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Abstract

Background—Traditional strategies for surveillance of surgical site infections (SSI) have 

multiple limitations, including delayed and incomplete outbreak detection. Statistical process 

control (SPC) methods address these deficiencies by combining longitudinal analysis with 

graphical presentation of data.

Methods—We performed a pilot study within a large network of community hospitals to evaluate 

performance of SPC methods for detecting SSI outbreaks. We applied conventional Shewhart and 

exponentially weighted moving average (EWMA) SPC charts to 10 previously investigated SSI 

outbreaks that occurred from 2003 to 2013. We compared the results of SPC surveillance to the 

results of traditional SSI surveillance methods. Then, we analysed the performance of modified 

SPC charts constructed with different outbreak detection rules, EWMA smoothing factors and 

baseline SSI rate calculations.

Results—Conventional Shewhart and EWMA SPC charts both detected 8 of the 10 SSI 

outbreaks analysed, in each case prior to the date of traditional detection. Among detected 

outbreaks, conventional Shewhart chart detection occurred a median of 12 months prior to 
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outbreak onset and 22 months prior to traditional detection. Conventional EWMA chart detection 

occurred a median of 7 months prior to outbreak onset and 14 months prior to traditional 

detection. Modified Shewhart and EWMA charts additionally detected several outbreaks earlier 

than conventional SPC charts. Shewhart and SPC charts had low false-positive rates when used to 

analyse separate control hospital SSI data.

Conclusions—Our findings illustrate the potential usefulness and feasibility of real-time SPC 

surveillance of SSI to rapidly identify outbreaks and improve patient safety. Further study is 

needed to optimise SPC chart selection and calculation, statistical outbreak detection rules and the 

process for reacting to signals of potential outbreaks.

INTRODUCTION

Surgical site infections (SSI) are the most common type of healthcare-associated infection 

(HAI).1–5 Patients who develop SSIs have longer postoperative hospitalisations, increased 

mortality and higher healthcare-related costs compared with patients without SSIs.6–8 

Estimates of annual hospital costs of SSI range from €1.5 billion to €19 billion in Europe9 

and from $3 billion to $10 billion in the USA.10

Hospitals currently spend considerable time and resources attempting to optimise SSI 

prevention measures, but few strategies for prevention of SSI are evidence based.11 

Furthermore, no proven or widely accepted algorithm for SSI surveillance exists. In general, 

traditional SSI surveillance at an individual hospital involves a multistep process: data 

collection, rate calculation (typically on a quarterly or semiannual basis) and feedback to 

surgical personnel.12 SSI rates are often compared with previous rates at the same hospital 

and to external benchmarks, such as those established by the National Healthcare Safety 

Network (NHSN).13

Traditional approaches for SSI surveillance have several major deficiencies. First, the 

traditional approach is slow. Traditional statistical methods require aggregation of data over 

time, which delays analysis until sufficient data accumulate.14 Data accumulation often 

requires several months because SSI is a low-frequency event.15 Second, analyses based on 

average SSI rates during predefined and arbitrary time periods are associated with delayed 

outbreak detection and may fail to detect important SSI outbreaks altogether.16 For example, 

a signal from a cluster of SSIs that occurs during a single month may be diluted by accrual 

of additional data collected during subsequent months, prior to the next scheduled analysis. 

Third, investigators typically perform retrospective SSI analyses only periodically, which 

may delay detection of important outbreaks that occur between analyses. Finally, the use of 

external benchmarks, such as SSI rates published by the NHSN, is problematic. The NHSN 

publishes SSI rates for specific procedure types from aggregate national historical data that 

may not be applicable to an individual hospital currently experiencing an SSI outbreak. 

Therefore, in practice, hospital epidemiologists often do not independently detect an 

outbreak via real-time surveillance but rather are told about a suspected cluster of SSIs by a 

perceptive surgeon or microbiologist.

