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Abstract

Evaluating the marginal likelihood in Bayesian analysis is essential for model selection. 

Estimators based on a single Markov chain Monte Carlo sample from the posterior distribution 

include the harmonic mean estimator and the inflated density ratio estimator. We propose a new 

class of Monte Carlo estimators based on this single Markov chain Monte Carlo sample. This class 

can be thought of as a generalization of the harmonic mean and inflated density ratio estimators 

using a partition weighted kernel (likelihood times prior). We show that our estimator is consistent 

and has better theoretical properties than the harmonic mean and inflated density ratio estimators. 

In addition, we provide guidelines on choosing optimal weights. Simulation studies were 

conducted to examine the empirical performance of the proposed estimator. We further 

demonstrate the desirable features of the proposed estimator with two real data sets: one is from a 

prostate cancer study using an ordinal probit regression model with latent variables; the other is for 

the power prior construction from two Eastern Cooperative Oncology Group phase III clinical 

trials using the cure rate survival model with similar objectives.
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1 Introduction

The Bayes factor quantifying evidence of one model over a competing model is commonly 

used for model comparison or variable selection in Bayesian inference. The Bayes factor is a 

ratio of two marginal likelihoods, where the marginal likelihood is essentially the average fit 

of the model to the data. However, the integration for the marginal likelihood is often 
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analytically intractable due to the complex kernel (product of likelihood and prior) structure. 

To deal with this computational problem, several Monte Carlo methods have been 

developed. They include the importance sampling (IS) of Geweke (1989), the harmonic 

mean (HM) of Newton and Raftery (1994) and its generalization (GHM) by Gelfand and 

Dey (1994), the serial approaches of Chib (1995) and Chib and Jeliazkov (2001), the inflated 

density ratio method (IDR) of Petris and Tardella (2003) and Petris and Tardella (2007), the 

thermodynamic integration (TI) of Lartillot and Philippe (2006) and Friel and Pettitt (2008), 

the constrained GHM estimator with the highest posterior density (HPD) region of Robert 

and Wraith (2009) and Marin and Robert (2010), and the steppingstone sampling of Xie et 

al. (2011) and Fan et al. (2011). Under some mild conditions, they are all shown to be 

asymptotically convergent to the marginal likelihood by the ergodic theorem. They vary in 

using Monte Carlo samples or kernels in the Monte Carlo integration.

We assume only a single Markov chain Monte Carlo (MCMC) sample from the posterior 

distribution, which may be readily available from standard Bayesian software, and the 

known kernel function for computing the marginal likelihood. The HM and IDR estimators 

are the only existing methods that need only these two minimal assumptions. The main 

difference between the HM and the IDR estimators lies in the different weights assigned to 

the inverse of the kernel function. The former uses the prior function as a weight, while the 

latter uses the difference between a perturbed density and its kernel function. Although the 

HM estimator has been used in practice because of its simplicity, it can be unstable when the 

prior has heavier tails than the likelihood function and it is known to overestimate the 

marginal likelihood (Lartillot and Philippe, 2006; Xie et al., 2011).

While the IDR estimator has better control over the tails of the kernel than the HM 

estimator, it requires reparameterization, posterior mode calculation, and a careful selection 

of radius. Under the aforementioned two minimal assumptions, we extend the HM and IDR 

methods to develop a new Monte Carlo method, namely, the partition weighted kernel 

(PWK) estimator. The PWK estimator is constructed by first partitioning the working 

parameter space, where the kernel is bounded away from zero, and then estimating the 

marginal likelihood by a weighted average of the kernel values evaluated at the MCMC 

sample, where weights are assigned locally using a representative kernel value in each 

subset. We show the PWK estimator is consistent and has finite variance. When the partition 

is refined enough to make the kernel values in the same region similar, we can construct the 

best (minimum variance) PWK estimator. Our simulation studies empirically show that the 

proposed PWK estimator outperforms both the HM and IDR estimators with respect to root 

mean square error.

The rest of the article is organized as follows. Section 2 is a review of the HM, GHM and 

IDR methods that motivate the PWK estimator. In Section 3, we develop the PWK estimator 

and its theoretical properties. Additionally, in the class of the general PWK estimator, we 

find the best (minimum variance) PWK estimator and provide a spherical shell approach to 

realize it. In Section 4, an extended general PWK estimator defined on the full support of the 

kernel function is investigated. Besides the theoretical properties, we show that the HM and 

IDR estimators are special cases in this family. In Section 5, we conduct simulation studies 

of a bivariate normal case with the normal-inverse-Wishart prior and a mixture of two 
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bivariate normal distributions to compare the performance and computing time of the HM, 

IDR and PWK estimators. In Section 6, we compare the results and performance of the 

PWK estimator to the methods by Chib (1995) and Chen (2005) for an ordinal probit 

regression model. Moreover, we apply the PWK estimator to the determination of the 

optimal power prior using two Eastern Cooperative Oncology Group (ECOG) clinical trial 

data sets. Finally, we conclude with a discussion in Section 7. The proofs of all theorems are 

given in the Supplementary Web Materials (Wang et al., 2017a).

2 Preliminary

We review several Monte Carlo methods that only require a known kernel function and an 

MCMC sample from the posterior distribution to compute the marginal likelihood. Suppose 

θ is a p-dimensional vector of parameters and D denotes the data. Then, the kernel function 

for the joint posterior density π(θ|D) is q(θ) = L(θ|D)π(θ), where L(θ|D) is the likelihood 

function and π(θ) is a proper prior density. Assume Θ ⊂ Rp is the support of q(θ). The 

unknown marginal likelihood c is defined to be ∫Θq(θ)dθ. The integration is often 

analytically intractable due to complicated kernel structure.

To estimate the normalizing constant c, Newton and Raftery (1994) suggest the following 

equation to motivate the HM method,

1
c = ∫Θ

π(θ)
q(θ)

q(θ)
c dθ . (1)

Let {θt, t = 1, …, T } be an MCMC sample from the posterior distribution π(θ|D) = q(θ)/c. 

