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Abstract
Neuronal networks in the spinal cord generate and execute all locomotor-related movements by transforming descending 
signals from supraspinal areas into appropriate rhythmic activity patterns. In these spinal networks, neurons that arise from 
the same progenitor domain share similar distribution patterns, neurotransmitter phenotypes, morphological and electro-
physiological features. However, subgroups of them participate in different functionally distinct microcircuits to produce 
locomotion at different speeds and of different modalities. To better understand the nature of this network complexity, here 
we characterized the distribution of parvalbumin (PV), calbindin D-28 k (CB) and calretinin (CR) which are regulators of 
intracellular calcium levels and can serve as anatomical markers for morphologically and potential functionally distinct 
neuronal subpopulations. We observed wide expression of CBPs in the adult zebrafish, in several spinal and reticulospinal 
neuronal populations with a diverse neurotransmitter phenotype. We also found that several spinal motoneurons express CR 
and PV. However, only the motoneuron pools that are responsible for generation of fast locomotion were CR-positive. CR 
can thus be used as a marker for fast motoneurons and might potentially label the fast locomotor module. Moreover, CB was 
mainly observed in the neuronal progenitor cells that are distributed around the central canal. Thus, our results suggest that 
during development the spinal neurons utilize CB and as the neurons mature and establish a neurotransmitter phenotype they 
use CR or/and PV. The detailed characterization of CBPs expression, in the spinal cord and brainstem neurons, is a crucial 
step toward a better understanding of the development and functionality of neuronal locomotor networks.
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Abbreviations
5-HT	� 5-hydroxytryptamine (serotonin)
CB	� Calbindin D-28 k
CBPs	� Calcium binding proteins
CC	� Central canal
ChAT	� Choline-acetyltransferase
CR	� Calretinin
D	� Dorsal
DON	� Descending octaval nucleus
GABA	� γ-Aminobutyric acid
Glut	� Glutamate
IMRF	� Intermediate reticular formation
IRF	� Inferior reticular formation

MA	� Mauthner cell axon
Mlf	� Medial longitudinal fascicle
MN	� Motoneuron
Nmlf	� Nucleus of the medial longitudinal fascicle
P	� Posterior
PV	� Parvalbumin
RV	� Rhombencephalic ventricle
SRF	� Superior reticular formation
TeV	� Tectal ventricle
V	� Ventral
Va	� Valvula cerebellum

Introduction

A plethora of neuronal functions were attributed to calcium 
binding proteins (CBPs), including neuronal excitability, 
neurotransmitter release, and excitotoxicity (Baimbridge 
et al. 1992; Andressen et al. 1993; Schwaller et al. 2002). 
Calretinin (CR), calbindin D28-k (CB) and parvalbumin 
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(PV) are three major EF-hand CBPs that play significant 
roles in the regulation of intracellular Ca2+ homeostasis by 
buffering and transporting Ca2+ (Blaustein 1988; Heizman 
and Braun 1992; Andressen et al. 1993; Chard et al. 1993; 
Berridge et al. 2000). Although the precise physiological 
function of PV, CB and CR is still not fully understood, each 
of them individually or in combinations has been demon-
strated to be a valuable marker of separate neuron popula-
tions in the vertebrate central nervous system (Arai et al. 
1991; Baimbridge et al. 1992; Resibois and Rogers 1992; 
Andressen et al. 1993; Kress et al. 2015) including the spi-
nal cord (Fournet et al. 1986; Antal et al. 1990, 1991; Celio 
1990; Ince et al. 1993; Ren et al. 1993; Megías et al. 2003; 
Anelli and Heckman 2005; Morona et al. 2006a, b). The 
presence of CBPs in different neuronal populations, such 
as cholinergic, GABAergic, glutamatergic and nitrinergic 
(Baimbridge et al. 1992), supports the notion that CBPs are 
not associated to any neurochemical specificity of neurons. 
However, in numerous studied areas within the nervous sys-
tem, they are localized in nearly non-overlapping cell assem-
blies. This segregated distribution pattern allows the iden-
tification of subgroups within nuclei that represent discrete 
neuronal micro-circuits, which are not cyto-architecturally 
separated (Andressen et al. 1993), but may perform differ-
ent functions.