Statistical process control (SPC) is a statistical approach that addresses several shortcomings 

of traditional SSI surveillance. SPC combines longitudinal analysis methods with graphical 
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presentation of data to determine in real time whether variation exhibited by a process 

represents ‘common cause’ natural variation occurring by chance alone or ‘special cause’ 

unnatural variation occurring due to circumstances not previously inherent in the process.17 

When the latter case occurs, the underlying occurrence rate changes (increases or decreases), 

and the process is said to be inconsistent, or in SPC terminology, ‘out of statistical control.’ 

Processes that are in control follow stable laws of probability and, therefore, have 

predictable future events, whereas future events from out-of-control processes are less 

predictable.

Commonly employed in manufacturing and other industries, SPC methods are increasingly 

being used as a tool for healthcare improvement.18 Prior healthcare-related analyses have 

included study of methicillin-resistant Staphylococcus aureus colonisation and infection 

rates,19 SSI following caesarean section,20 complications following cardiac surgery16 and a 

nationwide outbreak of Pseudomonas in Norway.21 Investigators in the preceding 

retrospective Norwegian study concluded that SPC methods would have detected the 

outbreak 9 weeks earlier than traditional surveillance, thereby potentially greatly decreasing 

the number of infected patients and associated deaths.

We hypothesised that (1) SPC methods would accurately detect outbreaks of SSI at 

individual hospitals in our network; (2) SPC detection would occur earlier than detection 

using traditional surveillance methods; and (3) certain SPC methods and calculation 

alternatives would perform best for detection of SSI outbreaks.22–24 Thus, we conducted a 

retrospective pilot study within a large network of community hospitals to determine the 

feasibility and potential usefulness of various SPC surveillance methods for SSI outbreak 

detection.

METHODS

Setting

The Duke Infection Control Outreach Network (DICON) is a network of more than 40 

community hospitals in the Southeastern United States.25 Community hospitals within 

DICON receive expert infection control consultation, benchmark data on rates of SSI and 

other HAIs, detailed data analysis of time-trended surveillance data and educational 

services.26 Experienced infection preventionists prospectively enter data collected from 

patients undergoing more than 30 types of surgical procedures into the DICON Surgical 

Database. This database contains variables, such as type of surgical procedure, hospital, 

primary surgeon, procedure date and duration, patient American Society of 

Anesthesiologists classification system score,27 wound class and presence or absence of 

postoperative SSI, including causative organism. NHSN criteria are used to define and 

categorise SSIs.28

DICON hospitals detect potential SSI outbreaks by several mechanisms. DICON 

epidemiologists and infection preventionists perform regular surveillance for key NHSN 

procedures and compare individual member hospital’s SSI rates to DICON benchmark rates 

every 6 months. DICON personnel or staff members at individual hospitals, including 

hospital epidemiologists, infection preventionists, surgeons, infectious disease or other 
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clinicians, and microbiologists, may also report suspicious SSI clusters. DICON personnel 

investigate suspected SSI outbreaks and make recommendations, if indicated, that are 

designed to terminate the outbreak and return SSI rates to acceptable baselines.

Analysis plan

We analysed SSI data from the DICON Surgical Database for all procedures performed from 

September 2003 to August 2013. A total of 11 142 SSIs complicated the 1 005 286 

consecutive procedures performed over this 10-year time period (overall SSI rate=1.1%). 

Surgical data were included from all 50 hospitals that were DICON members during part or 

all of the study period and for all 44 procedure types performed during this time span.

We retrospectively reviewed all documented clusters of SSI detected by traditional 

surveillance measures during the study period. We examined formal outbreak reports and 

unpublished communication records of these previously detected clusters. These reports 

typically included procedures and surgeons involved, as well as the initial date of outbreak 

detection. We classified each prior outbreak as ‘possible’, ‘probable’ or ‘definite’. We 

classified 12 of 34 clusters as definite outbreaks; the remaining 22 clusters were determined 

to be probable or possible outbreaks. We excluded two definite outbreaks: one due to 

missing data and the other because its onset occurred near the beginning of the study period, 

precluding determination of an adequate pre-outbreak baseline SSI rate.

We applied SPC charts to each of the 10 definite SSI outbreaks with complete data (table 1). 