The HM estimator is then given by

cHM = 1
1
T ∑t = 1

T 1
L(θt ∣ D)

, (2)

where the prior π(θt) can be viewed as the weight assigned to 1/q(θt). Although it has the 

features of simplicity and asymptotic convergence to the marginal likelihood, the finite 

variance is not guaranteed. Xie et al. (2011) also point out that the HM estimator tends to 

overestimate the marginal likelihood.

Gelfand and Dey (1994) suggest the GHM estimator where π(θ) in (1) is replaced by a 

lighter-tailed density function f(θ) compared to q(θ):

cGHM = 1
1
T ∑t = 1

T f (θt)
q(θt)

. (3)
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By proposing a light-tailed density, the ratio f(θt)/q(θt) can be controlled. Consequently, the 

estimator has finite variance. However, in high dimensional problems, finding a suitable 

density f(θ) may be a challenge.

Petris and Tardella (2003) propose the IDR estimator. They use the difference between a 

perturbed distribution qr(θ), which is inflated in the center of the kernel, and the posterior 

kernel q(θ) as the weight. The perturbed density qr(θ) is defined as

qr(θ) = q(0) if ‖θ‖ ≤ r,
q(w(θ)) if ‖θ‖ > r, (4)

where r is the chosen radius and w(θ) = θ (1 − rp/||θ||p)1/p. It follows,

∫Θ
qr(θ)dθ = ∫

‖θ‖ ≤ r
qr(θ)dθ + ∫

‖θ‖ > r
qr(θ)dθ = q(0)br + c, (5)

where br = Volume of the ball {θ: ||θ|| ≤ r} = πp/2rp/Γ(p/2 + 1). This leads to the following 

equation,

q(0)br + c
c = ∫Θ

qr(θ)
q(θ)

q(θ)
c dθ, (6)

and the IDR estimator is given by

c IDR =
q(0)br

1
T ∑t = 1

T qr(θt)
q(θt)

− 1
. (7)

Under some mild conditions, the estimator is shown to have finite variance by Petris and 

Tardella (2007). However, the method requires a careful selection of radius and unbounded 

support of q(θ). Any bounded parameter must be reparameterized to the full real line. Also, 

in order to have a more efficient estimator, mode finding is essential and standardization of 

an MCMC sample with respect to the mode and the sample covariance matrix is required.

3 A New Monte Carlo Estimator

We first modify (1) and (6) by imposing a working parameter space Ω ⊂ Θ, where Ω = {θ: 

q(θ) is bounded away from zero} to avoid regions with extremely low kernel values. Then 

we assume there is a function h(θ) such that ∫Ω h(θ)dθ = Δ can be evaluated. Consequently, 

we have the identity:
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Δ
c = ∫

Ω
h(θ)
q(θ)

q(θ)
c dθ . (8)

We next partition the working parameter space into K subsets, where the ratio of h(θ) over 

q(θ) has similar values within each subset, to reduce the variance of the Monte Carlo 

estimator. The general form of the PWK estimator with unspecified local weights is 

essentially a weighted average for the harmonic mean estimator for q(θ) with the same 

weights assigned locally to an MCMC sample in a subset.

The working parameter space is essentially the constrained support considered by Robert 

and Wraith (2009) and Marin and Robert (2010). However, we do not require h(θ) to be a 

density function as in GHM or constrained GHM. Consequently, we allow a larger class of 

estimators to be considered.

3.1 General Monte Carlo Estimator

Suppose {A1, …, AK} forms a partition of the working parameter space Ω, where for an 

integer K >0, w1, …, wK are the weights assigned to these K regions, respectively.

Let the weight function be the step function:

h(θ) = ∑
k = 1

K
wk1{θ ∈ Ak} . (9)

So we can evaluate Δ:

Δ = ∫Ω
h(θ)dθ = ∑

k = 1

K
wkV(Ak),

where V (Ak) is the volume of the kth subset in the partition, that is, V (Ak) = ∫Ω 1{θ ∈ 
Ak}dθ.

Using the step function h(.) in (9), the PWK estimator for d ≡ 1/c is given by

d =
1
T ∑t = 1

T ∑k = 1
K wk

q(θt)
1{θt ∈ Ak}

∑k = 1
K wkV(Ak)

. (10)

In order to establish consistency and finite variance of the PWK estimator, we introduce two 

assumptions.

Assumption 1—The volume of each region V (Ak) < ∞ for k = 1, 2, …, K.
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Assumption 2—q(θ) is positive and continuous on Āk, where Āk is the closure of Ak for k 
= 1, …, K.

Theorem 1—Under Assumptions 1 to 2 and certain ergodic (e.g., time-reversible, 
invariant, and irreducible) conditions, d̂ in (10) is a consistent estimator of d. In addition, 
Var(d̂) < ∞.

Note that we consider the estimator for d rather than c because we can obtain an unbiased 

estimator with finite variance for d = 1/c.

Remark 1—Another property of d̂ in (10) is that when a certain full conditional density is 

available, the computation can be lessened. This is often the case in the generalized linear 

model with latent variables or random effects, and in any Gibbs sampler or its hybrid. To be 

specific, let (ϑ1,ϑ2) be 2 blocks of parameters, ϑ1 = (θ1, …, θq)′ and ϑ2 = (θq+1, …, θp)′. 

Assume that a full conditional density, π(ϑ1|D,ϑ2), is available. Then, the p-dimensional 

estimation problem can be reduced to p − q dimensions:

1 = ∫
Rp

q(θ)
c dθ

= ∫
Rp − q∫Rq

q(ϑ2)π(ϑ1 ∣ D, ϑ2)
c dϑ1dϑ2

= ∫
Rp − q

q(ϑ2)
c ∫

Rqπ(ϑ1 ∣ D, ϑ2)dϑ1dϑ2

= ∫
Rp − q

q(ϑ2)
c dϑ2,

where q(ϑ2) = ∫Rq q(θ)dϑ1, which has a closed form expression. Therefore, instead of 

investigating the kernel q(θ), we can work on the kernel q(ϑ2). In this case, (10) becomes

d =

1
T ∑t = 1

T ∑k = 1
K wk

q(ϑ2t
)1{ϑ2t

∈ Bk}

∑k = 1
K wkV(Bk)

,

where {B1, …, BK} is a partition of the working parameter space Ω2,Ω2 ⊂ Θ2, which is the 

support of q(ϑ2), and V (B1), …, V (BK) are the corresponding volumes.

