotoxicity), or fosfomycin
Resistant to all �-lactams and colistin, susceptible to at

least 2 drugs
Backbone: tigecycline or aminoglycoside
Accompanying drug: tigecycline or aminoglycoside, fosfomycin

Pandrug-resistant or susceptible to only one drug Meropenem plus ertapenem or ceftazidime-avibactam plus aztreonam;
add any active drug; consider active investigational drugs if available;
consider in vitro testing of combinations for synergy

Low risk,c monotherapy
According to susceptibility Ceftazidime-avibactam, meropenem-vaborbactam, meropenem,

ceftazidime, aztreonam, colistin, tigecycline, aminoglycoside (if
intermediate susceptibility, choose another option or use combination)

aClose clinical and microbiological follow-up is needed. If any of the following is needed, consider the source: colistin, preferred over other accompanying drugs in
cases of HAP/VAP; tigecycline, to be considered mostly for cIAI (if used for HAP, BSI, or cUTI, consider double dosing); aminoglycoside, to be considered mostly for
cUTI (if needed for HAP, consider a high dose), and TDM is recommended; fosfomycin, to be considered mostly for cUTI but, if needed, also as a third drug for any
source. For cIAI, consider adding metronidazole except for with meropenem and tigecycline. It may be wise to reserve the newer drugs (ceftazidime-avibactam and
meropenem-vaborbactam) for high-risk patients whenever possible. HAP, hospital-acquired pneumonia; cIAI, complicated intra-abdominal infection; cUTI, complicated
urinary tract infection; TDM, therapeutic drug monitoring.

bHigh risk is defined as having septic shock or, for bloodstream infections, an INCREMENT mortality score of �8 points (severe sepsis or shock at presentation, 5
points; Pitt score of �6, 4 points; Charlson index of �2, 3 points; and source of infection other than urinary or biliary tract, 3 points).

cLow risk is defined as having an INCREMENT mortality score of �8 points.
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others did not. An analysis of the largest study of BSI, to date (217), showed that using
more than one active drug had a protective effect on mortality only in the subset of
patients with a high probability of dying (but not in the others) according to the
validated INCREMENT CPE mortality score, which includes presentation with severe
sepsis or shock, �6 points on the Pitt score, �2 points on the Charlson index, and a
source of BSI other than the urinary or biliary tract (239). The results were corroborated
by propensity score matching. Two previous studies found that combination therapy
was protective, in a stratified analysis of patients with rapidly fatal underlying diseases
or with septic shock (214) and in patients with BSI with a non-UTI source (227). Another
study found that combination therapy was associated with lower mortality in patients
with septic shock related to BSI due to colistin-resistant, highly carbapenem-resistant,
KPC-producing K. pneumoniae (218).

These data suggest that combination therapy may be beneficial for high-risk
patients, depending on the underlying situation, source of infection, and presence
of septic shock, and also suggest that monotherapy may be enough for lower-risk
patients. Note that ceftazidime-avibactam or meropenem-vaborbactam was not used
in these studies, and therefore whether combination therapy is needed with these
compounds is unknown. More studies are needed for isolates producing MBLs or
OXA-48 enzymes and for CRE infections not caused by carbapenemases. The subsec-
tions below comment on the use of specific drugs. Curiously, rifampin was not included
in the combinations studied despite the fact that several in vitro studies suggested a
potential synergy with colistin, as mentioned above. In an RCT comparing colistin and
rifampin with colistin monotherapy for serious infections caused by XDR A. baumannii,
the combination was not found to provide any obvious benefit (240). The colistin dose
in that study was lower than the one presently recommended, and the results cannot
be extrapolated to Enterobacteriaceae.

Carbapenems for Treatment of CPE Infections

Carbapenemase activity against carbapenems varies according to the enzyme, and
probably the expression levels of carbapenemase genes (145, 149, 241). Some CPE are
in fact susceptible to carbapenems according to the susceptibility breakpoints currently
recommended by CLSI (�1 mg/liter for meropenem, imipenem, and doripenem and
�0.5 mg/liter for ertapenem) (67) and EUCAST (�2 mg/liter for imipenem and mero-
penem, �1 mg/liter for doripenem, and �0.5 mg/liter for ertapenem) (66). This is
particularly frequent in OXA-48 producers, as noted in several outbreaks (220, 242).
Stochastic modeling data suggest that the probability of reaching the target pharma-
codynamic parameter is around 80% for isolates with a MIC of 8 mg/liter if meropenem
is administered at 2 g every 8 h by extended infusion (243, 244).