In all vertebrates, locomotion relies on the activation of 
central pattern-generating networks located within the spi-
nal cord (Grillner 2003, 2006; Goulding 2009; Kiehn 2006; 
Grillner and Jessell 2009). These defined spinal networks 
transform descending supraspinal signals to generate move-
ments with diverse speeds and of different modalities (Grill-
ner and Jessell 2009; Esposito et al. 2014; Kiehn 2016), 
and they are formed by a highly heterogeneous population 
of neurons. An important step towards understanding the 
principles that govern the organization and functionality 
of spinal locomotor circuits is to determine the identity of 
the different spinal neuron populations. Numerous types of 
neurons have been already described based on their develop-
mental origin, and morphological and electrophysiological 
properties in the vertebrate spinal cord (Jankowska 1992; 
Jessell 2000; Briscoe and Ericson 2001; Lee and Pfaff 
2001; Goulding et al. 2002; Sueiro et al. 2004; Grillner 
2006; Kiehn 2006; Lewis 2006; Windhorst 2007; McCrea 
and Rybak 2008; Mahmood et al. 2009; Berkowitz et al. 
2010; Bikoff et al. 2016) including zebrafish (Bernhardt 
et al. 1990; Hale et al. 2001; Drapeau et al. 2002; McLean 
and Fetcho 2004; Higashijima et al. 2004a, b, c; Kimura 
et al. 2008; Satou et al. 2009, 2012; Bradley et al. 2010; 
Ampatzis et al. 2013; Ferg et al. 2014; Menelaou et al. 2014; 
Böhm et al. 2016). The continuous adjustment of locomo-
tor speed relies on the precise recruitment of distinct spinal 
interneurons and motoneurons. While neurons that belong to 
the same populations in zebrafish spinal cord, as they arise 

from the same progenitor pool, share similar morphologi-
cal and electrophysiological properties and release the same 
neurotransmitter, they are functionally distinct, in terms of 
their recruitment plan (McLean et al. 2007; Gabriel et al. 
2011; Ausborn et al. 2012; Ampatzis et al. 2013; Kishore 
et al. 2014; Menelaou et al. 2014; Björnfors and El Manira 
2016). To this end, studies in adult zebrafish have shown 
that the generation of locomotion at different speeds relies 
on sequential activation of functionally distinct subpopula-
tions (slow, intermediate and fast) of interneurons (Ausborn 
et al. 2012; Ampatzis et al. 2014; Björnfors and El Manira 
2016) and motoneurons (Gabriel et al. 2011; Ampatzis et al. 
2013). To understand further the nature of this functional 
complexity of spinal circuitry organization, we character-
ized the distribution pattern of CBPs, regulators of intracel-
lular calcium that serve as valuable anatomical markers for 
morphologically and potential functionally distinct neuronal 
subpopulations. In the present work, we provide a detailed 
description of the distribution pattern of calretinin (CR), 
calbindin D28-k (CB) and parvalbumin (PV) containing 
neurons to determine the relationship between the type of 
calcium binding proteins present in adult zebrafish spinal 
cord and brain descending neurons and the accompanying 
function.

We first show that CR and PV containing neurons were 
co-distributed and occasionally co-localized in motoneurons 
and interneurons with a diverse neurotransmitter phenotype 
in the adult zebrafish spinal cord. In contrast, CB immu-
noreactivity was observed in neuronal progenitor cells that 
were distributed around the central canal. We then show 
that the calcium binding protein CR is highly expressed in 
fast and in few intermediate motoneurons but not in slow 
motoneurons. Our results suggest that during development 
the spinal cord neurons utilize CB as an intracellular buffer 
protein and as they mature and establish a neurotransmit-
ter phenotype they use CR or/and PV. Moreover, our find-
ings propose that motoneurons which are involved in fast 
modalities of locomotion, such as fast swimming and escape, 
require an additional regulator for their intracellular calcium, 
and therefore CR can be potentially used as an anatomical 
marker for the fast locomotor system. We believe that such 
comprehensive analysis is necessary and potentially highly 
valuable as a framework for ongoing and future studies in 
the spinal neuronal networks controlling generation of loco-
motion at different speeds and modalities.

Materials and methods

Experimental animals

All animals were raised and kept in the core facility at the 
Karolinska Institute according to established procedures. 
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Adult zebrafish (Danio rerio; n = 190; 10–12 weeks old; 
length, 16–19 mm; weight, 0.03–0.05 g) wild type (AB/
Tübingen) of either sex where used in this study.