3.2 The Optimal Monte Carlo Estimation

Our next step is to find the optimal weight wk in the class of PWK estimators (10), 

motivated by Chen and Shao (2002).

Assume {θt, t = 1, …, T } is an MCMC sample from the posterior distribution π(θ|D). Let 

wk
∗ = wk /[∑k = 1

K wkV(Ak)] and αk = E[(1/q2(θ))1{θ ∈ Ak}]. Write d t = ∑k = 1
K wk

∗

q(θt)
1{θt ∈ Ak}

such that d = 1
T ∑t = 1

T d t. Then, we have Var(d t) = ∑k = 1
K wk

∗ 2αk − 1/c2.
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Theorem 2—Letting wk, opt
∗ = V(Ak)/{αk[∑k = 1

K V2(Ak)/αk]} for k = 1, …, K, we have 

Var
wk, opt

∗ (d t) = 1/[∑k = 1
K V2(Ak)/αk] − 1/c2, and Var

wk, opt
∗ (d t) ≤ Var

wk
∗(d t) for any weight 

function wk
∗( . ) defined on each Ak.

Remark 2—In practice, it is quite difficult to estimate the second moment αk. A very large 

sample size is required in order to obtain an accurate estimate of αk. However, the results 

shown in Theorem 2 shed light on the choices of A1, …, AK and wk. First, it is only required 

that wk be proportional to V (Ak)/αk. Second, if q(θ) is roughly constant over Ak, then 

αk ≈ V(Ak)/[q(θk
∗)c], where θk

∗ ∈ Ak. Thus, in this case, we can simply choose wk = q(θk
∗) and d̂ 

in (10) reduces to

d =
1
T ∑t = 1

T ∑k = 1
K q(θk

∗)
q(θt)

1{θt ∈ Ak}

∑k = 1
K q(θk

∗)V(Ak)
. (11)

Remark 3—Following on Remark 1, when a full conditional density π(ϑ1|D,ϑ2) is 

available, the estimator d̂ in (11) reduces further to

d =

1
T ∑t = 1

T ∑k = 1
K

q(ϑ2k
∗ )

q(ϑ2t
) 1{ϑ2t

∈ Bk}

∑k = 1
K q(ϑ2k

∗ )V(Bk)
.

Remark 4—In practice, the marginal likelihood is often reported in log scale. Considering 

the dependence within the MCMC sample, we use the Overlapping Batch Statistics (OBS) 

of Schmeiser et al. (1990) to estimate the Monte Carlo (MC) standard error of −log(d̂). Let 

η̂b denote an estimate of the reciprocal of the marginal likelihood in log scale using the bth 

batch, {θt, t = b, b + 1, …, b + B − 1}, of the MCMC sample for b = 1, 2, …, T − B + 1, 

where B < T is the batch size. Then, the OBS estimated MC standard error of η̂ = −log(d̂) is 

given by

Var(η) = B
T − B

∑b = 1
T − B + 1 (ηb − η)2

T − B + 1

1
2
, (12)

where η = ∑b = 1
T − B + 1ηb/(T − B + 1) and a batch size B is suggested to be 10 ≤ T/B ≤ 20 in 

Schmeiser et al. (1990).
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3.3 Construction of the Partition with Subsets A1,A2, …, AK

In order to make q(θ) roughly constant over Ak for each k, which is a sufficient condition for 

the PWK estimator in (11) to be optimal, we provide the following rings approach for 

achieving it:

Step 1: Assume Θ is Rp; if not, then a transformation ϕ = G1(θ) is needed so that the 

parameter space of ϕ is Rp.

Step 2: Use the MCMC sample to compute the mean ϕ̄ and the covariance matrix Σ̂ 

of ϕ and then standardize ϕ by ψ = G2(ϕ) = Σ̂−1/2(ϕ − ϕ̄).

Step 3: Construct a working parameter space for ψ by choosing a reasonable radius r 
such that ||ψ|| < r for most of the standardized MCMC sample.

Step 4: Partition the working parameter space into a sequence of K spherical shells 

such that Ak = {ψ: r(k − 1)/K ≤ ||ψ|| < rk/K}, with k = 1, …, K.

Step 5: Select a ψk
∗ in Ak as a representative point, for example a ψk

∗ such that 

‖ψk
∗‖ = r[k /K − 1/(2K)].

Sept 6: Compute the new kernel value q∼(ψk
∗) = q(G1

−1(G2
−1(ψk

∗))) ∣ J ∣
ψ = ψk

∗, where J = 

|∂θ/∂ϕ||∂ϕ/∂ψ|. Also compute the new kernel value q̃(ψt), t = 1, …, T, for the 

standardized MCMC sample.

Step 7: Estimate d = 1/c by

d =

1
T ∑t = 1

T ∑k = 1
K q∼(ψk

∗)
q∼(ψt)

1{ψt ∈ Ak}

∑k = 1
K q∼(ψk

∗)V(Ak)
, (13)

where V (Ak) = {(rk/K)p − [r(k − 1)/K]p}πp/2/Γ(p/2 + 1).

Remark 5—When K is sufficiently large, q̃(ψt) in (13) will be roughly constant over Ak 

and the PWK estimate will be close to optimal. In addition, each kernel value q̃(ψt) is 

simply the original kernel value q(θt) multiplied by the absolute value of the Jacobian 

function.

