1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Bayesian Anal. Author manuscript; available in PMC 2018 June 01.

-, HHS Public Access
«

Published in final edited form as:
Bayesian Anal. 2018 June ; 13(2): 311-333. d0i:10.1214/17-BA1049.

A New Monte Carlo Method for Estimating Marginal Likelihoods

Yu-Bo Wang’”, Ming-Hui Chen', Lynn Kuo*, and Paul O. Lewis$
*Department of Statistics, University of Connecticut, Storrs, CT 06269, USA

TDepartment of Statistics, University of Connecticut, Storrs, CT 06269, USA
*Department of Statistics, University of Connecticut, Storrs, CT 06269, USA

$Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269,
USA

Abstract

Evaluating the marginal likelihood in Bayesian analysis is essential for model selection.
Estimators based on a single Markov chain Monte Carlo sample from the posterior distribution
include the harmonic mean estimator and the inflated density ratio estimator. We propose a new
class of Monte Carlo estimators based on this single Markov chain Monte Carlo sample. This class
can be thought of as a generalization of the harmonic mean and inflated density ratio estimators
using a partition weighted kernel (likelihood times prior). We show that our estimator is consistent
and has better theoretical properties than the harmonic mean and inflated density ratio estimators.
In addition, we provide guidelines on choosing optimal weights. Simulation studies were
conducted to examine the empirical performance of the proposed estimator. We further
demonstrate the desirable features of the proposed estimator with two real data sets: one is from a
prostate cancer study using an ordinal probit regression model with latent variables; the other is for
the power prior construction from two Eastern Cooperative Oncology Group phase 11 clinical
trials using the cure rate survival model with similar objectives.

Keywords
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1 Introduction

The Bayes factor quantifying evidence of one model over a competing model is commonly
used for model comparison or variable selection in Bayesian inference. The Bayes factor is a
ratio of two marginal likelihoods, where the marginal likelihood is essentially the average fit
of the model to the data. However, the integration for the marginal likelihood is often
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analytically intractable due to the complex kernel (product of likelihood and prior) structure.
To deal with this computational problem, several Monte Carlo methods have been
developed. They include the importance sampling (1S) of Geweke (1989), the harmonic
mean (HM) of Newton and Raftery (1994) and its generalization (GHM) by Gelfand and
Dey (1994), the serial approaches of Chib (1995) and Chib and Jeliazkov (2001), the inflated
density ratio method (IDR) of Petris and Tardella (2003) and Petris and Tardella (2007), the
thermodynamic integration (TI) of Lartillot and Philippe (2006) and Friel and Pettitt (2008),
the constrained GHM estimator with the highest posterior density (HPD) region of Robert
and Wraith (2009) and Marin and Robert (2010), and the steppingstone sampling of Xie et
al. (2011) and Fan et al. (2011). Under some mild conditions, they are all shown to be
asymptotically convergent to the marginal likelihood by the ergodic theorem. They vary in
using Monte Carlo samples or kernels in the Monte Carlo integration.

We assume only a single Markov chain Monte Carlo (MCMC) sample from the posterior
distribution, which may be readily available from standard Bayesian software, and the
known kernel function for computing the marginal likelihood. The HM and IDR estimators
are the only existing methods that need only these two minimal assumptions. The main
difference between the HM and the IDR estimators lies in the different weights assigned to
the inverse of the kernel function. The former uses the prior function as a weight, while the
latter uses the difference between a perturbed density and its kernel function. Although the
HM estimator has been used in practice because of its simplicity, it can be unstable when the
prior has heavier tails than the likelihood function and it is known to overestimate the
marginal likelihood (Lartillot and Philippe, 2006; Xie et al., 2011).

While the IDR estimator has better control over the tails of the kernel than the HM
estimator, it requires reparameterization, posterior mode calculation, and a careful selection
of radius. Under the aforementioned two minimal assumptions, we extend the HM and IDR
methods to develop a new Monte Carlo method, namely, the partition weighted kernel
(PWK) estimator. The PWK estimator is constructed by first partitioning the working
parameter space, where the kernel is bounded away from zero, and then estimating the
marginal likelihood by a weighted average of the kernel values evaluated at the MCMC
sample, where weights are assigned locally using a representative kernel value in each
subset. We show the PWK estimator is consistent and has finite variance. When the partition
is refined enough to make the kernel values in the same region similar, we can construct the
best (minimum variance) PWK estimator. Our simulation studies empirically show that the
proposed PWK estimator outperforms both the HM and IDR estimators with respect to root
mean square error.

The rest of the article is organized as follows. Section 2 is a review of the HM, GHM and
IDR methods that motivate the PWK estimator. In Section 3, we develop the PWK estimator
and its theoretical properties. Additionally, in the class of the general PWK estimator, we
find the best (minimum variance) PWK estimator and provide a spherical shell approach to
realize it. In Section 4, an extended general PWK estimator defined on the full support of the
kernel function is investigated. Besides the theoretical properties, we show that the HM and
IDR estimators are special cases in this family. In Section 5, we conduct simulation studies
of a bivariate normal case with the normal-inverse-Wishart prior and a mixture of two
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bivariate normal distributions to compare the performance and computing time of the HM,
IDR and PWK estimators. In Section 6, we compare the results and performance of the
PWK estimator to the methods by Chib (1995) and Chen (2005) for an ordinal probit
regression model. Moreover, we apply the PWK estimator to the determination of the
optimal power prior using two Eastern Cooperative Oncology Group (ECOG) clinical trial
data sets. Finally, we conclude with a discussion in Section 7. The proofs of all theorems are
given in the Supplementary Web Materials (Wang et al., 2017a).