Motoneuron and descending neuron labeling

Zebrafish (n = 48) of either sex were anesthetized in 0.03% 
tricaine methane sulfonate (MS-222, Sigma-Aldrich) and 
placed, lying lateral side up, onto a wet paper tissue inside 
a petri dish. Retrograde labeling of axial motoneurons was 
performed by dye injections of tetramethylrhodamine-dex-
tran (3000 MW; ThermoFisher, D3307) into specific muscle 
fiber types (slow, intermediate or fast), which in the adult 
zebrafish are arranged in an anatomically segregated man-
ner, as described before in detail (Ampatzis et al. 2013). In 
addition, retrograde labeling of all motoneurons was per-
formed by applying similar procedures to spinal cord ven-
tral roots. To label the neurons descending from the brain 
to the spinal cord, dye was injected into the spinal cord at 
approximately the level of the 8-10th vertebra. Afterwards, 
animals were kept for at least 24 h to allow for retrograde 
transport of the tracer.

Immunohistochemistry

All animals were deeply anesthetized with 0.1% MS-222. 
We then dissected the spinal cords and/or the brains and 
fixed them in 4% paraformaldehyde (PFA) in phosphate 
buffer saline (PBS) (0.01M; pH 7.4) at 4 °C for 2–14 h. We 
performed immunolabeling in both whole mount spinal 
cords and in cryosections. For cryosections, the tissue was 
removed carefully and cryoprotected overnight in 30% (w/v) 
sucrose in PBS at 4 °C, embedded in OCT Cryomount (His-
tolab), rapidly frozen in dry-ice-cooled isopentane (2-meth-
ylbutane; Sigma) at approximately − 35 °C, and stored at 
− 80 °C until use. Transverse coronal plane cryosections 
(thickness 25 µm) of the tissue were collected and pro-
cessed for immunohistochemistry. In all cases, the tissue was 
washed three times for 5 min in PBS. Nonspecific protein 
binding sites were blocked with 4% normal donkey serum 
with 1% bovine serum albumin (BSA; Sigma) and 1% Triton 
X-100 (Sigma) in PBS for 30 min at room temperature (RT). 
Primary antibodies (Table 1) were diluted in 1% of blocking 
solution and applied for 24–90 h at 4 °C. After thorough 
buffer rinses, the tissue was then incubated with the appro-
priate secondary antibodies (Table 1) diluted 1:500 in 1% 
Triton X-100 (Sigma) in PBS overnight at 4 °C. Finally, the 
tissue was thoroughly rinsed in PBS and cover-slipped with 
fluorescent hard medium (VectorLabs; H-1400).

The antibodies used in this study have been widely used 
in zebrafish before and have been described to reliably iden-
tify neurotransmitter phenotypes (anti-ChAT: Clemente et al. 
2004; Mueller et al. 2004, 2006; Reimer et al. 2008; Moly 

et al. 2014; Ohnmacht et al. 2016; anti-GABA; Higashijima 
et al. 2004a; Montgomery et al. 2016; Djenoune et al. 2017; 
anti-Glycine; anti-Serotonin; Kuscha et al. 2012; McPherson 
et al. 2016). To further evaluate the antibody specificity, 
adjacent sections or additional whole mount spinal cords 
were used in the absence of the first or second antibody. In 
all cases, no residual immunolabeling was detected. Fur-
thermore, to assess the specificity of antibodies against the 
selected neurotransmitters (GABA, glutamate, glycine and 
serotonin), we pre-incubated the neurotransmitter antibod-
ies used in this study with their corresponding antigen for 
1 h at RT (100–400 µΜ) GABA (A2129, Sigma-Aldrich), 
glutamate (G3291, Sigma-Aldrich), glycine (G6761, 
Sigma-Aldrich), and serotonin (14927, Sigma-Aldrich) 
which eliminated any immunoreactivity. In addition, we 
performed similar experiments in transgenic zebrafish lines 
(Gad1b:GFP, Vglut2:GFP, Glyt2:GFP and Tph2:GFP), in 
which the majority of the respective neurons express green 

Table 1   Antibodies used

CB calbindin D-28 k, CR calretinin, PV parvalbumin, ChAT choline-
acetyltransferase, GABA γ-Aminobutyric acid