4 Extension of the General PWK Estimator

In this section, we generalize the PWK estimator from the working parameter space to the 

full support space and from the locally constant weight function to a general weight function 

of θ. We call this class extended PWK (ePWK) estimators.

Suppose {A1, …, AK*} is a partition of Θ, and wk(θ) is a weight function defined on Ak. We 

need the following assumption to define this ePWK class:
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Assumption 3—The weight function wk is integrable, that is, ∫ |wk(θ)|dθ < ∞ for k = 1, 
…, K*.

Under Assumption 3, the extended form of the general PWK in (10) is given by

d∗ =
1
T ∑t = 1

T ∑k = 1
K∗ wk(θt)

q(θt)
1{θt ∈ Ak}

∑k = 1
K∗

∫ Ak
wk(θ)dθ

. (14)

Theorem 3—Under Assumption 3 and q(θ) > 0, then the ePWK estimator d*̂ in (14) is a 
consistent estimator of d. In addition, if ∫Ak [wk(θ)2/q(θ)]dθ < ∞ for k = 1, …, K*, then 
Var(d̂*) < ∞.

Remark 6—It is easy to see that d̂ in (10) is a special case of d̂* in (14). When K* = K + 1 

and each fixed weight wk is assigned to an MCMC sample in each region Ak except wK* = 

0, d*̂ reduces to d̂.

Remark 7—The HM estimator is another special case of d̂* in (14). When using the prior 

π(θi) as weights, the inverse of d̂* is the HM estimator.

d∗ ∣wk(θ) = π(θ) =

1
T ∑t = 1

T ∑k = 1
K∗ π(θt)

q(θt)
1{θt ∈ Ak}

∑k = 1
K∗

∫ Ak
π(θ)dθ

=

1
T ∑t = 1

T π(θt)
q(θt)

∑k = 1
K∗

1{θt ∈ Ak}

∫ Θπ(θ)dθ

= 1
T ∑

t = 1

T 1
L(θt ∣ D) .

Remark 8—In addition, d̂* in (14) includes the IDR estimator as a special case. Let K* = 2, 

A1 = {θ: ||θ|| ≤ r}, w1(θ) = q(0) − q(θ), A2 = {θ: ||θ|| > r}, and w2(θ) = qr(θ) − q(θ). We can 

show that ∫A1 w1(θ)dθ = q(0)br − ∫A1 q(θ)dθ and ∫A2 w2(θ)dθ = c − ∫A2 q(θ)dθ, implying 

∑k = 1
2 ∫ Ak

wk(θ)dθ = q(0)br. Thus, the inverse of d̂* reduces to the IDR estimator. Note w1(θt) 

and w2(θt) in IDR are allowed to be negative.

Remark 9—When the posterior kernel q(.) after the transformation is roughly symmetric, 

the constant weight wk assigned to partition set Ak constructed using the rings approach 

discussed in Section 3.3 often leads to an efficient PWK estimator in (10) as empirically 
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demonstrated in Section 5.1 and Section 6. However, when the posterior kernel q(.) is very 

skewed or multimodal, the constant weight wk would result in an inefficient PWK estimator. 

For such a complex case, we can apply the ePWK estimator in (14). The functional weight 

wk(θ) can be constructed as follows. We first divide the kth ring Ak into mk subsets Ak1, …, 

Akmk based on mk slices such that Ak = ∪ℓ = 1
mk Akℓ and Ak1, …, Akmk are disjoint, and then 

assign wk(θ) = q(θkℓ
∗ ) for θ ∈ Akℓ, where θkℓ

∗  is a representative point in Akℓ, for ℓ = 1, …, mk. 

In Section 5.2, we apply this version of the ePWK estimator to an example involving a 

bimodal distribution to examine its empirical performance.

5 Simulation Studies

5.1 A Bivariate Normal Example

We apply the PWK estimator for computing the normalizing constant of the posterior of the 

parameters of a bivariate normal distribution with the normal-inverse-Wishart prior. We 

consider both location and scale parameters to be unknown. Including the scale parameters 

makes computation challenging. Let y = (y1, y2, …, yn)′ be n observations from a bivariate 

normal distribution,

yi ∣ μ, ∑ ∼i . i . d . N(μ, ∑), i = 1, …, n,

where μ ∈ R2 and Σ are unknown parameters. The likelihood function is

L(μ, ∑ ∣ y) = (2π)−n ∣ ∑ ∣−n/2 exp − 1
2 ∑

i = 1

n
(yi − μ)′∑−1(yi − μ) .

The prior for μ and Σ is specified as follows:

μ ∣ ∑ N(μ0, ∑/κ0) and ∑ IWν0
(Λ0

−1),

with hyperparameters μ0, κ0, ν0, and Λ0. Then, the joint posterior kernel is given by

q(μ, ∑) = L(μ, ∑ ∣ y)π(μ ∣ ∑)π(∑)

= (2π)−n ∣ ∑ ∣
−(n + ν0 + 2)/2 − 11

γ exp − 1
2 ∑

i = 1

n
(yi − μ)′∑−1(yi − μ) × exp

−
κ0
2 (μ − μ0)′∑−1(μ − μ0) exp − 1

2trace(Λ0∑−1) ,
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with γ = 2
ν0 + 1

πΓ2(ν0/2) ∣ Λ0 ∣
−ν0/2

κ0
−1, where Γ2(ν0/2) = π1/2Γ(ν0/2)Γ(ν0/2 − 1/2). Under 

this setting, the analytical form of the normalizing constant is available as follows:

c = 1
πn

Γ2(νn/2)
Γ2(ν0/2)

∣ Λ0 ∣
ν0/2

∣ Λn ∣
νn/2

κ0
κn

, (15)

where Λn = Λ0 + ∑i = 1
n (yi − y)(yi − y)′ +

κ0n

κ0 + n(μ0 − y)(μ0 − y)′, κn = κ0 + n, and νn = ν0 + 

n. We set the hyperparameters μ0 = (0, 0)′, k0 = 0.01, ν0 = 3, and Λ0 = 1 0.7
0.7 1 . We 

generated a random sample y with n = 200 from a bivariate normal distribution with μ = (0, 