This led to the consideration of carbapenems for treatment of infections with CPE
isolates showing susceptibility or low-level resistance to these drugs. There are limited
data available for carbapenems as monotherapy. Data from 22 articles analyzing the
efficacy of imipenem or meropenem in relation to the MIC found that the clinical cure
rate was 69% for isolates with a MIC of 4 mg/liter (32 patients) and 29% for isolates with
MICs of �8 mg/liter (7 patients) (244). Efficacy for isolates with a MIC of 4 mg/liter was
similar to that for patients with infections due to non-carbapenemase-producing
strains. The available information is too limited to recommend carbapenems as mono-
therapy against carbapenem-susceptible CPE, but carbapenems may be an option for
infections that are easy to treat (such as UTI). For isolates with higher MICs or other
types of infections, we suggest an alternative drug or a combination therapy (see
below).

The use of carbapenems in combination with other drugs has been evaluated in
retrospective cohort studies. Some found that adding meropenem at high doses (2 g
every 8 h by extended infusion) to another active drug was associated with lower
mortality among patients with BSI (214, 226) or diverse types of infections (227) caused
by CPE when the MIC was �8 mg/liter. Other studies found that the addition of a
carbapenem conferred no advantage for patients with BSI (216, 217), and a recent study

Rodríguez-Baño et al. Clinical Microbiology Reviews

April 2018 Volume 31 Issue 2 e00079-17 cmr.asm.org 18

http://cmr.asm.org


found that treatment with meropenem at a high dose was independently associated
with lower mortality in patients with carbapenem-resistant K. pneumoniae even in the
case of isolates with MICs of �16 mg/liter (245). In all these studies, the predominant
CPE was KPC-producing K. pneumoniae. The reasons for the discrepancies between
studies are not clear. Inherent variability in determining MIC may have some influence.
With the available information, if ceftazidime-avibactam or meropenem-vaborbactam
cannot be used, it would be prudent to consider adding meropenem (using optimized
dosing) to another active drug for patients with severe sepsis or shock if the MIC is �8
mg/liter, particularly if other in vitro-active drugs are not appropriate for the source of
infection (for example, tigecycline for cUTI and tigecycline or aminoglycosides for
ventilator-associated pneumonia) or if other combinations carry a high risk of toxicity
(for example, colistin and aminoglycosides). It is not clear if carbapenems would also be
beneficial in cases of CPE caused by MBLs, OXA-48, or other causes of carbapenem
resistance. Some animal model studies did not find that carbapenems had the same
efficacy against isolates with similar MICs but different mechanisms of resistance to
carbapenems (246, 247), which argues against directly extrapolating the results ob-
tained with KPC producers to other mechanisms of resistance. It should also be pointed
out that use of carbapenems may theoretically facilitate the emergence of higher levels
of carbapenem resistance due to permeability problems or increased expression of
carbapenemases. Hence, it is worth studying carbapenem-sparing regimens.

Double Carbapenems

KPC exhibits a greater affinity for ertapenem than for other carbapenems (248),
which led to the hypothesis that use of ertapenem might allow the other carbapenem
to act. This seems to work in vitro only if the meropenem MIC is �128 mg/liter
(249–253), and not for all strains (203). Some small, noncomparative case series have
shown promising results (250–253). Ertapenem and meropenem have been found to be
synergistic in vitro against other types of carbapenemase-producing Enterobacteriaceae
(209). A comparison of 28-day mortality was carried out recently between ICU patients
with carbapenem-resistant K. pneumoniae infections (90% were KPC producers) who
received double carbapenems, with ertapenem as targeted therapy (48 patients; 35 of
these received a third drug), and 96 patients who received other treatment regimens
(52 received a combination of drugs) (254). Patients in both treatment arms were
matched by SAPS-II score at admission and SOFA score at diagnosis of infection. Half
the patients had pneumonia. In a multivariate analysis, double-carbapenem therapy
was associated with lower mortality (adjusted OR � 0.33; 95% CI � 0.13 to 0.87), and
among the patients treated with double carbapenems, 66% had XDR isolates. Because
of significant potential negative ecological effects, and until more data are available,
this combination should be considered only when there are no other reasonable
options.

