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INTRODUCTION

Extremely preterm neonates (<28 weeks gestation) are at high risk for morbidities including 

bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), and retinopathy of 

prematurity (ROP). While the etiologies of these conditions are multifactorial, free radical 

generation and oxidative injury likely contribute toward pathogenesis. Exposure to 

supplemental oxygen, systemic inflammation, infection, ischemia, reperfusion, and aerobic 

metabolism lead to generation of high levels of reactive oxygen and nitrogen species (ROS, 

RNS) including superoxide (O2
•−), nitric oxide (NO), and hydrogen peroxide (H2O2) 

1, 2, 3, 4, 5. There has been an increasing appreciation for the critical role of the trace mineral 

selenium (Se) for optimal function of endogenous antioxidant defense systems that mitigate 

the effects of oxidants. This review highlights the role of selenium as it relates to optimal 

function of antioxidant systems in extremely preterm infants in order to highlight the gaps in 

knowledge as it relates to the pathogenesis and prevention of morbidities in this population.

HISTORY OF SELENIUM

Se is an essential trace mineral that is acquired via the diet. Plasma concentrations vary 

geographically depending on soil Se levels, with lower plasma Se levels consistently 

reported in adults and infants from China, New Zealand, Australia, Iran, and parts of Europe 

when compared to countries such as the United States where soil levels are naturally higher 
6, 7, 8, 9. While overt clinical manifestations of Se deficiency are rarely seen in otherwise 

healthy individuals, Se contributes to the proper function of multiple systems including 

immunity, redox regulation, inflammation, and thyroid metabolism 10, 11, 12. More 

specifically, Se is required for the generation of the “selenoenzymes” glutathione 

peroxidases (GPx), thioredoxin reductases (TrxR), and selenoprotein P (SePP), so-named 

because they contain an active site selenocysteine (Sec) residue that is required for catalytic 

activity 3, 13, 14, 15. The most abundant selenoproteins in the blood are SePP and GPx, which 

account for 50–80% and 10–30% of all selenoproteins in the blood, respectively 10, 11, 16.
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MONITORING AND MEASURING Se LEVELS

Optimal methods to achieve accurate determination of Se status is an area of ongoing 

evolution as there are > 35 selenoproteins in humans and only ~0.2 mg of plasma Se for 

every 20–40 mg Se in the body 3. In adults, Se status is most commonly assessed by directly 

measuring Se concentration and/or GPx activity in plasma or erythrocytes 12. While GPx 

activity and plasma Se tend to correlate in adults, studies have shown this is not the case for 

preterm infants 17. Many theories have been proposed to explain this discrepancy including 

exposure to supplemental oxygen 12, antenatal steroids, immaturity of GPx, and preferential 

use of Se stores for GPx synthesis 13. Se levels can be altered by normal acute phase 

responses, and it is therefore advised that Se levels should be measured at multiple time 

points and interpreted in the context of other markers of inflammation 18.

THE ROLE OF Se IN ANIMALS, ADULTS, AND CHILDREN

The specific roles of Se and GPx, TrxR, and SePP in prematurity and oxidant injury are 

poorly understood. Animal models have illustrated the protective role of Se in the 

breakdown of hydroperoxidases in the lung following exposure to oxidative stress 19, 20, 21. 

Similarly, in hyperoxia-exposed rats, Se deficiency exacerbates lung injury and is associated 

with increased susceptibility to oxidative lung injury 7, 12. Clinically, Se deficiency in 

animals can present with a nutritional myopathy called white muscle disease that affects 

both skeletal and cardiac muscle. Seen in areas with low soil Se content, Se supplementation 

prevents the variety of problems associated with white muscle disease including failure to 

thrive, cardiovascular collapse, pulmonary edema, and progressive muscular weakness22.

Deficiency of Se in the human diet has been associated with a variety of disease states 

including a fatal cardiomyopathy called Keshan Disease, which is characterized by heart 

failure, cardiac enlargement, and cardiac shock 23. While scientific literature has suggested a 

potential benefit of Se with regard to cancer and cardiovascular risk, more recent 

environmental and nutritional studies on the human health effects of Se have reported 

conflicting results. Recent studies have suggested that the toxic effects of Se overexposure 

may be more common than previously thought. These negative effects include endocrine 

system alterations, increased risk of type 2 diabetes, and increased the risk of some cancers 

including melanoma and lymphoid cancers24. That being said, studies in critically ill adults, 

including a prospective randomized study in patients with systemic inflammatory response 

syndrome and multiple organ failure, demonstrated that sodium selenite supplementation 

over 28 days was associated with a reduction in mortality rate from 40% to 15% 25. In 2015 

a prospective observational study in a Brazilian pediatric intensive care unit found that an 

increase in plasma Se concentrations from admission to day 5 of stay was independently 

associated with shorter duration of ventilation and total length of stay 3.