Antigen Host Source Code Dilution

Primary
 PV Mouse Swant 235 1:3000
 PV Rabbit Swant PV27 1:3000
 CR Rabbit Swant CR7697 1:500
 CR Mouse Swant 6B3 1:1000
 CB D-28 k Mouse Swant 300 1:2000
 CB D-28 k Rabbit Millipore AB1778 1:200
 ChAT Goat Chemicon AB144P 1:150
 Islet1 Mouse DSHB 40.2D6 1:100
 GABA Rabbit Sigma A2052 1:2000
 Glycine Rat ImmunoSolu-

tion
IG1002 1:1000

 Glutamate Rabbit Sigma G6642 1:4000
 Serotonin Rabbit Sigma S5545 1:4000
 Sox-2 Goat R&D Systems AF2018 1:500
 Elav3 + 4 

(HuC/D)
Rabbit GeneTex GTX128365 1:500

Secondary
 Goat IgG-568 Donkey ThermoFisher A-11057 1:500
 Mouse IgG-

647
Donkey ThermoFisher A-31571 1:500

 Mouse IgG-
568

Goat ThermoFisher A-11004 1:500

 Mouse IgG-
488

Donkey ThermoFisher A-21202 1:500

 Rat IgG-550 Donkey ThermoFisher SA5-10027 1:500
 Rabbit IgG-

488
Donkey ThermoFisher A-21206 1:500

 Rabbit IgG-
568

Donkey ThermoFisher A-10042 1:500
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fluorescent protein (GFP). In all cases, most of the GFP+ 
neurons were also immunolabeled with antibodies (data not 
shown) suggesting the specificity of our immunodetection.

Analysis

Imaging was carried out in a laser scanning confocal micro-
scope (LSM 510 Meta, Zeiss). Cell counting was performed 
in segment 15 of the adult zebrafish spinal cord (in whole 
mount preparations), or in non-overlapping fields of spinal 
cord sections, between 14 and 16 spinal cord segments. The 
relative position of the somata of neurons within the spi-
nal cord was calculated in whole mount preparations, using 
the lateral, dorsal, and ventral edges of the spinal cord as 
well as the central canal as landmarks. The relative position 
was calculated using ImageJ. Examination of the descend-
ing neurons was performed from a series of coronal brain 
sections, throughout the brain. Cells of each analyzed brain 
area were counted in a section that sampled the area well. 
The nomenclature used for the brain areas of descending 
neurons was based on the topological zebrafish brain atlas 
(Wullimann et al. 1996). All figures and graphs were pre-
pared with Adobe Photoshop and Adobe Illustrator (Adobe 
Systems Inc., San Jose, CA, USA). Digital modifications of 
the images (changes in brightness and contrast) were mini-
mal to not affect the biological information. All images from 
double-labeling immunofluoresence experiments were post 
hoc converted to magenta-green to make this work more 
accessible to red-green color-blind readers.

Statistics

The significance of differences between the means 
in exper imental animal groups for the detec-
t ion of  CBPs was analyzed using One-way 
ANOVA followed by post hoc Tukey, using Prism (Graph-
Pad Software Inc.). Differences were considered to be 
significant if p < 0.05. Data presented here are given as 
mean ± SEM.

Results

Distribution pattern of calcium binding proteins 
in the adult zebrafish spinal cord

To determine the expression pattern of the three major 
CBPs (CR, CB and PV), we analyzed their immunoreactiv-
ity in the whole hemisegment that corresponds to segment 
15 of the adult zebrafish spinal cord. The detailed distri-
bution analysis revealed that CR+ and PV+ neurons are 

co-distributed throughout the motor column, from the most 
ventrolateral to middle part (Fig. 1a, c, d, f). In addition to 
the neuronal somata staining observed, profuse fiber labe-
ling was also present in the neuropil (Fig. 1a, c) where the 
spinal motoneuron and interneuron dendrites are extend-
ing. Immunoreactivity for both CR and PV was observed 
in various body sized neurons (CR+: 61.57 ± 4.85 µm2, 
n = 3 zebrafish; PV+: 72.87 ± 5.68 µm2, n = 3 zebrafish; 
Fig. 1h,i). Analysis of the complete number of CB+ neu-
rons in zebrafish spinal cord hemisegment revealed a neu-
ronal population significantly larger (136.2 ± 3.19 neurons/
hemisegment, n = 7 zebrafish, Fig. 1g) than that observed 
for CR and PV (CR+: 56.57 ± 2.94 neurons/hemisegment, 
n = 6 zebrafish; PV+: 43.5 ± 0.99 neurons/hemisegment, 
n = 6 zebrafish, Fig. 1g). Numerous small sized CB+ neu-
rons (22.51 ± 0.39 µm2, n = 3 zebrafish, Fig. 1i) were pri-
marily present in the middle part of the spinal cord, in 
close apposition to the central canal. Dorsal spinal regions 
practically lacked the selected CBP+ cells. Overall, these 
observations were extremely consistent from animal to 
animal.