Polymyxins

Polymyxins are cationic polypeptide antibiotics, and only polymyxin B and poly-
myxin E (colistin) are used in clinical practice (255–257). Polymyxins are active against
Enterobacteriaceae, except for Proteus spp., Serratia spp., Morganella spp., and Provi-
dencia spp. They have been a cornerstone in the management of infections due to CRE
in the past, mostly because of being the last resort against these bacteria on many
occasions. There is more clinical information available on colistin.

Whether colistin as monotherapy is as efficacious as the so-called first-line drugs
against susceptible Enterobacteriaceae (�-lactams and fluoroquinolones) is a matter of
controversy. Direct comparisons in observational studies are challenged because pa-
tients treated with colistin usually have carbapenem-resistant Enterobacteriaceae and
are frequently more seriously ill. A systematic review including mostly patients with
MDR P. aeruginosa and A. baumannii found higher mortality and toxicity for patients
treated with colistin than for those treated with other drugs, mostly �-lactams (258),
although similar data for Enterobacteriaceae are scarce. A randomized trial comparing
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colistin with meropenem (both combined with levofloxacin) in patients with ventilator-
associated pneumonia is under way (259).

With regard to the question of whether colistin is more effective in combination
with other drugs, apart from the general information provided above, Hirsch and Tam
reviewed 15 articles including 55 patients with KPC-producing K. pneumoniae infections
treated with colistin and found that colistin was less effective as monotherapy than in
combination (260). In a meta-analysis of infections due to carbapenem-resistant bac-
teria, Zusman et al. found that polymyxin monotherapy was associated with higher
mortality than that with colistin combinations, although the authors drew attention to
significant limitations of the studies (238). In the INCREMENT cohort, colistin mono-
therapy was associated with increased mortality compared to that with combinations
including tigecycline, colistin, and carbapenems (217). Overall, the drugs most fre-
quently combined with colistin have been carbapenems, tigecycline, aminoglycosides,
and fosfomycin. The potential additive nephrotoxicity of colistin and aminoglycosides
is a concern. Two randomized controlled trials comparing colistin versus colistin plus
meropenem are being performed; one of them includes patients with severe infections
due to carbapenem-resistant Gram-negative bacteria (261), and the other includes
patients with BSI or pneumonia due to XDR Gram-negative bacilli (https://clinicaltrials
.gov/ct2/show/NCT01597973).

The most appropriate dose of colistin is also controversial. Colistin is administered
as a prodrug (colistimethate sodium) that needs to be converted to the active drug. The
previous standard dosage regimen recommended for colistin is now considered insuf-
ficient by most authors (Table 2) (262–265), and administration of a loading dose
followed by a high maintenance dose has been suggested based on pharmacokinetic-
pharmacodynamic models (263–266). The European Medicines Agency recommends a
9-million-unit (MU) loading dose for critically ill patients, followed by 9 MU/day in 2 or
3 doses (267). The FDA, however, makes no recommendation about loading dose and
recommends 2.5 to 5 mg/kg of body weight/day of colistin base activity for patients
with normal renal function (34 mg of colistin base activity � 1 MU) (268). Whether use
of a loading dose and higher daily doses is associated with improved efficacy is again
controversial. No comparative randomized trials have been found, although several
observational or quasi-experimental studies with discrepant results have been pub-
lished (269–276). In most studies, renal toxicity was more frequent with higher doses.
It should also be pointed out that most studies included not only CRE but also P.
aeruginosa and A. baumannii. A small randomized trial compared the rates of nephro-
toxicity of colistin administered as a 9-MU loading dose followed by 4.5 MU every 12
h or as 2 MU every 8 h (20 patients in each arm); the rates of acute kidney injury based
on RIFLE criteria were 60% and 15%, respectively (P � 0.003) (277).

Dosing regimens are not well established for polymyxin B either. Polymyxin B is
administered as an active drug and therefore does not need in vivo conversion to be
active. In a retrospective cohort study of 151 patients with BSI due to carbapenem-
resistant Gram-negative bacteria (102 isolates were Enterobacteriaceae), a dosing reg-
imen of �1.3 mg/kg/day was independently associated with higher mortality (278),
thus supporting the standard recommendation of administering 1.5 to 2.5 mg/kg/day
in 2 doses. In a multivariate analysis in that study, a daily dose of �250 mg was
associated with acute kidney injury. However, a population pharmacokinetic study of
critically ill patients suggested the use of 3 mg/kg/day in patients with severe infections
and isolates with MICs of �2 mg/liter (279). Stochastic modeling also suggests the
importance of administering a loading dose of polymyxin B (278, 279).