0) and ∑ = 1 0.7
0.7 1 . The corresponding sample mean ȳ was (−0.029, 0.040)′, and the 

sample variance–covariance matrix S was 
201.987 143.330
143.330 192.365 . Using (15), the marginal 

likelihood in log scale is −507.278. In this example, in order to apply the spherical shell 

approach in Section 3.3, a transformation of Σ was needed. Here, we used the log 

transformation for each variance parameter and the Fisher z-transformation for the 

correlation coefficient parameter to have unbounded support for each of them. Then, we 

standardized each transformed MCMC sample from its transformed sample mean and 

standard deviation. In the new parameter space, we constructed the working parameter space 

and its partition by choosing r = 1.5, 2, or 2.5 and K = 10, 20, or 100. After selecting a 

representative point in each spherical shell, we estimated d = 1/c using (13). We compare our 

method to the HM and IDR methods based on 1,000 independent MCMC samples with T = 

1, 000 or T = 10, 000 in Table 1. Let d̂ℓ be the estimate of d based on the ℓth MCMC sample 

for ℓ = 1, 2, …, 1, 000. Then, the simulation estimate (Mean), the MC standard error 

(MCSE), and the root mean square error (RMSE) of the estimates in log scale are defined as 

log c = 1
1000 ∑ℓ = 1

1000 ( − log dℓ), { 1
1000 − 1 ∑ℓ = 1

1000 ( − log dℓ − log c)2}
1/2

, and 

{ 1
1000 ∑ℓ = 1

1000 ( − log dℓ − log c)2}
1/2

, respectively.

Table 1 shows the results, where the average computing time (in seconds) per MCMC 

sample on an Intel i7 processor machine with 12 GB of RAM memory using a Windows 8.1 

operating system is given in the last column. From Table 1, we see that (i) PWK has the best 

performance with much smaller MCSE and RMSE than HM and IDR under both T = 1, 000 

and T = 10, 000; (ii) when T increases, the MCSE and the RMSE of the PWK estimator 

become smaller under all choices of r and K; (iii) the performance of the HM estimator 

slightly improves but the IDR estimator does not when T increases; and (iv) the computing 

time of the PWK estimator is comparable to that of the HM estimator while the IDR 

estimator requires the most computing time. It is interesting to mention that the MCSE and 

the RMSE of the PWK estimator are very similar for all choices of r and K under each T, 

implying the robustness of the PWK estimator with respect to the specification of the 

working parameter space and the number of partition subsets.
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In this example, we also examine the performance of ePWK by adding a subset AK+1 = Θ ∩ 

Ωc = {θ: ||θ|| > r} such that K* = K + 1 and ∪k = 1
K∗

Ak = Θ. We further specify 

wK + 1(θ) = q(θK + 1
∗ )g(θ) for θ ∈ AK+1, where θK + 1

∗  is a point on the boundary of AK+1 and

g(θ) = 1
(2π)2.5 exp − θ′θ

2 / 1 − P(χ(5)
2 ≤ r2) .

Under this specification, we have ∫ AK + 1
wK + 1(θ)dθ = q(θK + 1

∗ ). Holding the other subsets 

A1, …, AK and their corresponding weights the same as for PWK, the resulting values of 

MCSE and RMSE by ePWK are 0.06332 and 0.06579 when T = 1, 000, K = 100, and r = 

1.5; 0.05167 and 0.05420 when r = 2.0; and 0.05500 and 0.05772 when r = 2.5. Compared 

to the results of PWK (0.06375 and 0.06621 when r = 1.5; 0.05168 and 0.05420 when r = 

2.0; and 0.05499 and 0.05772 when r = 2.5), ePWK performs very similarly to PWK, which 

is expected since the posterior kernel has light tails and very low values on AK+1.

To evaluate the effect of a vague prior on the precision of the PWK estimator, we extend our 

simulation study by considering different values of hyperparameters κ0 and ν0. Note that the 

value of log c in Table 1 is computed under κ0 = 0.01 and ν0 = 3, which corresponds to a 

relatively vague prior for (μ, Σ). Table 2 shows the simulation results of the PWK estimators 

with r = 2 and K = 100 for (κ0, ν0) = (0.0001, 3), (1, 3), and (1, 10) in addition to (0.01, 3). 

From Table 2, we see that the MCSE values under these different values of (κ0, ν0) are 

almost the same while the RMSE values are comparable except the last one with (κ0, ν0) = 

(1, 10), in which the RMSE values are slightly larger.

5.2 A Mixture of Two Bivariate Normal Distributions Example

To evaluate the performance of ePWK, we consider the two-dimensional normal mixture in 

Chen et al. (2006)

π(μ) = ∑
j = 1

2 1
2

1
2π ∣ ∑ j ∣−1/2 exp − 1

2(μ − μ0 j)′∑ j
−1(μ − μ0 j) , (16)

where μ = (μ1, μ2)′, μ01 = (0, 0)′, μ02 = (2, 2)′ and ∑ j =
σ1

2 σ1σ2ρ j

σ1σ2ρ j σ2
2  with σ1 = σ2 = 1, 

ρ1 = 0.99, and ρ2 = −0.99. Figure 1(a) is a scatter plot of a random sample with T = 10, 000 

generated from (16). Based on the random sample, we apply ePWK to estimate the 

normalizing constant in (16), which is known to be 1. Due to the high but opposite 

correlations (i.e., ρ1 = 0.99 and ρ2 = −0.99), π(μ) cannot be homogeneous over a partition 

ring formed by the spherical shell approach in Section 3.3. To circumvent this difficulty, 

following Remark 9, we additionally slice the existing partition rings by dividing them 

equally along the angle from 0 to 360 degrees as shown by the dashed lines in Figure 1(b), 
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where the center of the circle is the sample posterior mean (denoted as μ̂). Now, the 

heterogeneity of π(μ) over each partition subset is effectively eliminated by this additional 

slicing step. We note that this version of ePWK is the same as PWK except for additional 

slicing over the partition rings.