2 Preliminary

We review several Monte Carlo methods that only require a known kernel function and an
MCMC sample from the posterior distribution to compute the marginal likelihood. Suppose
@is a p-dimensional vector of parameters and D denotes the data. Then, the kernel function
for the joint posterior density z(6/D) is g(6) = L(6/D) (6), where L(8/D) is the likelihood
function and () is a proper prior density. Assume ® C /¥ is the support of ¢g(6). The
unknown marginal likelihood cis defined to be [®g(8)d6. The integration is often
analytically intractable due to complicated kernel structure.

To estimate the normalizing constant ¢, Newton and Raftery (1994) suggest the following
equation to motivate the HM method,

1_ [ =040
c—/@q(o) 2do. (1)

Let {6, t=1, ..., T }be an MCMC sample from the posterior distribution 7(8/D) = ¢(6)/c.
The HM estimator is then given by

. 1
‘yy=1Tor T @
th =1L@®,1D)

where the prior 7z(8) can be viewed as the weight assigned to 1/g(8). Although it has the
features of simplicity and asymptotic convergence to the marginal likelihood, the finite
variance is not guaranteed. Xie et al. (2011) also point out that the HM estimator tends to
overestimate the marginal likelihood.

Gelfand and Dey (1994) suggest the GHM estimator where 7z(6) in (1) is replaced by a
lighter-tailed density function f8) compared to ¢(9):

1

—. (3
17 JO) ©)

T&r=14@)

CGHM =
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By proposing a light-tailed density, the ratio {6,)/g(8,) can be controlled. Consequently, the
estimator has finite variance. However, in high dimensional problems, finding a suitable
density f6) may be a challenge.

Petris and Tardella (2003) propose the IDR estimator. They use the difference between a
perturbed distribution g/{8), which is inflated in the center of the kernel, and the posterior
kernel g(8) as the weight. The perturbed density g/{8) is defined as

q(0) if[|0|] <,

0) = 4
0 [q(w(a» ol >r. @

where ris the chosen radius and w(6) = 8 (1 - 2/JgP)17. It follows,

f q,(0)d0 = f q,(0)d6 + f q,(0)d0 = q(0)b, +c, (5)
e ol < r ol > r

where 4,= Volume of the ball {&. J)g)/< r}= n™2/P1(p/2 + 1). This leads to the following
equation,

q@b.+c  rq.0 40
- __/(;q(a) c do, (6)

and the IDR estimator is given by

L q(0)b, .
‘DR= T g0y U]
T&t=140)

Under some mild conditions, the estimator is shown to have finite variance by Petris and
Tardella (2007). However, the method requires a careful selection of radius and unbounded
support of ¢g(6). Any bounded parameter must be reparameterized to the full real line. Also,
in order to have a more efficient estimator, mode finding is essential and standardization of
an MCMC sample with respect to the mode and the sample covariance matrix is required.

3 A New Monte Carlo Estimator

We first modify (1) and (6) by imposing a working parameter space Q C ®, where Q = {6
¢(0) is bounded away from zero } to avoid regions with extremely low kernel values. Then
we assume there is a function /() such that [ /(6)d@= A can be evaluated. Consequently,
we have the identity:
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A_ [hO)q®)
- ‘Aq(m 2do. (8)

We next partition the working parameter space into K subsets, where the ratio of 4 6) over
¢(6) has similar values within each subset, to reduce the variance of the Monte Carlo
estimator. The general form of the PWK estimator with unspecified local weights is
essentially a weighted average for the harmonic mean estimator for g(8) with the same
weights assigned locally to an MCMC sample in a subset.

The working parameter space is essentially the constrained support considered by Robert
and Wraith (2009) and Marin and Robert (2010). However, we do not require /() to be a
density function as in GHM or constrained GHM. Consequently, we allow a larger class of
estimators to be considered.

3.1 General Monte Carlo Estimator

Suppose {As, ..., Ax} forms a partition of the working parameter space Q, where for an
integer K >0, w1, ..., wyare the weights assigned to these K'regions, respectively.

Let the weight function be the step function:

K
hO)= Y wl{O€A). (9
k=1

So we can evaluate A:

K
A= / hO)dO = Y w V(A
Q k=1

where V(Ay) is the volume of the A?7 subset in the partition, that is, V(A = o 1{O€
A }de.

Using the step function A(.) in (9), the PWK estimator for &= 1/cis given by

1T I
TZi=1 2k =10y 0 € Ad)

ZkK= Wi V(A

d= (10)

In order to establish consistency and finite variance of the PWK estimator, we introduce two
assumptions.

Assumption 1—The volume of each region V' (Ay) <oo for k=1,2, ..., K
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Assumption 2—g(8) is positive and continuous on A, where A is the closure of Ay for &
=1 .., K

Theorem 1—Under Assumptions 1 to 2 and certain ergodic (e.g., time-reversible,
invariant. and irreducible) conditions, d in (10) is a consistent estimator of d. In addition,
Var(d) <.

