Table 5. Summary of results.
Deep learning | SVM | RF | BrIC | CSDM-WB | CSDM-CC | Peak-CC | |
---|---|---|---|---|---|---|---|
Accuracy | 0.800 (0.650–0.915) | 0.767 (0.614–0.903) | 0.784 (0.628–0.903) | 0.781 (0.636–0.950) | 0.75 (0.600–0.882) | 0.754 (0.583–0.882) | 0.678 (0.522–0.833) |
Sensitivity | 0.766 (0.414–1.000) | 0.713 (0.308–1.000) | 0.769 (0.348–1.000) | 0.665 (0.333–1.000) | 0.671 (0.375–1.000) | 0.734 (0.300–1.000) | 0.588 (0.250–1.000) |
Specificity | 0.835 (0.617–1.000) | 0.820 (0.554–1.000) | 0.806 (0.565–1.000) | 0.878 (0.667–1.000) | 0.816 (0.600–1.000) | 0.784 (0.500–1.000) | 0.763 (0.533–1.000) |
AUC-Testing | 0.850 (0.729–0.979) | 0.846 (0.714–0.977) | 0.847 (0.712–0.986) | 0.803 (0.643–0.974) | 0.835 (0.664–1.000) | 0.818 (0.600–0.967) | 0.778 (0.568–0.926) |
.632+ error | 0.148 | 0.176 | 0.163 | 0.207 | 0.246 | 0.227 | 0.292 |