Table 3 shows the results of HM, IDR, and ePWK estimators based on 1,000 independent 

random samples with T = 1, 000 or T = 10, 000 from (16). For ePWK, we consider different 

values of K (the number of rings) with the same mk = m (the number of slices) for k = 1, …, 

K and r (75%, 90%, or 95% × max1≤t≤T ||μt − μ̂||). We use the same values of r for both IDR 

and ePWK. From Table 3, we see that (i) the RMSE values of the ePWK are considerably 

smaller than those of HM and IDR; (ii) the performance of ePWK improves when the 

sample size (T) or the number of rings (K) increases; and (iii) ePWK takes slightly longer 

computing time than HM and IDR.

Next, we consider a more challenging case, where μ02 is replaced by (5, 5)′ so that the two 

modes are much further away from each other. Figure 2(a) is a scatter plot of a random 

sample with T = 10, 000 and Figure 2(b) shows the partition subsets of the chosen working 

parameter space.

Table 4 summarizes the simulation results with the same simulation setting as before. We see 

that ePWK outperforms both HM and IDR under this more challenging case. As expected, 

the RMSE values in Table 4 are larger than those in Table 3 for all three methods. However, 

the RMSE values of the ePWK estimator are still quite small when K and T are reasonably 

large.

6 Application of the PWK to Real Data Examples

6.1 The Ordinal Probit Regression Model

In the first example, we apply the PWK method to computing the marginal likelihood under 

the ordinal probit regression model. Let y = (y1, y2, …, yn)′ denote the vector of observed 

ordinal responses, each is coded as one value from 0, 1, …, J −1, X denote the n × p 
covariate matrix with the ith row equal to the covariate of the ith subject xi′, and u = (u1, u2, 

…, un)′ denote the vector of latent random variables. We consider the following hierarchical 

model as in Albert and Chib (1993) such that

yi = j, if γ j ≤ ui < γ j + 1

and

ui = xi′β + εi,

where j = 0, 1, …, J − 1, β is a p-dimensional vector of regression coefficients, and 

εi ∼i . i . d . N(0, σ2). Based on the reparameterization of Nandram and Chen (1996), the 
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cutpoints for dividing the latent variable ui can be specified as −∞ = γ0 < γ1 = 0 ≤ γ2 ≤ ⋯ ≤ 

γJ−1 = 1 < γJ = ∞. Under this setting, the likelihood function is given in Chen (2005)

L(θ ∣ D) = ∏
i = 1

n
Φ

γyi + 1
− xi′β

σ − Φ
γyi

− xi′β

σ ,

where θ = (β′, σ, γ2, …, γJ−2)′ if J ≥ 4, otherwise, θ = (β′, σ)′, and Φ(.) is the cumulative 

standard normal distribution function. Then, we specify normal, inverse gamma, and 

uniform priors for the parameters β, σ2, and γ, respectively.

To examine the performance of the PWK estimator under this model, we consider the 

prostate cancer data of n = 713 patients as in Chen (2005). In this data set, Pathological 

Extracapsular Extension (PECE, y) is a clinical ordinal response variable, and Prostate 

Specific Antigen (PSA, x1), Clinical Gleason Score (GLEAS, x2), and Clinical Stage 

(CSTAGE, x3) are three covariates. PECE takes values of 0, 1, or 2, where 0 means that 

there is no cancer cell present in or near the capsule, 1 denotes that the cancer cells extend 

into but not through the capsule, and 2 indicates that cancer cells extend through the capsule. 

PSA and GLEAS are continuous variables while CSTAGE is a binary outcome, which was 

assigned to 1 if the 1992 American Joint Commission on cancer clinical stage T-category 

was 1, and assigned to 2 if the T-category was 2 or higher.

In this application, J = 3 so that all four cutpoints can be assigned to fixed values: −∞ = γ0 

< γ1 = 0 < γ2 = 1 < γ3 = ∞. Then, the prior distribution is specified as

π(θ) = π(β ∣ σ2)π(σ2),

where β|σ2 ~ N(0, 10σ2I4) and σ2 ~ IG(a0 = 1, b0 = 0.1). The density function of an inverse 

gamma distribution IG(a0, b0) is proportional to (σ2)−(a0+1) exp(−b0/σ2).

The marginal likelihood is not analytically available. Nevertheless, the estimates of this are 

obtained in Table 1 of Chen (2005) using the method proposed by Chen (called Chen’s 

method) and the method proposed by Chib (1995) (called Chib’s method). Chen’s method 

needs only a single MCMC sample from the joint posterior distribution π(β, σ2|D). 

However, Chib’s method with two blocks requires an additional MCMC sample from the 

conditional posterior distribution π(σ2|β*,D), where β* is the posterior mean of β. We 

compare PWK to these two methods under the same MCMC sample sizes T = 2, 500, or 5, 

000 as in Chen (2005), except that Chib’s method doubles them.

For the PWK, we apply a log transformation for σ2. Then, after the standardization of the 

transformed MCMC sample, we consider K = 10, 20, and 100 and r = 0.75 χ5, 0.95
2 , χ5, 0.95

2 , 

and 1.25 χ5, 0.95
2  to investigate robustness of the PWK estimates with respect to these 

choices. We note that χ5, 0.95
2  is the square-root of the 95th percentile of the Chi-square 
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distribution with p = dim(θ) = 5 degrees of freedom, which is derived by computing the 

norm of p independent standard normal distributions as in Yu et al. (2015). Table 5 shows 

the PWK estimates and the corresponding estimated MCSE (eMCSE) under the MCMC 

samples with T = 2,500 and 5,000, where eMCSE is computed using (12) with T/B = 10. We 

note that we use the same MCMC sample sizes as in Chen (2005). The results show the 

PWK estimators are relatively robust to the choice of the radius r and the number K of 

partition subsets.