The wide co-distribution of CR+ and PV+ neurons in 
the same area of the adult zebrafish spinal cord and their 
expression in almost similar sized neurons (Figs. 1i, 2a) 
strongly suggested the possibility of co-localization of 
both CBPs in the same population of neurons. Thus, to 
test and estimate the proportion of co-localization of the 
different CBPs in neurons, double-labeling experiments 
were performed. There was no co-expression of CB with 
either of the other calcium buffering proteins (CR or PV, 
n = 6 zebrafish, Fig. 2a–c). In contrast, the majority of 
PV+ neurons were found to express also CR (CR+PV+: 
51%, n = 8 zebrafish, Fig. 2d, e). In addition, a popula-
tion of CR+PV− neurons (41%) and a small population of 
CR−PV+ neurons (8%) were also detected (Fig. 2e). Over-
all, these data clearly show distinct cytoarchitectural dis-
tribution patterns of CR+, CB+ and PV+ neurons in adult 
zebrafish spinal cord.

Calcium binding proteins are localized in distinct 
neurochemical populations

Neuronal control of movements is organized by a hetero-
geneous population of spinal neurons (interneurons and 
motoneurons) characterized by specific neurotransmitter 
phenotypes (Grillner 2003; Kiehn 2006; Goulding 2009). 
To explore the relationship between CBP expression and 
neurotransmitter typology of different spinal neuronal 
populations, we sought to establish a detailed map of CR, 
CB or PV immunoreactivity in GABAergic, glycinergic, 
glutamatergic, cholinergic and serotonergic neurons in the 
adult zebrafish spinal cord.
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In the vertebrate nervous system, the presence of calcium 
binding proteins is often associated with specific neuro-
transmitter phenotypes (Katsumaru et al. 1988; Celio 1990; 
Andressen et al. 1993). However, the reason why some cell 
types express CR, CB, or PV and correlate to neurons with a 
specific neurotransmitter phenotype is not clear yet. Double 
immunofluorescence experiments revealed that fractions of 
CR containing neurons were GABAergic (26.27 ± 2.36%, 
n = 6 zebrafish), glycinergic (20.54 ± 2.75%, n = 4 
zebrafish), glutamatergic (50.51 ± 2.47%, n = 7 zebrafish), 
cholinergic (42.04 ± 1.32%, n = 5 zebrafish) and seroton-
ergic (5.44 ± 0.45%, n = 6 zebrafish) (Fig.  3a, d). None 
of the PV+ neurons were found to be GABAergic (n = 5 
zebrafish) or serotonergic (n = 5 zebrafish). However, simi-
lar to CR immunoreactivity, 7.52 ± 0.59% (n = 5 zebrafish), 
5.48 ± 0.58% (n = 8 zebrafish) and 45.51 ± 2.45% (n = 6 
zebrafish) of PV+ neurons were glycinergic, glutamatergic 
and cholinergic neurons, respectively (Fig. 3c, f). Despite 
the high degree of co-distribution between CB+ and GABA+ 
neurons, no double-labeled cells were observed in the mid-
dle part of the spinal cord close to central canal (Fig. 3b, e). 
In addition, none of the CB+ neurons were found to express 
glutamate (n = 6 zebrafish) or ChAT (n = 4 zebrafish), and 
only few CB+Glycine+ (2.85 ± 0.29%, n = 5 zebrafish) and 
CB+Serotonin+ (0.49 ± 0.15%, n = 7 zebrafish) neurons were 
observed (Fig. 3b, e). Collectively, these data reveal that 

CR+ and PV+ neurons localized in a phenotypically hetero-
geneous population of inhibitory and excitatory interneurons 
and in motoneurons within the adult zebrafish spinal cord. 
Moreover, CB immunoreactivity was not specifically related 
to any particular major neurotransmitter phenotype neuronal 
population.