Regarding comparative data on colistin and polymyxin B, the available data suggest
that colistin is associated with a higher risk of nephrotoxicity than polymyxin B (280,
281). However, no clear differences in clinical benefits (including cure rates or mortality)
have been demonstrated for one over the other so far (281, 282). Dose adjustment is
recommended for both drugs in patients with renal insufficiency, according to the FDA
label; however, since exposures to polymyxin B are similar in patients with and without
renal insufficiency and clearance of the drug is not affected by renal function, the
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dosing of this drug should probably not be adjusted according to renal function (278,
283, 284).

Resistance to polymyxins is increasing, with outbreaks of colistin-resistant CRE
reported in different parts of the world (285–289). Colistin resistance has been associ-
ated with an increased risk of mortality (213, 290, 291), and exposure to colistin has
been identified as a risk factor for infections due to colistin-resistant CPE (288). More
recently, plasmid-mediated resistance (mediated by mcr genes) was discovered (292).
While the association between mcr genes and carbapenemase production is anecdotal
so far (293–298), the association of these genes with successful mobile genetic ele-
ments or clones, together with the use of colistin in veterinary and human medicine
leading to increased selection pressure, is a cause for concern. Furthermore, suscepti-
bility testing with colistin is problematic: broth microdilution methods are recom-
mended because diffusion tests are not reliable (66), and semiautomated methods may
cause very major errors (as explained at http://www.eucast.org/ast_of_bacteria/
warnings/ [accessed 22 October 2017]). The EUCAST breakpoint for colistin suscepti-
bility (which is also the epidemiological cutoff value) is �2 mg/liter (66); CLSI does not
provide breakpoints for polymyxins and Enterobacteriaceae (67).

In summary, polymyxins are still frequently key drugs for the treatment of CRE, but
their actual efficacy and optimal dosing are not well defined; combination therapy is
probably beneficial for high-risk patients.

Tigecycline

Tigecycline frequently remains active against CRE in vitro (113, 119, 145, 148–150).
As mentioned in the section on treatments for infections with ESBL- and AmpC-
producing Enterobacteriaceae, tigecycline is recommended only when other options are
unavailable or unsuitable, which is often the case for infections due to CRE. A recent
meta-analysis reviewed 21 studies comparing outcomes associated with tigecycline
versus other antimicrobial agents used for treatment of CRE infections (299). No
significant differences in patient mortality were found between patients treated with
tigecycline and those treated with other antibiotics. In subgroup analyses, tigecycline
in combination was associated with lower mortality. The analysis was limited by the
heterogeneity of the studies, types of infection, and comparators.

The problem of the lower efficacy of tigecycline has been linked to dosage (396). The
concentrations reached at sites of infection may be lower than desired with the
standard dose (100-mg loading dose and then 50 mg/12 h) (202), particularly in cases
of HAP (300) and despite the fact that the drug is concentrated in the tissues.
Tigecycline concentrations in blood are also low (113), which raised doubts early on
about its efficacy in bacteremic infections. A meta-analysis including mostly observa-
tional studies found no significant differences in mortality and higher rates of clinical
cure for patients with BSI treated with tigecycline than those treated with other
regimens, although the studies were heterogenenous with respect to design, type of
infection, microorganism, comparators, and dosing (301). In subgroup analysis, mono-
therapy wth tigecycline was associated with higher mortality than that with combina-
tion therapy.

In a phase 2 randomized trial for treatment of HAP, patients were randomized to
receive 150 mg of tigecycline followed by 75 mg/12 h (36 patients), 200 mg of
tigecycline followed by 100 mg/12 h (35 patients), or imipenem-cilastatin at 1 g/8 h (34
patients) (302). The clinical cure rate was higher for patients receiving the highest dose
of tigecycline than those receiving the lower dose, but the study was underpowered to
detect superiority. The rates of serious adverse events were similar across groups, but
diarrhea, nausea, and vomiting were more frequent at the highest tigecycline dose. A
systematic review carried out in 2014 found three other observational studies that
compared the outcomes for patients with infections caused by Gram-negative patho-
gens (mostly MDR) who received the standard dose of 50 mg/12 h and those receiving
100 mg/12 h (303). Two of these studies, performed on ICU patients, found better
results with the high-dose regimen, and for the subset of patients with VAP in one of
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them (304, 305), and one did not (306). A recent case series of ICU patients showed a
decrease in plasma fibrinogen levels and a prolongation of international normalized
ratio (INR) and activated partial thromboplastin time (aPTT) values during high-dose
tigecycline treatment in ICU patients (307).