From Table 1 of Chen (2005), the estimates of log c and eMCSE’s are −758.71 and 0.038 

based on Chen’s method and −758.67 and 0.037 based on Chib’s method for T = 2, 500; and 

−758.71 and 0.024 based on Chen’s method and −758.70 and 0.023 based on Chib’s method 

for T = 5, 000. We see from Table 5 that the PWK estimates of log c are similar to those 

under both Chen’s and Chib’s methods but with smaller eMCSE’s under the MCMC 

samples with T = 2,500 and 5,000, respectively. For instance, the PWK estimates of log c 
and the corresponding eMCSE’s are −758.70 and 0.020 for T = 2, 500 and −758.70 and 

0.016 for T = 5, 000 when r = χ5, 0.95
2  and K = 100. Thus, the PWK yields a slightly more 

precise estimate of log c than the other two methods.

6.2 Analysis of ECOG Data

In this subsection, we apply the PWK estimator to the problem of determining the power 

prior based on historical data for the current analysis. Assume we have conducted two 

clinical trials for the same objective. A natural way to combine these two trials is to consider 

the power prior setting, which allows us to borrow information from the historical data to 

construct the prior for the current analysis. Assume we have an initial prior for the unknown 

parameters that is determined before observing the historical data. To quantify the 

heterogeneity between the current data and the historical data, the power prior weights the 

historical likelihood function by the power a0, where 0 ≤ a0 ≤ 1, to indicate the extent to 

which the historical likelihood is incorporated into the initial prior. Our objective is to find 

the optimal a0 which maximizes the marginal likelihood for the current data. Ibrahim et al. 

(2015) point out the difficulty of finding this solution except for normal linear regression 

models. Therefore, they resort to using the deviance information criterion (DIC) and the 

logarithm of pseudo-marginal likelihood (LPML) criterion for constructing the parameter a0 

of the power prior in Ibrahim et al. (2012, 2015). To evaluate DIC, we need to plug the 

MCMC sample into the sum of the log likelihood over all data points; to evaluate LPML, we 

need to take the sum of the log transformation of each CPO, where the ith CPO is the 

harmonic mean of the ith likelihood evaluated at the MCMC sample from the posterior 

distribution based on the full sample. Both methods yield much less computational burden 

than the marginal likelihood method. We will show how the PWK estimator can circumvent 

the computational burden in evaluating the marginal likelihood.

The effectiveness of Interferon Alpha-2b (IFN) in immunotherapy for melanoma patients 

has been evaluated by two observation-controlled clinical trials: Eastern Cooperative 

Oncology Group (ECOG) phase III, E1684, followed by E1690. The first trial E1684 was 

conducted with 286 patients randomly assigned to either IFN or Observation. The IFN arm 

demonstrated a significantly better survival curve, but with substantial side effects due to 
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high dose regimen. To confirm the results of the E1684 and the benefit of IFN at a lower 

dosage, a later trial E1690 was conducted with three arms: high dose IFN, low dose IFN, 

and Observation. We use the data in E1684 as the historical data and a subset (high dose arm 

and Observation) of the E1690 trial as our current data. There are 427 patients in this subset.

For n = 427 patients in the current trial (E1690), we follow the model in Chen et al. (1999). 

Let yi denote the relapse-free survival time for the ith patient, νi denote the censoring status, 

which is equal to 1 if yi is a failure time and to 0 if it is right censored, xi = (1, trti)′ denote 

the vector of covariates, where trti = 1 if the ith patient received IFN and trti = 0 if the ith 

patient was assigned to Observation. Then, the likelihood function is given by

L(β, λ ∣ D) = ∏
i = 1

n
exp (xi′β) f (yi ∣ λ)

νi exp { − exp (xi′β)F(yi ∣ λ)}, (17)

where D = (n, y, ν, X) is the observed current data, β = (β0, β1)′, and F(y|λ) is the 

cumulative distribution function and f(y|λ) is the corresponding density function. In (17), we 

use the same piecewise exponential model for F(y|λ) as Ibrahim et al. (2012), which is given 

by

F(y ∣ λ) = 1 − exp −λ j(y − s j − 1) − ∑
g = 1

j − 1
λg(sg − sg − 1) ,

where sj−1 ≤ y < sj, s0 = 0 < s1 < s2 < … < s5 = ∞, and λ = (λ1, …, λ5)′.

For n0 = 286 patients in the historical trial (E1684), we attempt to extract some of its 

information to set up the prior distribution for the current analysis. Similarly, we let y0i 

denote the survival time for the ith patient, ν0i denote the censoring status, and x0i = (1, trt0i)

′ denote the vector of covariates. So D0 = (n0, y0, ν0, X0) is the observed historical data. 

Assume π0(β, λ) is an initial prior. Here, we specify an initial proper prior N(0, 100I2) for β 
and Exp(λ0 = 1/100) (λ0: rate parameter) for each λj, j = 1, …, 5, to come close to the flat 

prior in Ibrahim et al. (2012). To update the initial prior with the historical data, the power 

prior is intuitively set as the initial prior π0 multiplied by the historical likelihood function 

with power a0 as follows:

π(β, λ ∣ D0, a0) ∝ ∏
i = 1

n0
exp (x0i′ β) f (y0i ∣ λ)

ν0i exp { − exp (x0i′ β)F(y0i ∣ λ)}

a0

π0(β, λ),

(18)

Wang et al. Page 16

Bayesian Anal. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where π(β, λ|D0, a0) is called the power prior and 0 ≤ a0 ≤ 1. In this setting, we can see 

when a0 = 0, the power prior is exactly equal to the initial prior, which integrates to be 1, and 

when a0 ≠ 0, the power prior is equal to the right-hand side kernel function in (18) divided 

by c0 = ∫ L(β, λ|D0)a0π0(β, λ)dβdλ. Combining the likelihood function in (17) and the 

power prior in (18), the posterior distribution of β and λ given (D, D0, a0) will be

π(β, λ ∣ D, D0, a0) ∝ L(β, λ ∣ D)π(β, λ ∣ D0, a0) . (19)

In this framework, we compare the marginal likelihoods of L(β, λ|D)π(β, λ|D0, a0) for 0 ≤ 

a0 ≤ 1. The one with the highest marginal likelihood is our final model, and its 

corresponding a0 determines the power prior.