Calretinin classifies the fast motoneuron module

Numerous CR and PV containing neurons had a choliner-
gic neurochemical phenotype (Fig. 3a, c, d, f), which labels 
the motoneurons and the cholinergic interneurons in the 
adult zebrafish spinal cord. To test whether either of these 
CBPs co-localized with motoneurons, retrograde tracer 
was injected into ventral roots to label the motoneurons. 
Indeed, several motoneurons expressed CR (53.25 ± 2.74%, 
n = 5 zebrafish, Fig. 4a, b) and the vast majority of labeled 
motoneurons was found to express PV (80.14 ± 3.16%, n = 5 
zebrafish, Fig. 4a, b).

To further determine the expression pattern of CR and 
PV in functionally different motoneuron pools (slow, 
intermediate, fast), retrograde tracer was injected into the 
respective different muscle fiber types by taking advantage 
of the accessible neuromuscular configuration of the adult 
zebrafish (Ampatzis et al. 2013). Overall, 90.32% (28 out 
of 31 neurons), 89.65% (26 out of 29 neurons), 82.85% 
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(29 out of 35 neurons) and 100% (15 out of 15 neurons) of 
slow, intermediate, fast and primary motoneurons, respec-
tively, were immunoreactive for PV (Fig. 4c, d). In con-
trast, CR immunoreactivity was more confined to moto-
neurons responsible for the contraction of fast muscles. 
All primary motoneurons were CR+ (100%; 14 out of 14 
neurons) as well as the vast majority of fast motoneurons 
(84.37%; 4 out of 23 neurons) (Fig. 4c, d). In contrast, a 
small fraction of intermediate motoneurons was found to 
express CR (17.39%; 27 out of 32 neurons) and none of the 
slow motoneurons contained CR (0%; 0 out of 27 neurons) 
(Fig. 4c, d). Our results thus suggest that CR+ expression 
can be a potential marker of the fast module of the locomo-
tor network (Ampatzis et al. 2014).

Calcium binding protein expression in brain 
neurons that descend to the spinal cord and initiate 
locomotion

Previous studies showed that the spinal locomotor circuitry 
of adult zebrafish is organized in three separate microcir-
cuit modules named the slow, the intermediate and the fast 
(Ampatzis et al. 2014). Although spinal networks are capa-
ble and sufficient to produce all locomotion related move-
ments (Grillner 2003, 2006; Grillner and Jessell 2009), 
the initiation of any motor event arises from descending 
signals from supraspinal areas (Grillner and Jessell 2009; 
Esposito et al. 2014; Kiehn 2016). To evaluate the distri-
bution of CBPs in supraspinal neurons that innervate the 
spinal cord, and their potential to reveal and discriminate 
the possible existence of functionally segregated descend-
ing populations, a series of experiments combining trac-
ing techniques and immunohistochemistry were conducted 
(Fig. 5a). The double-labeling experiments showed a wide 
distribution of CR+ or PV+ brain descending neurons 
in several brain areas (Fig. 5b, c). Retrogradely labeled 
brain neurons that showed CR and PV expression were 
observed in the nucleus of the medial longitudinal fascicle 
(Nmlf;  PV: 87.35 ± 7.68%, CR: 60.19 ± 5.3%, 
Fig.  5f), superior reticular formation (SRF; PV: 
88.51 ± 4.76%, CR: 77.92 ± 6.46, Fig.  5f), intermedi-
ate reticular formation (IMRF; PV: 90.94 ± 4.6%, CR: 
74.31 ± 3.29%, Fig.  5f), inferior reticular formation 
( IRF ;  PV:  91 .79  ±  4%,  CR:  59 .26  ±  3 .15%, 
Fig.  5f), and in the descending octaval nucleus 
(DON; PV: 92.14 ± 2.29%, CR: 53.06 ± 2.67%, Fig. 5f). 
Our analysis showed that the vast majority of descend-
ing supraspinal neurons contained PV (92.08 ± 2.85%, 
n = 6 zebrafish), however, no more than 64.89 ± 0.79% 
(n = 7 zebrafish) of these neurons were found to contain 
CR (Fig. 5e). Additionally, our analysis showed that none 
of the retrogradely labeled brain neurons expressed CB 
(Fig. 5d). Collectively, our data suggest that CR can be a 
valuable marker to define potentially functionally distinct 
subpopulations of brain to spinal cord descending neurons.