SSI rates for the outbreak hospital, associated procedures, and when indicated, particular 

surgeon, were plotted with monthly resolution. The centre line, representing the baseline SSI 

rate, was estimated by the mean SSI rate taken from the 12-month period that occurred from 

25 to 36 months prior to the beginning of the historically defined outbreak period. We used 

this 24-month lag when calculating baseline SSI rates in order to decrease the contribution 

of potentially elevated rates from the immediate pre-outbreak time period to the baseline 

rate.21 In addition, this approach to baseline estimation allowed us to simulate prospective 

surveillance for the months approaching outbreak onset. For example, SPC charts 

prospectively created at the time of outbreak onset with a 12-month moving window 

baseline and 24-month lag would have the same characteristics as SPC charts used in this 

study.

For each outbreak, we first constructed conventional Shewhart p control charts, based on an 

underlying binomial sampling distribution for binary SSI data.22 The upper control limit 

(UCL) and lower control limit were set ±3 binomial SD from the centre line, following 

standard SPC practice.17 Any data point above the UCL indicated a likely SSI rate change 

and, thus, a potential outbreak. For convenience, we standardised each chart to plot z-scores, 

converting SSI rates to SD from the baseline rate. We used a standardised centre line at 0 

and control limits of ±3.

We also constructed standardised exponentially weighted moving average (EWMA) control 

charts for each of the 10 historic outbreaks.29 EWMA control charts average data collected 

from a process over time, giving increased weight to the most recent observations. EWMA 

charts are more powerful than Shewhart charts for detecting small or gradual changes in the 

Baker et al. Page 4

BMJ Qual Saf. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rate of a process but can be slower to detect large changes.30 By convention, we set the 

EWMA smoothing factor, λ, to 0.2 and the control limits to ±3 SD of the plotted statistic 

from the centre line. Any data point above the UCL represented an ‘out-of-control’ signal 

and indicated a possible outbreak.

For each outbreak hospital, we analysed SSI rates and trends from the relevant procedures 

and time periods, including data collected during the initial outbreak investigations. We used 

dates of outbreak onset and outbreak termination that local hospital and DICON personnel 

had documented during their investigations. We defined the date of traditional surveillance 

outbreak detection as the date that the initial outbreak investigation began, which was nearly 

always after the date of outbreak onset. We defined the date of SPC outbreak detection from 

Shewhart and EWMA charts as the date of the first out-of-control signal for each chart type.

We determined performance of Shewhart and EWMA charts by analysing each chart’s 

ability to detect the specified outbreak (sensitivity) and compared the date of SPC detection 

to both the date of outbreak onset and date that traditional surveillance methods originally 

detected the outbreak. We also evaluated specificity of these charts by applying the same 

conventional Shewhart and EWMA charts to 10 control hospitals. For each outbreak study 

hospital, we randomly selected one control hospital that did not have a known SSI outbreak 

for the surgical procedure(s) and outbreak time period analysed at the study hospital. We 

used the same 12-month baseline time period, control chart formulas and surgical 

procedure(s) used to analyse the corresponding study hospital outbreak. No potential control 

hospitals performed liver transplant surgeries; therefore, for the control hospital 

corresponding to study hospital I (outbreak 10), we substituted colon surgeries, which had 

similar volume and expected SSI rates. We evaluated all out-of-control SPC signals at each 

control hospital for the 12 months immediately preceding time of outbreak onset at the 

paired study hospital. Epidemiologists subsequently evaluated SSI data associated with SPC 

signals at control hospitals to further investigate false-positive alerts.

In secondary analysis, we explored numerous calculation alternatives for the Shewhart and 

EWMA charts.22–24 For example, we varied the outbreak detection rules (eg, requiring two 

consecutive data points instead of a single point above the UCL to signal a possible 

outbreak), EWMA smoothing factor and data used to determine baseline SSI rates (eg, using 

DICON network-wide data instead of individual outbreak-hospital data to calculate baseline 

rates, or using a moving window21 to iteratively update the baseline over time).