Note that we consider the estimator for drather than ¢ because we can obtain an unbiased
estimator with finite variance for d= 1/

Remark 1—Another property of din (10) is that when a certain full conditional density is
available, the computation can be lessened. This is often the case in the generalized linear
model with latent variables or random effects, and in any Gibbs sampler or its hybrid. To be
specific, let (%) be 2 blocks of parameters, # = (6, ..., 6;)" and ¥ = (Op1, ..., 6)) .
Assume that a full conditional density, n(2/D,), is available. Then, the p-dimensional

estimation problem can be reduced to p— g dimensions:

| = f 40 49
RP ¢
/ / q(sz)”(‘q | D, ’92) 9 49
P —qJ)pq c 199
R R
q(9,)
= /Rp—qTqu”(‘gl | D,9,)d9,d9,

9(8,)
o,

where g() = | pg g(6)a;, which has a closed form expression. Therefore, instead of
investigating the kernel g(8), we can work on the kernel g(#%). In this case, (10) becomes

W
th—lzk—lq(s ) 119, €8y

d=

Tk = 1V By

where {B;, ..., Bg}is a partition of the working parameter space Q,,Q, C @5, which is the
support of g(1%,), and V/(By), ..., V/(Bk) are the corresponding volumes.

3.2 The Optimal Monte Carlo Estimation

Our next step is to find the optimal weight w in the class of PWK estimators (10),
motivated by Chen and Shao (2002).

Assume {6, t=1, ..., T }isan MCMC sample from the posterior distribution z(8/D). Let

*

~ w
Wi = w/[ZF_ wVapl and ag= E[(L/P(O)L{OE€ Al Write d, = T _ | 55110, € 4,)
t

s 1T 5 ~ K 2 2
suchthatd = ¥, _ | d,. Then, we have Var(d) = X _ Wy “ay =1/
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Theorem 2—Lez‘z‘i/7gw,*< opt = V(Ak)/{ock[zf= 1V2(Ak)/"’k]} fork=1, ..., K, we have

Var (@)= UIZK_ \VXADIa) - 1/c% andVar , (d)<Var (d)) for any weight
w

*
Wk, opt Wk, opt k

function w,’;( .) defiined on each A

Remark 2—In practice, it is quite difficult to estimate the second moment a4 A very large
sample size is required in order to obtain an accurate estimate of a, However, the results
shown in Theorem 2 shed light on the choices of Ay, ..., Axand w;. First, it is only required
that wy be proportional to V' (Ag)/a, Second, if ¢g(6) is roughly constant over Ay, then

a, ~ V(Ak)/[q(ﬁ;:)c], where 0;(" € A.. Thus, in this case, we can simply choose w, = q(GZ) and @

in (10) reduces to

k
17 vk 100
TXi=12k= 14@) 10, € A}

C/Z\ = K *
Zk = 1‘I(0k)V(Ak)

(11

Remark 3—Following on Remark 1, when a full conditional density rz(#/D, %) is
available, the estimator d'in (11) reduces further to

. q(sék)
T K
TXi=12k=1 4, %2, € B
t

Uy
Il

v 14093 VB

Remark 4—In practice, the marginal likelihood is often reported in log scale. Considering
the dependence within the MCMC sample, we use the Overlapping Batch Statistics (OBS)
of Schmeiser et al. (1990) to estimate the Monte Carlo (MC) standard error of —Iog(c?). Let
ﬁb denote an estimate of the reciprocal of the marginal likelihood in log scale using the 4
batch, {6, t=5b, b+ 1, ..., b+ B— 1} of the MCMC sample for 6=1,2, ..., T- B+1,
where B < Tis the batch size. Then, the OBS estimated MC standard error of 7= —log(d) is
given by

1

2
, . (12)

T—B+1,~ —\2
[ B ]Zb=1+ (I
T—-B T—B+1

VVar(®) =

where 7= YT =B+ 15 /(7 - B + 1) and a batch size Bis suggested to be 10 < 7/8< 20 in
Schmeiser et al. (1990).
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3.3 Construction of the Partition with Subsets A1,A2, ..., AK
In order to make ¢(6) roughly constant over A, for each &; which is a sufficient condition for
the PWK estimator in (11) to be optimal, we provide the following rings approach for
achieving it:
Step 1: Assume @ is /¥; if not, then a transformation ¢ = G;(6) is needed so that the
parameter space of ¢is R”.

Step 2: Use the MCMC sample to compute the mean g and the covariance matrix )
of g and then standardize gby y = Gy(¢) = 2712(¢ - §).

Step 3: Construct a working parameter space for 4 by choosing a reasonable radius r
such that || ¢i| < rfor most of the standardized MCMC sample.

Step 4: Partition the working parameter space into a sequence of K 'spherical shells
such that Ax= {y: k- 1)/K< ||yl <rik/K} with k=1, ..., K

Step 5: Selecta y/;'; in Ay as a representative point, for example a y/Z such that

lw}ll = rik/K — 1/2K)].

Sept 6: Compute the new kernel value @) = ¢(G; (G5 W) 17| ., Where J=

Y= 'I’k
06000y, Also compute the new kernel value g(y), t=1, ..., T, for the
standardized MCMC sample.

Step 7: Estimate o= 1/chy

~

k
| «T xk 4w
T Zi=1 k=175, W EAY
d= — , (13)
Zk 19 V(A

where V/(AQ = {Irk/K)P - [k - 1)/KIPp2 (02 + 1).

Remark 5—When Kis sufficiently large, () in (13) will be roughly constant over A,
and the PWK estimate will be close to optimal. In addition, each kernel value () is
simply the original kernel value g(8;) multiplied by the absolute value of the Jacobian
function.