Tigecycline concentrations in urine are also low, and the drug has not been
evaluated in an RCT for UTI. Since UTI is a frequent type of infection among patients
with CRE (308), tigecycline has been used anecdotally, sometimes with apparently good
results (309). However, it is associated with a lower rate of clearance of carbapenem-
resistant K. pneumoniae in patients with bacteriuria or UTI than that with aminoglyco-
sides (310, 311) and therefore does not seem to be the best option for this type of
infection.

Since tigecycline remains active against a significant proportion of CRE isolates, it
might be useful as part of the treatment regimens against many infections caused by
these pathogens. Higher doses may be considered for severe infections with very
limited options, particularly pneumonia and BSI.

Aminoglycosides

General aspects of aminoglycoside use were discussed previously, in the section on
ESBL- and AmpC-producing Enterobacteriaceae. A variable, occasionally large propor-
tion of CRE isolates are susceptible to some members of the aminoglycoside family,
except for isolates producing 16S rRNA methyltransferases, which confer resistance to
all aminoglycosides (312). These acquired enzymes are particularly frequent among
NDM producers and are increasingly being described for KPC producers (312–314).

Aminoglycosides have been used both alone and in combination (more frequently)
in the management of infections caused by CRE; indeed, aminoglycosides are often part
of the combination therapies listed in the studies in Tables 4 and 5. The aminoglyco-
sides have been found to be independently associated with higher rates of clearance
of carbapenem-resistant K. pneumoniae from urine than those for tigecycline and
polymyxin B (310); it should be noted that concentrations of polymyxin B in urine are
low (279), while colistimethate is eliminated in part in the urine, where it is converted
to colistin. Studies comparing outcomes for patients treated with and without amin-
oglycosides are scarce. One study investigated the outcomes for 157 patients with
physician-diagnosed UTI due to carbapenem-resistant K. pnuemoniae (mostly KPC
producers); treatment with aminoglycosides was associated with a lower probability of
failure (other drugs were colistin, tigecycline, trimethoprim-sulfamethoxazole, and
fosfomycin) in an adjusted analysis (311). In that study, amikacin was active against 83%
of the isolates. A study carried out in Spain included 50 patients with sepsis due to
colistin-resistant, clonally related KPC-producing K. pneumoniae isolates and compared
30-day mortality for patients treated with gentamicin (29 patients) and without gen-
tamicin (21 patients) (315). Overall, 48% of patients had HAP and 20% had UTI. In a
multivariate analysis, treatment with gentamicin (particularly for isolates with MICs of
�2 mg/liter) was associated with lower mortality. It should be noted, reflecting the
extensive resistance of the isolates, that most patients not receiving gentamicin were
considered to have received suboptimal treatment (meaning that the treatment regi-
men included only drugs with intermediate susceptibility). Crude mortality rates were
7.7% (1/13 patients) and 31.2% (5/16 patients) for isolates with gentamicin MICs of �2
mg/liter (susceptible, according to EUCAST) and 4 mg/liter (intermediate), respectively.
The gentamicin dose was 4 to 5 mg/kg, with dose adjustment based on therapeutic
drug monitoring. It is important that resistance to gentamicin among KPC producers is
high in many areas (311).