Patient data were deidentified prior to entry into the DICON Surgical Database. Institutional 

review boards at each author’s organisation declared the study to be exempt research. We 

maintained the data in Microsoft Access and Microsoft Excel (Microsoft, Redmond, WA), 

and we analysed the data using SAS V9.4 (SAS Institute).

RESULTS

Traditional SSI surveillance methods detected the 10 SSI outbreaks a median of 9 months 

(IQR: 3, 16 months) after actual outbreak onset (table 2). Traditional surveillance did not 
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detect any outbreak prior to outbreak onset, and three outbreaks were not detected until after 

the outbreak time period had concluded (figure 1).

Conventional Shewhart SPC charts detected 8 of the 10 SSI outbreaks, 6 of which were 

detected prior to the date of outbreak onset (table 2). Among detected outbreaks, median 

Shewhart chart detection occurred 12 months (IQR: 6, 20 months) prior to outbreak onset 

(figure 1). Conventional EWMA SPC charts detected the same eight outbreaks, including 

five outbreaks prior to outbreak onset. Median EWMA chart detection occurred 7 months 

(IQR: −3, 20 months) prior to outbreak onset. Two of the outbreaks were not detected by 

either SPC method.

Among detected outbreaks, each Shewhart and EWMA chart detected outbreaks prior to, or, 

in one case, at the same time as traditional surveillance methods (figure 2). Shewhart 

detection of the eight recognised outbreaks occurred a median of 22 months (IQR: 14, 33 

months) prior to traditional detection. Median EWMA detection of these eight outbreaks 

occurred 14 months (IQR: 9, 31 months) prior to traditional detection.

Analysis of the 10 control hospitals with Shewhart charts produced out-of-control signals at 

three hospitals during the 12 months analysed, giving a specificity of 70% and positive 

predictive value (PPV) of 73% (data not shown). Each control hospital with an out-of-

control signal had only a single data point above the UCL. Control hospital analysis with 

EWMA charts produced out-of-control signals at only one hospital, giving a specificity of 

90% and PPV of 89%. The EWMA chart for this hospital had four data points above the 

UCL, and this hospital was one of the three control hospitals that also had false-positive 

alarms when analysed with Shewhart charts. Based on a priori definitions, we considered all 

SPC signals generated at control hospitals to represent false-positive alarms; however, 

subsequent epidemiologist review of SSI data associated with these signals revealed that all 

three control hospitals had important SSI rate increases at the time the out-of-control signals 

were generated.

Shewhart and EWMA charts constructed for SSI outbreaks 4 and 7 serve as examples to 

illustrate SPC chart interpretation (figures 3 and 4). Outbreak 4 occurred at hospital C from 

January to December 2009. This outbreak involved several orthopaedic procedures, 

including hip prosthesis, knee prosthesis, ‘other’ prosthesis, open reduction of fracture and 

limb amputation surgeries performed by a single surgeon. Traditional methods of outbreak 

detection did not identify the outbreak until March 2010, fourteen months after outbreak 

onset, at which point the outbreak already had ceased. However, Shewhart detection 

occurred via the first out-of-control signal above the UCL in February 2008 (figure 3A), and 

EWMA detection occurred in July 2009 (figure 3B).

Outbreak 7 occurred at hospital F from April 2010 to April 2011. The original investigation 

detected the outbreak in November 2010 and revealed increased cumulative rates of SSI over 

this time period rather than increased rates for certain procedures or surgeons. The first out-

of-control Shewhart signal also occurred in November 2010, seven months after outbreak 

onset (figure 4A). The EWMA chart, however, had an out-of-control signal in February 
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2010, two months prior to outbreak onset and 9 months prior to traditional and Shewhart 

detection (figure 4B).

In secondary analysis, several variations in SPC chart construction and detection led to 

important changes in outbreak detection sensitivity. For example, the use of two consecutive 

data points above the UCL to define a signal led to Shewhart detection of only 2 of the 10 

outbreaks. EWMA charts detected six outbreaks using this detection rule.