4 Extension of the General PWK Estimator

In this section, we generalize the PWK estimator from the working parameter space to the
full support space and from the locally constant weight function to a general weight function
of 8. We call this class extended PWK (ePWK) estimators.

Suppose {Aq, ..., Ax*}is a partition of ©, and wy(6) is a weight function defined on Ay We
need the following assumption to define this ePWK class:

Bayesian Anal. Author manuscript; available in PMC 2018 June 01.
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Assumption 3—The weight function wy s integrable, that is, | /w(6)/d6 <o for k=1,

*

.o K

Under Assumption 3, the extended form of the general PWK in (10) is given by

1 T K* Wk(ot)
o~ TZI:]Zk:lT@l{HIEAk} w0
d = . (14
£3
Y= 1[4 wi(0)d0

Theorem 3—Under Assumption 3 and ¢(6) >0, then the ePWK estimator d’in (14) isa
consistent estimator of d. In addition, if /4, [wiO)*/g@)]d6 <o fork=1, ..., K, then
Vand") <oo.

Remark 6—It is easy to see that din (10) is a special case of & in (14). When K= K+ 1
and each fixed weight wy is assigned to an MCMC sample in each region Ay except wy*=
0, d"reduces to d.

Remark 7—The HM estimator is another special case of din (14). When using the prior
7(6)) as weights, the inverse of " is the HM estimator.

Lo k* "9
- thzlzkzl—q(at)l{eteAk}
<y 0)=n0) = o
Zk _ ]/Akn(O)da
1T n(ot) K
T =1 q(et)Zkz 1 l{ﬁteAk}

T o7 @)d0
1 i 1
T & 10,1D)

Remark 8—In addition, *in (14) includes the IDR estimator as a special case. Let K*=2,
A1 = {8 )8/ < r}, wi(6) = q0) - (), Az = {©. /8] > r}, and w,(6) = g{6) — g(6). We can

show that [ 4, w1(6)d6@= q(0)b,— J 4, q(6)dOand [ 4, Wo(6)d6= c- [ 4, g(6)d6, implying
Z% 1/ Akwk(a)de = q(0)b,.. Thus, the inverse of d"reduces to the IDR estimator. Note w4(6)

and ws(6) in IDR are allowed to be negative.

Remark 9—When the posterior kernel ¢(.) after the transformation is roughly symmetric,
the constant weight w; assigned to partition set A, constructed using the rings approach
discussed in Section 3.3 often leads to an efficient PWK estimator in (10) as empirically
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demonstrated in Section 5.1 and Section 6. However, when the posterior kernel ¢(.) is very
skewed or multimodal, the constant weight wy would result in an inefficient PWK estimator.
For such a complex case, we can apply the ePWK estimator in (14). The functional weight
wy(6) can be constructed as follows. We first divide the A7 ring Ak into my subsets Ay, ...,

m
Agmy based on myslices such that A, = u/‘z | A and Ag, ..., Agmy are disjoint, and then
assign w,(0) = q(6;,,) for 8€ Ay, where 67, is a representative point in A for £=1, ..., my.

In Section 5.2, we apply this version of the ePWK estimator to an example involving a
bimodal distribution to examine its empirical performance.

5 Simulation Studies

5.1 A Bivariate Normal Example

We apply the PWK estimator for computing the normalizing constant of the posterior of the
parameters of a bivariate normal distribution with the normal-inverse-Wishart prior. We
consider both location and scale parameters to be unknown. Including the scale parameters
makes computation challenging. Lety = (y1, Yo, ..., y,) be nobservations from a bivariate
normal distribution,

X N D= 1,
where p € A2 and T are unknown parameters. The likelihood function is

—n/2

n
LTIy =en " | T 17" exp —%Zl(yi—ﬂ>’2_l<yr">~
i=

The prior for p and X is specified as follows:

p | S-Ny Tk, and Z~IWDO(A5 b,
with hyperparameters g, xp, vo, and Ag. Then, the joint posterior kernel is given by

g, ) = Lp, X | e | (X))

_ —(n+vy+2)2-1 7l _
=2 " T 0 %em ‘—; PINCIEIOD> 1(yl»—ﬂ)
i=1

X exp

K,
—70(ﬂ - ﬂo)’Z_l(ﬂ - ﬂo)] exp {—%trace(AOZ_ 1)},
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. vy +1 —vy/2 _4 /
withy =27 al,(/2) | Ay | kg where To(v/2) = /2T (w/2)T (w2 - 1/2). Under

this setting, the analytical form of the normalizing constant is available as follows:

c=

- 2 h(/2) K,

1/0/2
1 D, /2 1A 10 (K,
un/2

A, ) "

n

Knn

vy ) 0 vy )/ — —
where A, = A, + 2?2 10 ==y +W(ﬂ0—y)(ﬂ0—y), xp=xgtnand vp,= g+

0.7
1

generated a random sample y with 7= 200 from a bivariate normal distribution with p = (0,