As with other drugs used in the treatment of CRE infections, the adequacy of the
generally recommended dosage for aminoglycosides (5 to 7 mg/kg/day for gentamicin
and tobramycin; 15 to 20 mg/kg/day for amikacin) has also been questioned. A study
of patients with severe sepsis or septic shock who were treated with amikacin at 25
mg/kg/day showed that only 70% reached peak concentrations of �64 mg/liter, which
would be �8 times the susceptibility breakpoint against Enterobacteriaceae according
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to EUCAST (8 mg/liter) (316); the same dose, however, should be enough for isolates
with a MIC of 4 mg/liter to reach the same target (317). An initial dose of 2,500 mg
followed by therapeutic drug monitoring has been suggested for patients with body
weights of �40 kg (318, 319). Importantly, the peak concentration/MIC ratio has been
challenged as the only pharmacokinetic-pharmacodynamic target to be considered for
aminoglycosides (320). Use of even higher doses in patients with high-flow hemofil-
tration has been explored for MDR Gram-negative infections with very limited options
(321). To investigate the impact of the maximum concentration of drug in serum (Cmax)
on mortality, a retrospective observational study including 110 patients with septic
shock who received amikacin at 30 mg/kg/day was carried out in two ICUs; around half
the patients had infections caused by Enterobacteriaceae (322). Mortality rates were
28.3% for 46 patients reaching Cmax values of 60 to 80 mg/liter, 40% for 20 patients
reaching �60 mg/liter, and 58.8% for 44 patients reaching �80 mg/liter. In a multi-
variate analysis, Cmax values of �80 mg/liter were independently associated with
increased mortality (OR � 3.96; 95% CI � 1.54 to 10.2). A randomized trial would be
needed to compare the efficacies and safeties of higher doses of aminoglycosides. At
this time, we are cautious about recommending them except for patients with septic
shock due to CRE infection with very few other available alternatives.

Fosfomycin

Fosfomycin was also reviewed in the section on ESBL- and AmpC-producing Enter-
obacteriaceae, so only specific information about CRE infections is added here. Fosfo-
mycin is active against a significant proportion of CRE isolates (121, 122, 153, 323) and
was therefore frequently included as part of combination therapy in the studies listed
in Tables 4 and 5. Since we found no studies with sufficient numbers of patients to
compare the outcomes for patients treated with and without fosfomycin, its role as an
individual drug is difficult to ascertain. Development of resistance has been described
even for its use in combination for infections caused by KPC producers (324). A
multicenter case series analyzing 48 patients admitted to the ICU and treated with
fosfomycin for XDR, fosfomycin-susceptible pathogens has been reported (325). The
predominant infections were VAP and BSI, the median dose was 24 g per day, and the
most frequent accompanying drugs were colistin and tigecycline. The 28-day mortality
rate was 37.5%, and clinical outcomes were considered successful at day 14 for 54.2%
of patients, with failure in 33.3% of patients. Resistance development occurred in 3
cases.

Because of the scarcity of information, fosfomycin is not a first option against serious
CRE infections when other active drugs are available, but it may be needed in some
patients with scarce options. In such cases, a fosfomycin dose of 16 to 24 g per day in
combination is recommended.

�-Lactams Other than Carbapenems: Temocillin for KPC Producers, Aztreonam for
MBL Producers, and Cephalosporins for OXA-48 Producers

Temocillin is active against a small proportion of KPC producers, using British Society
for Antimicrobial Chemotherapy breakpoints (�8 mg/liter; �32 mg/liter for UTI) (153,
326), and against CRE isolates with combinations of impermeability and ESBL or AmpC
production (153). Promising results with temocillin were found in a murine model of
intra-abdominal infection against KPC-producing E. coli isolates with temocillin MICs of
�16 mg/liter (327). Unfortunately, we found no published clinical experiences. OXA-48
producers show high resistance to temocillin, which has been proposed as a diagnostic
marker for these enzymes (328, 329).

Aztreonam is not efficiently hydrolyzed by MBLs (145, 149, 150). In an in vitro model,
it showed slow bactericidal activity against VIM-1-producing K. pneumoniae (330).
Animal model studies showed efficacy against susceptible isolates producing NDM and
VIM MBLs (331, 332). The problem here is that a large proportion of MBL producers
coproduce ESBLs, thus making them aztreonam resistant (333). Clinical experience is
lacking in any case.
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The case of OXA-48 is somewhat similar. This enzyme has low hydrolytic activity
against cephalosporins and does not confer cephalosporin resistance (334), but most
OXA-48 producers are resistant because they are also ESBL producers (242, 335).
However, since some OXA-48 producers also show low carbapenem MICs, they may not
be detected, particularly if they do not also coproduce an ESBL. Ceftazidime showed
significant antibacterial activity in animal models against OXA-48 producers lacking
ESBLs or AmpC (336, 337). Again, no clinical experience has been published.