SELENIUM DEFICIENCY IN PREGNANCY

Pregnancy is considered a time of increased oxidative stress 26 and neonates are dependent 

on maternal antioxidant status for protection against free radicals 26, 27, 28. Pregnant women 

have been reported to have lower plasma Se concentrations and decreased GPx activity 
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compared to non-pregnant women 28. A prospective observational study in 2014 that 

involved 126 pregnant women between 28–32 weeks gestation revealed an association 

between lower maternal Se levels and delivery of small for gestational age infants suggesting 

Se deficiency as a possible risk factor for intrauterine growth retardation 29. A meta-analysis 

published in 2015 reported an inverse relationship between Se levels and risk of 

preeclampsia. Further, Se supplementation reduced the incidence of preeclampsia in this 

same study 30.

Se ACCRETION IN UTERO AND AFTER BIRTH

Fetal Se accretion occurs via placental transfer, primarily during the 3rd trimester. Se 

accumulation occurs primarily in the fetal liver between the 20th and 40th week of gestation 
31, 32. Makhoul et al. 14 identified a linear relationship between umbilical cord Se levels and 

gestational age, birth weight, and 5 minute Apgar score. Umbilical cord Se levels are 

approximately 60–75% of maternal plasma Se levels and in preterm infants, cord blood 

levels are significantly lower than term infants 9, 33.

Preterm infants are inherently Se deficient due to many reasons including those outlined 

above. To make matters worse, this deficiency is compounded postnatally because preterm 

neonates often require prolonged parenteral nutrition, have poor intestinal Se absorption 

when enterally fed, and have immature pathways for Se metabolism 34. Multiple studies 

have demonstrated that parenteral nutrition and formula feeding in preterm neonates are 

associated with lower and declining indicators of Se status when compared with 

breastfeeding over the first weeks and months of life 11, 14, 17, 35, 36, 37, 38. This Se deficiency 

is likely to be physiologically relevant given that concentrations increase in healthy term 

breastfed infants after birth 36, 39.

STUDIES IN PRETERM INFANTS

Most data regarding Se deficiency and supplementation in preterm infants have been 

extrapolated from animal models, adults, children, and full term healthy infants. Given the 

major physiologic differences between these groups, such extrapolations are likely 

inappropriate. Less than 10 publications regarding Se deficiency and treatment in preterm 

and extremely preterm populations were identified when performing a literature search for 

this review and the majority of the identified publications were prospective observational 

studies performed in countries with low plasma Se concentrations in the general population. 

Two studies included infants born in the United States 8, two included extremely premature 

infants 8, 40, and one reported data including extremely low birth weight infants 40. By far 

the largest study was published by Darlow et al. in 2000 and included 534 infants 41. The 

remaining studies involved sample sizes between 18 and 79 patients. All studies evaluated 

markers of Se status and included outcome measures confined to the first few days, weeks, 

or months of life. None of these studies included endpoints beyond 36 weeks’ postmenstrual 

age. A Cochrane review from 2003 explored the impact of Se supplementation in the 

prevention of short-term morbidity in preterm neonates. Three trials met inclusion criteria 

for this meta-analysis and 2 of these trials were performed in geographical areas with 

inherently low plasma Se concentrations. Overall, results of this meta-analysis, which 

Tindell and Tipple Page 3

J Perinatol. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



included infants with a birth weight of <2000 grams, suggested low plasma Se was 

associated with increased complications of prematurity including BPD, increased days of 

oxygen dependency, and increased risk of adverse respiratory outcomes. Regarding Se 

supplementation, the meta-analysis found that Se supplementation reduced episodes of late 

onset sepsis, but not BPD, in very preterm infants [RR 0.73 (0.57 to 0.93); RD −0.10 (−0.17 

to −0.02); NNT 10 (5.9 to 50)]42. Table 1 contains more detailed description of all studies 

identified and reviewed herein.