107
0) and Z=(0.7 1

n. We set the hyperparameters pg = (0, 0)’, &y = 0.01, vp =3, and Ay = (017 ) We

). The corresponding sample mean y was (-0.029, 0.040)’, and the

201.987 143.330
143.330 192.365
likelihood in log scale is —507.278. In this example, in order to apply the spherical shell
approach in Section 3.3, a transformation of X was needed. Here, we used the log
transformation for each variance parameter and the Fisher z-transformation for the
correlation coefficient parameter to have unbounded support for each of them. Then, we
standardized each transformed MCMC sample from its transformed sample mean and
standard deviation. In the new parameter space, we constructed the working parameter space
and its partition by choosing r=1.5, 2, or 2.5 and K= 10, 20, or 100. After selecting a
representative point in each spherical shell, we estimated o= 1/cusing (13). We compare our
method to the HM and IDR methods based on 1,000 independent MCMC samples with 7=
1,000 or 7= 10, 000 in Table 1. Let dpbe the estimate of o/based on the &7 MCMC sample
for=1,2, ..., 1,000. Then, the simulation estimate (Mean), the MC standard error
(MCSE), and the root mean square error (RMSE) of the estimates in log scale are defined as

sample variance—covariance matrix Swas ( ) Using (15), the marginal

— _ 1 1000 5 1 1000 5 a2
logc—mzle(—logdf),{mzle(—logdf—logc)} ,and

1 <1000 A 2 12 )
{W2f= (= log d,— log ©)"} , respectively.

Table 1 shows the results, where the average computing time (in seconds) per MCMC
sample on an Intel i7 processor machine with 12 GB of RAM memory using a Windows 8.1
operating system is given in the last column. From Table 1, we see that (i) PWK has the best
performance with much smaller MCSE and RMSE than HM and IDR under both 7= 1, 000
and 7= 10, 000; (ii) when T increases, the MCSE and the RMSE of the PWK estimator
become smaller under all choices of rand K; (iii) the performance of the HM estimator
slightly improves but the IDR estimator does not when 7 increases; and (iv) the computing
time of the PWK estimator is comparable to that of the HM estimator while the IDR
estimator requires the most computing time. It is interesting to mention that the MCSE and
the RMSE of the PWK estimator are very similar for all choices of rand K'under each 7,
implying the robustness of the PWK estimator with respect to the specification of the
working parameter space and the number of partition subsets.
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In this example, we also examine the performance of ePWK by adding a subset Axy1 =© N
Q¢={6: /6| >} such that K" = K+ 1 and ukKi | A = ©. We further specify

wi 4 10) = q@ , )g(0) for € Ay, where 6y, is a point on the boundary of Ax+q and

g0) =

5 12.5 exp {—?Ml —P()((ZS) <2
T

Under this specification, we have /AK+ le+ 10)d6 = q(GZ 1) Holding the other subsets

Ay, ..., Axand their corresponding weights the same as for PWK, the resulting values of
MCSE and RMSE by ePWK are 0.06332 and 0.06579 when 7= 1, 000, K= 100, and r=
1.5; 0.05167 and 0.05420 when r=2.0; and 0.05500 and 0.05772 when r= 2.5. Compared
to the results of PWK (0.06375 and 0.06621 when r=1.5; 0.05168 and 0.05420 when r=
2.0; and 0.05499 and 0.05772 when r= 2.5), ePWK performs very similarly to PWK, which
is expected since the posterior kernel has light tails and very low values on Axy1.

To evaluate the effect of a vague prior on the precision of the PWK estimator, we extend our
simulation study by considering different values of hyperparameters xg and vy. Note that the
value of log cin Table 1 is computed under xy = 0.01 and vy = 3, which corresponds to a
relatively vague prior for (i, X). Table 2 shows the simulation results of the PWK estimators
with r=2 and K= 100 for (xp, vg) = (0.0001, 3), (1, 3), and (1, 10) in addition to (0.01, 3).
From Table 2, we see that the MCSE values under these different values of (xg, vp) are
almost the same while the RMSE values are comparable except the last one with (xg, vp) =
(1, 10), in which the RMSE values are slightly larger.

5.2 A Mixture of Two Bivariate Normal Distributions Example

To evaluate the performance of ePWK, we consider the two-dimensional normal mixture in
Chen et al. (2006)

2

n(p) = Z %[% | Zj |_1/2 exp [_%(ﬂ - I‘oj)/z;l(ﬂ - I‘oj)”v (16)

’ ’ ’ O% 6162’0j .
where W= (14, )", Ho1 = (0,0)", Ho2 = (2,2) and ¥, = , |withoy =0, =1,
0102P; 0,

p1=0.99, and pp = —0.99. Figure 1(a) is a scatter plot of a random sample with 7= 10, 000
generated from (16). Based on the random sample, we apply ePWK to estimate the
normalizing constant in (16), which is known to be 1. Due to the high but opposite
correlations (i.e., o1 = 0.99 and oy, = -0.99), (1) cannot be homogeneous over a partition
ring formed by the spherical shell approach in Section 3.3. To circumvent this difficulty,
following Remark 9, we additionally slice the existing partition rings by dividing them
equally along the angle from 0 to 360 degrees as shown by the dashed lines in Figure 1(b),
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where the center of the circle is the sample posterior mean (denoted as ﬁ). Now, the
heterogeneity of (L) over each partition subset is effectively eliminated by this additional
slicing step. We note that this version of ePWK is the same as PWK except for additional
slicing over the partition rings.