Calbindin defines the spinal neuronal progenitors

CB immunoreactivity was not specifically related with any 
particular major neurochemical phenotype (Fig. 3e). In 
addition, CB+ cells were detected mainly around the central 
canal (Fig. 6a), the proliferation niche of the spinal cord 
(Grandel et al. 2006; Kaslin et al. 2008; Hui et al. 2015). 
This raises the possibility that CB might label undifferenti-
ated new born cells. To test this hypothesis, we performed 
a series of experiments to identify the nature of the CB+ 
cells. We observed that none of the newly differentiated and 
migrated neurons (marked with mef-2+) were CB+ (Fig. 6b). 
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Moreover, only a small fraction of CB+ cells were found to 
express HuC/D (2.32 ± 0.561%, n = 5; Fig. 6c, e, f) a marker 
for postmitotic neurons. Finally, we observed that the vast 
majority (78.13 ± 1.541%, n = 35; Fig. 6d, e, f) of CB+ cells 
co-expressed Sox-2, a marker for neuronal progenitor cells 
and stem cells (Ferri et al. 2004; Episkopou 2005; Weg-
ner and Stolt 2005; Takahashi and Yamanaka 2006). Taken 
together, these findings demonstrate that CB can serve as a 
valuable anatomical marker to identify the mitotically active 
cells that are able to generate neurons in the spinal cord.

Discussion

The initiation and generation of locomotion depend on ded-
icated neurons located in the spinal cord and supraspinal 
areas (Grillner 2003, 2006; Grillner and Jessell 2009; Espos-
ito et al. 2014; Kiehn 2016; Goulding 2009). However, the 
identity of the neurons that form the locomotor networks that 
are sufficient to initiate and generate any locomotor activ-
ity, at different speeds and modalities, still remains unclear. 
Here, we utilize CBP expression in spinal and in supraspinal 
areas as a potential tool to characterize the locomotor net-
work neuronal infrastructure. The present study is the first 
to directly classify the spinal cord neurons’ and the brain 
descending neurons’ diversity, distribution and morphology 
with respect to the calcium binding proteins CR, CB and PV 
in adult zebrafish. We show here that CBPs mark a highly 
heterogeneous population of neurons in the adult zebrafish 
spinal cord and in the reticulospinal areas. We also dem-
onstrate that while most zebrafish axial motoneurons were 

labeled with PV, only motoneurons that generate the high 
speeds of swimming or participate in the escape response 
were in addition CR immunoreactive (Fig. 7a). In extrapo-
lation, our data suggest that CR can be a potential valuable 
marker for the fast locomotor microcircuit module, possibly 
marking also the interneuron population which is part of this 
module. Finally, we show that CB immunoreactivity was 
mainly confined to a large population of cells surrounding 
the central canal, and we revealed that the vast majority of 
these cells were progenitor cells/stem cells (Fig. 7b). Hence, 
we suggest that new born neurons utilize CB as a regulator 
of their intracellular calcium and when they mature and start 
expressing a neurotransmitter phenotype the vast majority 
uses other calcium regulator proteins such as CR and PV 
(Fig. 7b).

In the vertebrate nervous system, the presence of cal-
cium binding proteins is often associated with specific 
neurotransmitter phenotypes (Katsumaru et al. 1988; Celio 
1990; Andressen et al. 1993). For instance, PV has been 
usually observed in GABAergic neurons located in the 
hippocampus, cerebellum and cortex (Katsumaru et al. 
1988; Celio 1990; Andressen et al. 1993), whereas CR 
and CB can be associated with both excitatory and inhibi-
tory neurons (Celio 1986; Aoki et al. 1990; Reynolds and 
Beasley 2001). Our analysis clearly indicates that there is 
no obvious correlation between the CBPs studied here and 
a given neurotransmitter in the adult zebrafish spinal cord.