DISCUSSION

Extremely preterm infants are at high risk for complications related to prematurity. The 

combination of early exposure to hyperoxia and inflammation, increased reactive oxygen 

species as a result of these exposures, and immature antioxidant defenses are all likely to 

contribute to the development of morbidities commonly associated with extreme 

prematurity. Data support Se as an important contributor to optimal function of antioxidant 

systems in preterm infants; however, mechanistic details for the role of Se in these processes 

are lacking. While clinical implications of Se deficiency have been more extensively 

investigated in animals and in human adults, recent studies contradicting previously 

identified benefits have led to controversy. Specifically, the toxic effects of Se exposure may 

be more significant than historically thought 24. Significant knowledge gaps remain in the 

preterm neonatal population, especially in extremely preterm neonates. As discussed 

previously, few studies have been performed in this highly vulnerable population, and of 

those that have been reported, weaknesses including small sample size, and observational 

study design have made conclusions difficult to make. In addition, the majority of studies 

have been performed in areas with inherently low soil Se levels making generalizability of 

the findings to all populations.

No data currently exists for the ever-growing population of infants being resuscitated at 22–

23 weeks gestation or with a birth weight of less than 500g. As of 2015, the American 

Society for Clinical Nutrition (ASCN) recommends parenteral Se intake of 2 μg/kg/day and 

the American Academy of Pediatrics Committee on Nutrition recommends enteral Se intake 

of 1.3–4.5 μg/kg/day in stable, growing preterm infants. These recommendations are based 

on trace mineral content in human milk for healthy full-term infants, accretion rates in utero, 

and enteral absorption rates; however, these recommendations have yet to be rigorously 

tested. Se supplementation is historically recommended in infants requiring parenteral for 

more than 2–4 weeks of life. Recent suggestions have supported the addition of Se at the 

onset of parenteral nutrition but again, data supporting this approach are incomplete at best 
34. Several studies have suggested that current parenteral dosing recommendations are 

insufficient and that a dose of 3 μg/kg/day is necessary to prevent the fall in Se following 

birth 36. Furthermore, it is likely that 5–7 μg/kg/day is required to reach Se levels that are 

comparable to healthy breastfed infants 41. Finally, infants fed Se supplemented formula vs 

unsupplemented formula had a rise in plasma Se and GPx values and supplementation 

prevented the fall in plasma Se from birth to 1 month of age that was seen in 

unsupplemented infants 45.
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In recent years there have been issues with Se availability for parenteral nutrition. This has 

created a situation in which institutions are left to make decisions regarding supply rationing 

and supplementation in inpatient settings, including the neonatal intensive care unit. A 2015 

survey of clinicians found that only 30% reported commercial availability of neonatal multi-

trace element product at their institution. To compound matters, of those with product 

available, 31% of clinicians administered less than the recommended dose as a way to ration 

supply. There are currently 2 manufacturers of neonatal parenteral multi-trace products 

approved for use in the United States and only 1 preparation includes Se 34. A U.S. based 

study by Mentro et al. revealed that standard feeding protocols led to insufficient Se 

supplementation and that mean Se intakes of 0.82 μg/kg/day at 1 week of life and 1.7 

μg/kg/day by 4 weeks of life were standard, and far less than the recommended 2 μg/kg/day.

CONCLUSION

Greater numbers of extremely preterm neonates are being born at earlier gestational ages 

and lower birth weights. This has resulted in global increases in the numbers of ex-preterm 

infants with long-term morbidities. While a lack of Se is not in itself likely to completely 

account for free radical injury and oxidant stress in the preterm neonate, adequate Se levels 

theoretically enhance endogenous antioxidant defenses to mitigate the effects of oxidant 

stress and lessen the burden of morbidities associated with prematurity. Given the lack of 

standardized monitoring guidelines and deficiencies in Se availability for supplementation, it 

is reasonable to conclude that Se deficiency is in extremely preterm infants is likely 

widespread and underdiagnosed. There are no reported adverse effects associated with Se 

supplementation in preterm infants; therefore, the possible benefits of Se supplementation 

likely outweigh any theoretical or perceived risks of deficiency. In conclusion, the lack of 

data provides a compelling rationale for multi-center studies to adequately define Se status 

in extremely preterm infants, understand typical nutritional requirements, identify the 

clinical implications of Se deficiency and overexposure on neonatal outcomes, and to 

propose rational supplementation strategies targeted to this high-risk population.
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