Table 3 shows the results of HM, IDR, and ePWK estimators based on 1,000 independent
random samples with 7=1, 000 or 7= 10, 000 from (16). For ePWK, we consider different
values of K (the number of rings) with the same my = m (the number of slices) for k=1, ...,
Kand r(75%, 90%, or 95% x maXi<g7||Ls— Lf||). We use the same values of rfor both IDR
and ePWK. From Table 3, we see that (i) the RMSE values of the ePWK are considerably
smaller than those of HM and IDR,; (ii) the performance of ePWK improves when the
sample size (7) or the number of rings (K) increases; and (iii) ePWK takes slightly longer
computing time than HM and IDR.

Next, we consider a more challenging case, where g, is replaced by (5, 5)” so that the two
modes are much further away from each other. Figure 2(a) is a scatter plot of a random
sample with 7= 10, 000 and Figure 2(b) shows the partition subsets of the chosen working
parameter space.

Table 4 summarizes the simulation results with the same simulation setting as before. We see
that ePWK outperforms both HM and IDR under this more challenging case. As expected,
the RMSE values in Table 4 are larger than those in Table 3 for all three methods. However,
the RMSE values of the ePWK estimator are still quite small when K'and 7 are reasonably
large.

6 Application of the PWK to Real Data Examples

6.1 The Ordinal Probit Regression Model

In the first example, we apply the PWK method to computing the marginal likelihood under
the ordinal probit regression model. Lety = (4, J5, ..., ;)  denote the vector of observed
ordinal responses, each is coded as one value from 0, 1, ..., J-1, X denote the nx p
covariate matrix with the #7 row equal to the covariate of the 77 subject xi,and u = (u, ty,

..., Up)" denote the vector of latent random variables. We consider the following hierarchical
model as in Albert and Chib (1993) such that

Y= ity su <y

and

/
u.=x.p+e.
i lﬂ U

where j=0, 1, ..., J- 1, Bis a p-dimensional vector of regression coefficients, and
iid.

€ N(O, 02). Based on the reparameterization of Nandram and Chen (1996), the
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cutpoints for dividing the latent variable v;can be specifiedas -0 = < 1 =0< pp <+ <
y1 = 1< y;= 00, Under this setting, the likelihood function is given in Chen (2005)

7,
Yit1
o

_xiﬂ 14 __xl'ﬁ

1
o

Y

[ -0

n
L@ | D) = H

i=1

where 8= (8", g, y5, ..., y12)  if J= 4, otherwise, 8= (B, 0)’, and ®(.) is the cumulative
standard normal distribution function. Then, we specify normal, inverse gamma, and
uniform priors for the parameters B, o2, and y, respectively.

To examine the performance of the PWK estimator under this model, we consider the
prostate cancer data of 7= 713 patients as in Chen (2005). In this data set, Pathological
Extracapsular Extension (PECE, J) is a clinical ordinal response variable, and Prostate
Specific Antigen (PSA, x7), Clinical Gleason Score (GLEAS, X,), and Clinical Stage
(CSTAGE, x3) are three covariates. PECE takes values of 0, 1, or 2, where 0 means that
there is no cancer cell present in or near the capsule, 1 denotes that the cancer cells extend
into but not through the capsule, and 2 indicates that cancer cells extend through the capsule.
PSA and GLEAS are continuous variables while CSTAGE is a binary outcome, which was
assigned to 1 if the 1992 American Joint Commission on cancer clinical stage T-category
was 1, and assigned to 2 if the T-category was 2 or higher.

In this application, /= 3 so that all four cutpoints can be assigned to fixed values: —00 =
<y =0< 9y =1< y3=00, Then, the prior distribution is specified as

7(0) = n(p | 0‘2)77,'(62),

where B0 ~ M0, 106%/;) and o? ~ IG(ay = 1, by = 0.1). The density function of an inverse
gamma distribution /G(ay, ) is proportional to (o) {10*1) exp(-4y/c?).

The marginal likelihood is not analytically available. Nevertheless, the estimates of this are
obtained in Table 1 of Chen (2005) using the method proposed by Chen (called Chen’s
method) and the method proposed by Chib (1995) (called Chib’s method). Chen’s method
needs only a single MCMC sample from the joint posterior distribution (8, o2|D).
However, Chib’s method with two blocks requires an additional MCMC sample from the
conditional posterior distribution 7z(c?|8", D), where " is the posterior mean of 8. We
compare PWK to these two methods under the same MCMC sample sizes 7= 2, 500, or 5,
000 as in Chen (2005), except that Chib’s method doubles them.

For the PWK, we apply a log transformation for o2. Then, after the standardization of the
transformed MCMC sample, we consider K= 10, 20, and 100 and r = 0.75,/;@ 095,,/;@ 0.95°

and 1.25 ;é 0.95 t0 investigate robustness of the PWK estimates with respect to these

choices. We note that ;(g 0.95 IS the square-root of the 95% percentile of the Chi-square
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distribution with p = dim(6) = 5 degrees of freedom, which is derived by computing the
norm of pindependent standard normal distributions as in Yu et al. (2015). Table 5 shows
the PWK estimates and the corresponding estimated MCSE (eMCSE) under the MCMC
samples with 7= 2,500 and 5,000, where eMCSE is computed using (12) with 7/8 = 10. We
note that we use the same MCMC sample sizes as in Chen (2005). The results show the
PWK estimators are relatively robust to the choice of the radius rand the number K of
partition subsets.