Ceftazidime-Avibactam

As previously reviewed in the section on ESBL- and AmpC-producing Enterobacte-
riaceae, ceftazidime-avibactam is active in vitro against most KPC- and OXA-48-
producing Enterobacteriaceae and some carbapenem-resistant strains due to a loss of
impermeability or ESBL or AmpC production at the EUCAST and FDA susceptibility
breakpoint (�8/4 mg/liter) (61, 338–342). Activity against KPC and OXA-48 producers
has been confirmed in animal studies (343, 344). Curiously, in a murine thigh infection
model, ceftazidime-avibactam (but not ceftazidime alone) also showed efficacy against
ESBL- and NDM-producing E. coli and K. pneumoniae isolates highly resistant to
ceftazidime-avibactam, suggesting that ceftazidime resistance was due mostly to the
ESBL (345). These results were replicated in a murine lung infection model with NDM-,
OXA-48-, and CTX-M-producing K. pneumoniae isolates (346). However, data for pa-
tients are lacking, and therefore we would not recommend ceftazidime-avibactam for
patients infected with MBL-producing Enterobacteriaceae.

There are some published experiences of the treatment of CRE because this com-
bination has been tested in compassionate use programs for the treatment of infec-
tions caused by XDR Enterobacteriaceae and recently received approval. We found 7
case series or cohort studies that included 6 to 60 patients with CRE infections who
were treated with ceftazidime-avibactam (Table 6) (347–353). Some patients may have
been included in more than one of these series. Ceftazidime-avibactam was used as
targeted therapy, sometimes as salvage therapy after failure with other drugs. It was
administered in combination with other active drugs in 30 to 100% of cases. Mortality
rates ranged from 7.6% to 39% for patients with BSI and from 8% to 50% when total
infections were considered in each study. Overall, there were no obvious differences in
mortality or clinical response between patients treated with monotherapy or a drug
combination. In three studies, there was a comparison with patients not treated with
ceftazidime-avibactam. The first study included hematological patients with BSI due to
CRE and compared 8 patients treated with this combination with 23 treated with other
regimens (347). In the crude analysis, clinical cure (but not mortality) was more frequent
with ceftazidime-avibactam, although the small patient numbers precluded multivari-
ate analysis. In another study of patients with BSI due to CRE, 13 patients treated with
ceftazidime-avibactam were compared to those receiving other regimens (348). Clinical
response was more frequent with ceftazidime-avibactam in the adjusted analysis,
which was clearly limited because of small numbers. Finally, van Duin et al. used the
CRAKCLE prospective cohort data to compared the outcomes for patients with diverse
types of infections due to CRE (�95% KPC-producing K. pneumoniae isolates) and
treated with ceftazidime-avibactam (38 patients; 39% had BSI and 24% had HAP) or
colistin (99 patients; 48% had BSI and 21% had HAP); combination therapy was used in
63% and 94% of patients treated with ceftazidime-avibactam and colistin, respectively
(353). Inverse probabilities of treatment weighting-adjusted mortality were 9% and
32%, respectively (absolute difference, 23%; 95% CI, 9 to 35%). At day 30, patients
treated with ceftazidime-avibactam had a 64% (95% CI, 57 to 71%) adjusted probability
of a better outcome.

In one study, ceftazidime-avibactam resistance developed in 3 of 10 isolates recov-
ered from recurrent infections (349) due to mutations in the blaKPC-3 gene (354). This
was also described in another case (355). Curiously, the same mutation restored
carbapenem susceptibility in some isolates (354, 355). Acquisition of resistance due to
mutations in the blaCTM-M-14 gene conferring augmented ceftazidime hydrolysis has
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also been described for a K. pneumoniae isolate coproducing OXA-48 (356). The
development of resistance to ceftazidime-avibactam should therefore be checked in all
cases by performing follow-up cultures. Studies are needed to evaluate the overall rate
of this phenomenon and whether it is associated with monotherapy, dosing, or
high-inoculum infections.

The lack of in vitro activity of ceftazidime-avibactam against MBL producers and the
fact that many MBL producers also coproduce other �-lactamases (such as ESBLs,
AmpC, OXA-48, etc.) have attracted some attention to the potential effect of combining
ceftazidime-avibactam with aztreonam. Synergistic effects have been seen in in vitro
and in vivo studies (346, 357), and indeed, some patients were successfully treated
with this combination (208, 397). This raises the possibility of using atypical
combinations of BLBLIs and other �-lactams, such as piperacillin-tazobactam plus
aztreonam, against MBL and ESBL producers, although many of these should be
tested in vitro, in vivo, and on patients before any recommendations can be
provided. As stated below, aztreonam-avibactam is undergoing clinical develop-
ment.