We further illustrate how changes in SPC chart calculations affect outbreak detection by 

reconsidering three of the outbreaks (figure 5). First, we applied different values for λ, the 

EWMA smoothing factor, to the outbreaks. For outbreak 3, we used a value for λ of 0.6, 

instead of 0.2, to give greater weight to the most recent observations. The modified EWMA 

chart detected the outbreak in July 2007, twenty-one months sooner than the original 

EWMA chart with λ=0.2 (figure 5A). Second, we analysed charts using baseline data from 

the entire DICON network of hospitals rather than from the outbreak hospital alone. For 

outbreak 4, the EWMA chart that used the network-wide baseline SSI rates exhibited an out-

of-control signal in November 2008, eight months earlier than the original EWMA chart that 

used only hospital C data to estimate the baseline (figure 5B). Third, we experimented with 

a moving SSI baseline rate that changed with incorporation of new data each month. As one 

example, we used a 3-month lag to exclude the most recent data from the baseline and a 

moving baseline window of 12 months. The modified Shewhart chart detected outbreak 10 

in March 2013, only 2 months after outbreak onset (figure 5C). The EWMA chart with this 

moving baseline also detected this outbreak in March 2013 (data not shown). In comparison, 

conventional Shewhart and EWMA charts did not detect this outbreak (table 2).

DISCUSSION

SPC techniques effectively identified the majority of SSI outbreaks that were previously 

investigated in our network of community hospitals using traditional surveillance methods 

over the 10-year study period. Conventional Shewhart and EWMA SPC charts detected 80% 

of known SSI outbreaks. Simulated SPC detection of these outbreaks usually occurred many 

months prior to both outbreak onset and original outbreak detection using traditional SSI 

surveillance measures. In addition, control hospitals had a low rate of false-positive signals. 

In fact, after further analysis of control hospital SSI data, we discovered that ‘false positive’ 

signals may have instead represented clinically relevant SSI clusters not detected by 

traditional surveillance. These results highlight the potential for SPC to facilitate early 

recognition and termination of outbreaks and to prevent outbreaks altogether by prompt 

detection of initial out-of-control signals meriting further investigation.

Overall, conventional Shewhart and EWMA charts had similar sensitivity and specificity in 

outbreak detection, as well as timing of detection; however, performance of these SPC chart 

types, in particular, timing of outbreak detection, differed notably for certain outbreaks. In 

addition, SPC performance varied significantly with adjustments to key chart characteristics, 

including detection rules, weight given to most recent data and baseline SSI rate 

determinations. For several outbreaks, calculation alternatives provided improved detection 
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compared with conventional Shewhart and EWMA charts. These design considerations 

should be further investigated in order to optimise the use of SPC in this context.

Only two of the SSI outbreaks (outbreak 8 and outbreak 10) that we studied were not 

detected by conventional Shewhart or EWMA SPC charts. In these two cases, the 12-month 

baseline period chosen a priori for all charts (25-36 months prior to documented outbreak 

onset) coincided with increased SSI rates for the same procedures that later were associated 

with confirmed outbreaks. Using ‘baseline’ rates that were elevated above true steady-state 

or expected SSI rates interfered with outbreak detection. These two examples underscore the 

need for further investigation of how to best define baseline data when using SPC 

surveillance for HAIs. For example, modified Shewhart and EWMA charts with moving 

baselines detected outbreak 10 shortly after outbreak onset and prior to traditional 

surveillance detection (figure 5). The lack of detection of outbreaks 8 and 10 with 

conventional Shewhart and EWMA charts also suggests that SPC surveillance is best used to 

augment and improve, rather than replace, traditional surveillance methods. Some outbreaks 

of SSI, for example, those associated with an unusual pathogen or procedures that have 

extremely low infection rates, may remain best detected by an astute microbiologist or 

surgeon.