From Table 1 of Chen (2005), the estimates of log cand eMCSE’s are —758.71 and 0.038
based on Chen’s method and —758.67 and 0.037 based on Chib’s method for 7= 2, 500; and
—758.71 and 0.024 based on Chen’s method and —758.70 and 0.023 based on Chib’s method
for 7=5, 000. We see from Table 5 that the PWK estimates of log care similar to those
under both Chen’s and Chib’s methods but with smaller eMCSE’s under the MCMC
samples with 7= 2,500 and 5,000, respectively. For instance, the PWK estimates of log ¢
and the corresponding eMCSE’s are —758.70 and 0.020 for 7= 2, 500 and —758.70 and

0.016 for 7=5, 000 when r = 1/;@ 0.95 and K'=100. Thus, the PWK yields a slightly more

precise estimate of log ¢ than the other two methods.

6.2 Analysis of ECOG Data

In this subsection, we apply the PWK estimator to the problem of determining the power
prior based on historical data for the current analysis. Assume we have conducted two
clinical trials for the same objective. A natural way to combine these two trials is to consider
the power prior setting, which allows us to borrow information from the historical data to
construct the prior for the current analysis. Assume we have an initial prior for the unknown
parameters that is determined before observing the historical data. To quantify the
heterogeneity between the current data and the historical data, the power prior weights the
historical likelihood function by the power &, where 0 < g5 < 1, to indicate the extent to
which the historical likelihood is incorporated into the initial prior. Our objective is to find
the optimal gy which maximizes the marginal likelihood for the current data. Ibrahim et al.
(2015) point out the difficulty of finding this solution except for normal linear regression
models. Therefore, they resort to using the deviance information criterion (DIC) and the
logarithm of pseudo-marginal likelihood (LPML) criterion for constructing the parameter &
of the power prior in Ibrahim et al. (2012, 2015). To evaluate DIC, we need to plug the
MCMC sample into the sum of the log likelihood over all data points; to evaluate LPML, we
need to take the sum of the log transformation of each CPO, where the 47 CPO is the
harmonic mean of the /" likelihood evaluated at the MCMC sample from the posterior
distribution based on the full sample. Both methods yield much less computational burden
than the marginal likelihood method. We will show how the PWK estimator can circumvent
the computational burden in evaluating the marginal likelihood.

The effectiveness of Interferon Alpha-2b (IFN) in immunotherapy for melanoma patients
has been evaluated by two observation-controlled clinical trials: Eastern Cooperative
Oncology Group (ECOG) phase |11, E1684, followed by E1690. The first trial E1684 was
conducted with 286 patients randomly assigned to either IFN or Observation. The IFN arm
demonstrated a significantly better survival curve, but with substantial side effects due to
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high dose regimen. To confirm the results of the E1684 and the benefit of IFN at a lower
dosage, a later trial E1690 was conducted with three arms: high dose IFN, low dose IFN,
and Observation. We use the data in E1684 as the historical data and a subset (high dose arm
and Observation) of the E1690 trial as our current data. There are 427 patients in this subset.

For n= 427 patients in the current trial (E1690), we follow the model in Chen et al. (1999).
Let y;denote the relapse-free survival time for the /77 patient, v; denote the censoring status,
which is equal to 1 if y;is a failure time and to O if it is right censored, x;= (1, trt)” denote
the vector of covariates, where trt;= 1 if the /7 patient received IFN and trt; = 0 if the /7
patient was assigned to Observation. Then, the likelihood function is given by

n

LB 1D = [ {exp eBf0; 1 H) Texp { = exp GIBFGy | ), (A7)

i=1

where D= (n,y, v, X) is the observed current data, 8= (B, 81)’, and AHYA) is the
cumulative distribution function and f)/A) is the corresponding density function. In (17), we
use the same piecewise exponential model for A)4A) as lbrahim et al. (2012), which is given

by

ji—-1
F =1- “Ay—-s.—1)— -5
Al exp | =2, r=s5;= 1) g;lagug Sg—

Db

where 5j4 < y< s, =0<5<5<...<=00,andA=(Aq, ..., As) .

For g = 286 patients in the historical trial (E1684), we attempt to extract some of its
information to set up the prior distribution for the current analysis. Similarly, we let yg,
denote the survival time for the # patient, vy, denote the censoring status, and xg; = (1, trtg))
" denote the vector of covariates. So Dy = (1, Yo, Vo, Xo) is the observed historical data.
Assume mp(B, A) is an initial prior. Here, we specify an initial proper prior M0, 1004) for g
and Exp(Ag = 1/100) (Ao: rate parameter) for each A, /=1, ..., 5, to come close to the flat
prior in Ibrahim et al. (2012). To update the initial prior with the historical data, the power
prior is intuitively set as the initial prior rzg multiplied by the historical likelihood function
with power g as follows:

a
0
g0

7B A1 Dyag) o | TT { exp 81 Gi | D) @ exp { = exp ey F (g | )| 7(B. ).

i=1

(18)
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where (8, A| Dy, ) is called the power prior and 0 < 4 < 1. In this setting, we can see
when g, = 0, the power prior is exactly equal to the initial prior, which integrates to be 1, and
when gy # 0, the power prior is equal to the right-hand side kernel function in (18) divided
by ¢y = /S L(B, A|Dg)®mo(B, \)dBa.. Combining the likelihood function in (17) and the
power prior in (18), the posterior distribution of gand A given (D, Dy, 4g) will be

(B, A | D,Dy,ay) < L(B, A | D)n(B, A | Dy,ay) . (19)

In this framework, we compare the marginal likelihoods of L(8, A|D) (B8, A|Dy, &y) for 0 <
ap < 1. The one with the highest marginal likelihood is our final model, and its
corresponding & determines the power prior.