Although more data are needed, ceftazidime-avibactam may already be considered
the new keystone in the treatment of severe infections due to KPC- and OXA-48-
producing Enterobacteriaceae.

Meropenem-Vaborbactam

Vaborbactam is another new �-lactamase inhibitor which has been shown to
restore the ativity of meropenem against KPC producers; however, it does not
enhance the activity of meropenem against MBL producers (NDM or VIM) or OXA-48
producers (358, 359). It was recently approved by the FDA for the treatment of cUTI
due to susceptible enterobacteria, based on the data from a phase 3 trial in which
meropenem-vaborbactam showed noninferiority to piperacillin-tazobactam (398).
The preliminary results of a small phase 3 trial including diverse types of infections
caused by CRE showed higher rates of clinical cure with meropenem-vaborbactam
than with the best available therapy (57.1% of 28 patients versus 26.7% of 15
patients; absolute difference, 30.5%; 95% CI, 1.5 to 59.4%), as well as lower rates of
nephrotoxicity (360); recruitment was stopped because of the superiority of
meropenem-vaborbactam. Despite the limited information available, limitations
of the study include heterogeneous infections (with a majority of cUTI) and very
diverse treatment regimens in the control arm, some of which might have been
substandard.

Pipeline of Drugs against CRE

Plazomicin is a new aminoglycoside undergoing clinical development. It escapes the
activity of aminoglycoside-modifying enzymes and is therefore active against a greater
proportion of CRE than those with gentamicin, tobramycin, and amikacin. Nonetheless,
like all other aminoglycosides, it is affected by 16S rRNA methyltransferases (111,
361–363). The results of a phase 3 randomized trial comparing plazomicin (15 mg/kg/
day) and meropenem (1 g/8 h) for treatment of cUTI, including pyelonephritis, have
been reported; 388 patients were included in the microbiological modified intention-
to-treat (mMITT) population, and plazomicin showed a higher rate of microbiological
response (87.4% versus 72.1%) (364). The rates and severities of adverse events were
similar. The results of an open-label phase 3 trial of patients with BSI or HAP/VAP
caused by CRE, comparing plazomicin (17 patients) and colistin (20 patients) in com-
bination with tigecycline or meropenem, have also been reported. Mortality rates were
11.8% and 40%, respectively (difference, 28%; 95% CI, 0.7 to 52.5%). Renal toxicity was
less frequent with plazomicin (365).

Eravacycline is a novel fluorocycline antibiotic with in vitro activity against MDR
Gram-positive and Gram-negative pathogens, including carbapenemase-producing En-
terobacteriaceae (366–368). The drug has demonstrated noninferiority to ertapenem in
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the treatment of cIAI in a phase 3 trial (369). Another RCT involving comparison with
meropenem in cIAI is being developed, and trials against cUTI are planned.

Cefiderocol is a new siderophore cephalosporin that is active against MDR Gram-
negative organisms, including carbapenemase-producing Enterobacteriaceae (370–
375). At a dose of 2 g every 8 h, it reaches �50% time above the MIC for MICs of up
to 8 mg/liter (376). It has also been shown to be effective against KPC- and NDM-
producing K. pneumoniae in a rat respiratory tract infection model, particularly when
administered over 3 h (377). Preliminary results of a phase 3 trial against cUTI have
reported noninferiority to imipenem, and the results are consistent with superiority
(378).

Aztreonam-avibactam is an interesting combination because of the ability of avibac-
tam to inhibit ESBLs, AmpC, KPC, and OXA-48 enzymes and the stability of aztreonam
against MBLs. Therefore, this compound is active against many CPE isolates, regardless
of the carbapenemase produced (242, 332, 379–388), and is undergoing phase II trials
against intra-abdominal infections, in association with metronidazole.

Relebactam is another �-lactamase inhibitor with activity against KPC and ESBL
producers (KPC producers with major OmpK36 mutations affecting permeability
have higher MICs). It is less active against OXA-48 and not active against MBLs
(389–395). It is being studied in combination with imipenem in phase 3 studies of
cIAI and cUTI.
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