Our results are concordant with prior studies that demonstrated benefit of SPC surveillance 

for HAIs, typically for either a single procedure type or pathogen.19–21 In contrast, our study 

investigated detection of outbreaks associated with many different procedure types or 

combinations of procedures. Also, successful detection of an outbreak occurred when we 

restricted data to a single surgeon with increased SSI rates or, when the outbreak was not 

surgeon specific, when we included data on SSI for all surgeons at a hospital performing the 

implicated procedure types. Finally, SPC charts performed well throughout the 10-year 

study period, including when they were applied to ‘smoldering’ outbreaks associated with 

mild or moderate increases in SSI rates that often had delayed detection by traditional 

surveillance or to acute-onset outbreaks with transient but steep SSI rate elevations.

A key contribution of this study is its application of SPC methods to a large number of 

diverse, well-documented SSI outbreaks with discrete dates of outbreak onset and 

subsequent traditional detection. These data allowed us to directly compare SPC 

performance with traditional surveillance techniques. Our unique interdisciplinary 

partnership between physician epidemiologists with SSI surveillance expertise and 

engineering statisticians with SPC expertise gave us the opportunity to develop and explore 

new hypotheses regarding SSI surveillance and SPC methodology.

Our findings have important implications for future methods of surveillance of SSI and a 

broad range of other HAIs. Early termination or prevention of SSI outbreaks could 

substantially decrease duration of hospitalisation, readmissions, morbidity, mortality and 

healthcare costs for a large number of surgical patients. Similar SPC methods could augment 

surveillance of other HAIs, such as Clostridium difficile infections, central line-associated 

bloodstream infections and catheter-associated urinary tract infections. Improved detection 

of clusters of these infections could also promote earlier intervention171822 and quality 

improvement. Use of SPC for prospective HAI surveillance would require resources for data 
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processing, analysis and investigation of out-of-control signals; however, healthcare facilities 

could mitigate these costs by automating many facets of SPC and using data collected by 

existing surveillance techniques. In addition, the low false-positive rate demonstrated by this 

study shows the potential for SPC surveillance to have low investigative burden on health 

systems.

Based on our pilot data, we believe SPC charts can contribute to earlier detection of 

increases in SSI. However, further research is needed to determine the best and most 

efficient use of SPC for SSI surveillance. For example, which chart types and associated 

calculations will maximise detection while limiting false alarms? What are the best detection 

rules, and how aggressively should hospital personnel investigate each type and magnitude 

of out-of-control signal? How should investigators estimate baseline rates, and how should 

these estimates be updated over time? Finally, how might different SPC charts be used in 

combination to maximise performance?

Our study has two primary limitations. First, the study was retrospective. The use of well-

documented past SSI outbreaks was useful for large-scale analysis of performance of 

numerous SPC chart types; however, retrospective analysis limited evaluation of the 

specificity of out-of-control signals at study hospitals. For example, some signals in this 

study interpreted as markers of early SSI outbreak detection could have instead represented 

detection of distinct outbreaks that occurred earlier than the historic outbreaks studied and 

were not captured by traditional surveillance. Other signals may have been false alarms that 

coincidentally preceded an actual outbreak. Analysis of prospective surveillance of SSI with 

SPC is needed to further evaluate and optimise specificity of outbreak detection. Broad, 

prospective, automated surveillance likely will produce some false or mild signals that do 

not indicate impending outbreaks. However, prospective surveillance may also reveal signals 

of important SSI increases that escape traditional detection methods altogether, as illustrated 

above. Therefore, developing protocols for responding in real time to various types and 

magnitudes of signals will be an important next step. These protocols likely will not 

recommend immediate investigation of all out-of-control signals; thus, the initial 

investigation of some true outbreaks may not occur at the time of the first SPC signal. A 

second limitation of this study is the fact that experienced epidemiologists and engineering 

statisticians constructed and interpreted SPC charts. Ultimately, we plan to develop an 

automated tool for early SSI detection that does not require specialised knowledge in 

epidemiology and this statistical specialty to use and interpret.