However, as we point out earlier, except for & = 0, (B, A|Dy, d) is known up to a
normalizing constant ¢;. Hence, a two-step evaluation is needed to obtain the marginal
likelihood:

c= / L(B, | D)n(B, 2| Dy, ap)dpdA

a

LB A1 DILB. 4| Do) (. Adpdi

a
JLPB.41 Dy ny(. Mdpdi

%
dy

o
—

o
[«

We apply the PWK to estimate the numerator, L(B8, A|D)L(B, A|Do)® (B, A), and the
denominator, L(B, A|Dg)®ry(B, A), respectively.

For each choice of gy with an increment of 0.1 from 0 to 1, an MCMC sample size is fixed at
10,000. The log transformation of each A; is needed. After the standardization of the

transformed MCMC sample, we choose the maximum radius r = ;(% 0.95 due to p=7, and

the number of spherical shells K= 100. By (13) and (12), we can obtain the marginal
likelihood estimate and its eMCSE for each chosen 4. We summarize the results in Table 6.

Table 6 also includes the PWK estimates under r = 0.75\/;(§ 095 1.25\/;(§ 09s and K'=10, 20

to investigate the robustness of the PWK method.

Note the marginal likelihood function ¢ can be shown to be continuous in &. Therefore,
from Table 6, we see that the best choice of g is between 0.5 and 0.6 under the marginal
likelihood criterion. This result is quite comparable to the result of g4y = 0.4 in Ibrahim et al.
(2012) obtained by DIC and LPML criteria, where a suitable marginal likelihood
computation was not accessible. We also observe that the results are quite robust to the
different values of rand K; and all point out that the best choice of &; is between 0.5 and 0.6.
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7 Discussion

The marginal likelihood is often analytically intractable due to a complicated kernel
structure. Nevertheless, an MCMC sample from the posterior distribution is readily available
from Bayesian computing software. Additionally, the likelihood values evaluated at the
MCMC sample are output in a file. Consequently, we can produce kernel values easily using
the output and the prior function. In this paper, we propose a new algorithm, PWK, for
estimating the marginal likelihood based on this single MCMC sample and its corresponding
kernel values. Unlike some existing algorithms requiring knowledge of the structure of the
kernel, we only need to know the kernel values evaluated at the MCMC sample. Therefore,
our algorithm can be applied to Bayesian model selection, assessing the sensitivity of
conclusions to the prior distribution, and Bayes hypothesis tests. We implement our
methodology using the R programming language (R Core Team, 2015). The R codes along
with README files are available as Online Supplementary Materials (Wang et al., 2017b).

We extend PWK to handle the parameter space with the full support (ePWK) and we show
that HM and IDR are special cases of ePWK. We conduct a simulation study from a
bivariate normal distribution with 5 parameters in a Bayesian conjugate prior inference
problem to compare our estimator to HM and IDR; our results show that PWK has the
smallest empirical MCSE and RMSE. The computation time for our method is only slightly
longer than that for the HM which indicates our spherical shell partition approach is very
efficient. We conduct another simulation study for a mixture of two bivariate normal
distributions to illustrate the ePWK estimator, which is obtained by additionally slicing the
partition rings in the partition step of the PWK method. We show that the ePWK method
reduces the MCSE and RMSE by a great deal when compared to the HM and IDR methods
at the cost of slightly more computation time.

In example analyses of real data, we first consider an ordinal probit regression model, and
compare our method to that in Chib (1995) and Chen (2005) with the same MCMC sample
size for Chen’s method (Chib’s method requires twice this sample size). We find the three
methods produce comparable estimates for the marginal likelihood and the PWK method
produces the smallest eMCSE. In the second example, we consider a cure rate survival
model with the piecewise constant baseline hazard function and a power prior construction
based on two clinical trial data sets. We obtain the optimal power prior using the marginal
likelihood criterion as opposed to the DIC and LPML methods considered by Ibrahim et al.
(2012). We obtain similar results, except that the PWK approach indicates more borrowing
of the historical data.

In unimodal problems, we suggest using the square root of the 95 percentile in a Chi-
square distribution with p degrees of freedom as a guide to choosing a value for the radius r
for constructing the working parameter space of the standardized MCMC sample. This is
because, after standardizing the MCMC sample, the marginal distribution of each parameter
is approximately standard normal. Although the results are quite robust to the choices of ras
shown in simulation and case studies, using the Chi-square distribution for guidance ensures
that we make use of most of the MCMC sample and avoid the region with posterior density
close to 0. For multimodal problems, we suggest using 95% x maxy< 7||H;~ H|| as a guide
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value for constructing the working parameter space of the transformed MCMC sample.
Since this approach may result in many partition subsets with extremely small posterior
density in the working parameter space, we can use the spherical rings approach as
demonstrated in Section 5.2 to obtain the homogeneity of the MCMC sample in each subset.
This new partition approach can also be extended to a p-dimensional problem (p > 2) by
introducing another p - 2 angular coordinates as in Lehnen and Wesenberg (2003) and
slicing them as in Section 5.2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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M2

Figure 1.
Forming the working parameter space and its partition for a mixture normal distribution with

means (0,0) and (2,2).
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Figure 2.

Forming the working parameter space and its partition for a mixture normal distribution with
means (0,0) and (5,5).
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