However, as we point out earlier, except for a0 = 0, π(β, λ|D0, a0) is known up to a 

normalizing constant c0. Hence, a two-step evaluation is needed to obtain the marginal 

likelihood:

c = ∫ L(β, λ ∣ D)π(β, λ ∣ D0, a0)dβdλ

=
∫ L(β, λ ∣ D)L(β, λ ∣ D0)

a0π0(β, λ)dβdλ

∫ L(β, λ ∣ D0)
a0π0(β, λ)dβdλ

=
c1
c0

=
d0
d1

.

We apply the PWK to estimate the numerator, L(β, λ|D)L(β, λ|D0)a0π0(β, λ), and the 

denominator, L(β, λ|D0)a0π0(β, λ), respectively.

For each choice of a0 with an increment of 0.1 from 0 to 1, an MCMC sample size is fixed at 

10,000. The log transformation of each λj is needed. After the standardization of the 

transformed MCMC sample, we choose the maximum radius r = χ7, 0.95
2  due to p = 7, and 

the number of spherical shells K = 100. By (13) and (12), we can obtain the marginal 

likelihood estimate and its eMCSE for each chosen a0. We summarize the results in Table 6. 

Table 6 also includes the PWK estimates under r = 0.75 χ5, 0.95
2 , 1.25 χ5, 0.95

2  and K = 10, 20 

to investigate the robustness of the PWK method.

Note the marginal likelihood function c can be shown to be continuous in a0. Therefore, 

from Table 6, we see that the best choice of a0 is between 0.5 and 0.6 under the marginal 

likelihood criterion. This result is quite comparable to the result of a0 = 0.4 in Ibrahim et al. 

(2012) obtained by DIC and LPML criteria, where a suitable marginal likelihood 

computation was not accessible. We also observe that the results are quite robust to the 

different values of r and K, and all point out that the best choice of a0 is between 0.5 and 0.6.
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7 Discussion

The marginal likelihood is often analytically intractable due to a complicated kernel 

structure. Nevertheless, an MCMC sample from the posterior distribution is readily available 

from Bayesian computing software. Additionally, the likelihood values evaluated at the 

MCMC sample are output in a file. Consequently, we can produce kernel values easily using 

the output and the prior function. In this paper, we propose a new algorithm, PWK, for 

estimating the marginal likelihood based on this single MCMC sample and its corresponding 

kernel values. Unlike some existing algorithms requiring knowledge of the structure of the 

kernel, we only need to know the kernel values evaluated at the MCMC sample. Therefore, 

our algorithm can be applied to Bayesian model selection, assessing the sensitivity of 

conclusions to the prior distribution, and Bayes hypothesis tests. We implement our 

methodology using the R programming language (R Core Team, 2015). The R codes along 

with README files are available as Online Supplementary Materials (Wang et al., 2017b).

We extend PWK to handle the parameter space with the full support (ePWK) and we show 

that HM and IDR are special cases of ePWK. We conduct a simulation study from a 

bivariate normal distribution with 5 parameters in a Bayesian conjugate prior inference 

problem to compare our estimator to HM and IDR; our results show that PWK has the 

smallest empirical MCSE and RMSE. The computation time for our method is only slightly 

longer than that for the HM which indicates our spherical shell partition approach is very 

efficient. We conduct another simulation study for a mixture of two bivariate normal 

distributions to illustrate the ePWK estimator, which is obtained by additionally slicing the 

partition rings in the partition step of the PWK method. We show that the ePWK method 

reduces the MCSE and RMSE by a great deal when compared to the HM and IDR methods 

at the cost of slightly more computation time.

In example analyses of real data, we first consider an ordinal probit regression model, and 

compare our method to that in Chib (1995) and Chen (2005) with the same MCMC sample 

size for Chen’s method (Chib’s method requires twice this sample size). We find the three 

methods produce comparable estimates for the marginal likelihood and the PWK method 

produces the smallest eMCSE. In the second example, we consider a cure rate survival 

model with the piecewise constant baseline hazard function and a power prior construction 

based on two clinical trial data sets. We obtain the optimal power prior using the marginal 

likelihood criterion as opposed to the DIC and LPML methods considered by Ibrahim et al. 

(2012). We obtain similar results, except that the PWK approach indicates more borrowing 

of the historical data.

In unimodal problems, we suggest using the square root of the 95th percentile in a Chi-

square distribution with p degrees of freedom as a guide to choosing a value for the radius r 
for constructing the working parameter space of the standardized MCMC sample. This is 

because, after standardizing the MCMC sample, the marginal distribution of each parameter 

is approximately standard normal. Although the results are quite robust to the choices of r as 

shown in simulation and case studies, using the Chi-square distribution for guidance ensures 

that we make use of most of the MCMC sample and avoid the region with posterior density 

close to 0. For multimodal problems, we suggest using 95% × max1≤t≤T ||μt − μ̂|| as a guide 
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value for constructing the working parameter space of the transformed MCMC sample. 

Since this approach may result in many partition subsets with extremely small posterior 

density in the working parameter space, we can use the spherical rings approach as 

demonstrated in Section 5.2 to obtain the homogeneity of the MCMC sample in each subset. 

This new partition approach can also be extended to a p-dimensional problem (p > 2) by 

introducing another p − 2 angular coordinates as in Lehnen and Wesenberg (2003) and 

slicing them as in Section 5.2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Forming the working parameter space and its partition for a mixture normal distribution with 

means (0,0) and (2,2).
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Figure 2. 
Forming the working parameter space and its partition for a mixture normal distribution with 

means (0,0) and (5,5).
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