In summary, results of this pilot study, based on empirical analysis of 10 years of SSI data 

from a large network of community hospitals, demonstrate the feasibility and usefulness of 

SPC surveillance of surgical procedures to improve early detection of SSI outbreaks. Early 

outbreak detection could improve important SSI-related outcomes, such as days of 

hospitalisation, mortality and cost. SPC surveillance could similarly be applied to any 

number of other important HAIs. We hypothesise that a subsequent prospective study of 

conventional and optimised SPC methods will verify the improvements in SSI surveillance 

predicted by this preliminary study.
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Figure 1. 
Timeline of traditional surveillance, Shewhart statistical process control (SPC), and 

exponentially weighted moving average (EWMA) SPC detection of 10 historic surgical site 

infection (SSI) outbreaks. SSI outbreaks occurred in the Duke Infection Control Outreach 

Network (DICON) from 2003 to 2013. *Outbreaks 8 and 10 were not detected by Shewhart 

or EWMA SPC charts. †Adjacent bars indicate that detection occurred during the same 

month.
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Figure 2. 
Early detection of historic surgical site infection (SSI) outbreaks by Shewhart and 

exponentially weighted moving average (EWMA) statistical process control (SPC) charts in 

comparison to time of traditional surveillance detection. SSI outbreaks occurred in the Duke 

Infection Control Outreach Network (DICON) from 2003 to 2013. *The Shewhart SPC 

chart detected outbreak 7 at the same time as traditional detection. †Outbreaks 8 and 10 

were not detected by Shewhart or EWMA SPC charts.

Baker et al. Page 13

BMJ Qual Saf. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Statistical process control (SPC) charts illustrating detection of a surgical site infection (SSI) 

outbreak following orthopaedic procedures performed at one hospital by a single surgeon. 

Shewhart (A) and exponentially weighted moving average (EWMA) (B) SPC detection 

dates are compared with the date of historic traditional surveillance outbreak detection. CL, 

centre line; LCL, lower control limit; UCL, upper control limit.
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Figure 4. 
Statistical process control (SPC) charts illustrating detection of a surgical site infection (SSI) 

outbreak including all procedures performed at one hospital. Shewhart (A) and exponentially 

weighted moving average (EWMA) (B) SPC detection dates are compared with the date of 

historic traditional surveillance outbreak detection. CL, centre line; LCL, lower control 

limit; UCL, upper control limit.
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Figure 5. 
Statistical process control (SPC) charts illustrating variations in chart construction and 

associated changes in detection of surgical site infection (SSI) outbreaks at three hospitals. 

(A) Exponentially weighted moving average (EWMA) SPC chart with λ=0.2 is compared 

with EWMA chart with λ=0.6 (outbreak 3). (B) EWMA SPC chart constructed with 

baseline SSI data from the single outbreak hospital is compared with EWMA chart with 

baseline SSI data from the Duke Infection Control Outreach Network (DICON) (outbreak 

4). (C) Shewhart SPC chart using fixed baseline data from months 25 to 36 prior to outbreak 
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onset is compared with Shewhart SPC chart with 12-month moving baseline window and 3-

month lag (outbreak 10). All SPC detection dates are compared with the date of historic 

traditional surveillance outbreak detection. CL, centre line; LCL, lower control limit; UCL, 

upper control limit.
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Table 1

Description of 10 surgical site infection outbreaks, Duke Infection Control Outreach Network (DICON), 

2003-2013

Outbreak number Hospital designation Outbreak time period NHSN procedure(s) Surgeon

1 A November 2007 to November 2012 Hip prosthesis, knee prosthesis Single surgeon

2 B January 2008 to December 2008 Colon surgery, rectal surgery All

3 B July 2008 to April 2012 Knee prosthesis All

4 C January 2009 to December 2009 Orthopaedic procedures* Single surgeon

5 D January 2009 to December 2009 Caesarean section All

6 E January 2010 to December 2011 Knee prosthesis All

7 F April 2010 to April 2011 All procedures All

8 G February 2011 to October 2011 Spinal fusion All

9 H July 2011 to November 2011 Laminectomy, spinal fusion All

10 I January 2013 to March 2013 Liver transplant All

*
Orthopaedic procedures included hip prosthesis, knee prosthesis, ‘other’ prosthesis, open reduction of fracture and limb amputation surgeries. 

NHSN, National Healthcare Safety Network.
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