Currently in the spinal cord the only cell type that has 
been strongly associated with different CBPs are Renshaw 
cells (Arvidsson et al. 1992; Carr et al. 1998; Sapir et al. 
2004; Alvarez et al. 2005). Renshaw cells are inhibitory 

F
as

t M
N

In
te

rm
. M

N
S

lo
w

 M
N

S
lo

w
In

te
rm

.
F

as
t

P
rim

ar
y

P

D

CR

MNs

CR

MNs

CR

MNs

MNs

10 µm

% of MNs 

0

20

40

60

80

100

CR+ PV+

%
 o

f M
N

s 

MNs

MNs

MNs

PV

PV

PV

0 20 40 60 80 100

20 µmP

DC
al

re
tin

in
P

ar
va

lb
um

in

Calretinin (CR) Parvalbumin (PV)

0.00

17.39

84.37

100.00

90.32

89.65

82.85

100.00

M
ot

on
eu

ro
n 

ty
pe

a

b

c d
CR+ PV+

n=
5

n=
5

Fig. 4   Zebrafish axial motoneurons are immunoreactive to CR and 
PV. a Representative images of the double-labeled motoneurons with 
CR and PV. b Quantification of the percentage of the motoneurons 
that express both CR and PV. c Whole mount images showing the 
expression of CR and PV in distinct motoneuron pools (slow, inter-
mediate and fast). Single channel views of the respective images 

shown for better visualization of CR or PV positive cells. Arrow-
heads indicate the double-labeled cells. d Color coded quantification 
of the CR and PV expression in distinct populations of neurons. The 
vast majority of motoneurons contain PV. CR expression is localized 
mainly in the motoneurons of the fast module



2189Brain Structure and Function (2018) 223:2181–2196	

1 3

neurons deriving from the V1 population (Sapir et al. 2004; 
Alvarez et al. 2005) that release GABA or glycine to mediate 
recurrent inhibition to motoneurons (Cullheim and Kellerth 
1981; Schneider and Fyffe 1992) and is well documented to 
contain CB and in a smaller degree also PV and CR (Sapir 
et al. 2004). Our findings demonstrate that a small popula-
tion of neurons co-expresses CB and glycine in the adult 

zebrafish spinal cord. Although Renshaw cells have not been 
reported in the zebrafish spinal circuits, a previous study 
revealed that Engrailed-1 (a marker for V1 interneurons) 
is expressed in a small population of inhibitory glycinergic 
interneurons that possibly act in an analogous way to Ren-
shaw cells in the mammalian spinal cord (Higashijima et al. 
2004c). It is thus possible that these previously described 
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Renshaw-like neurons in zebrafish contain also CB and con-
stitute an evolutionary conserved population of neurons that 
later in the mammalian spinal cord forms the Renshaw cells, 
a question that should be addressed in further studies.

Several previous studies analyzed CBP expression in 
the vertebrate spinal cord (Fournet et al. 1986; Antal et al. 
1990; Celio 1990; Ince et al. 1993; Ren et al. 1993; Sapir 
et al. 2004; Alvarez et al. 2005; Anelli and Heckman 2005; 
Morona et al. 2006a,b; Morona and González 2013) includ-
ing fish (Maler et al. 1984; Denizot et al. 1988; Díaz-Regue-
ira and Anadón 2000; Megías et al. 2003; Castro et al. 2005; 
Graña et al. 2013), however, many contradictory findings 
have been described about the presence of these proteins in 
spinal neuronal populations including motoneurons. In the 
adult zebrafish, the axial motoneurons form distinct pools 
related to the type of muscle fibers (slow, intermediate, fast) 
they innervate (Gabriel et al. 2011; Ampatzis et al. 2013). 
During swimming, different secondary motoneuron pools 
are sequentially recruited from slow, to intermediate, and 
finally to fast to cover the full range of locomotor speeds 
(Ampatzis et al. 2013). Moreover, the first developed pri-
mary motoneurons contribute only to the escape response 
(Ampatzis et al. 2013) and innervate fast muscle fibers. 
These findings suggest a differential contribution of axial 
motoneurons to the generation of locomotion at different 
speeds and modalities. In this study, we observed that both 
primary and secondary motoneurons strongly express PV, 
however, only the primary and some of the secondary fast 
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motoneurons were found to contain CR, suggesting the 
functional significance of the presence of different CBPs in 
motoneurons to buffer intracellular calcium. In accordance 
with our results, vertebrate spinal cord motoneurons have 
been shown to contain CR (xenopus, Morona et al. 2006a, 
b, rats; lizard; Laslo et al. 2000; primates; Fahandejsaadi 
et al. 2004) including fish (grey mullet, Díaz-Regueira and 
Anadón 2000; zebrafish; Castro et al. 2005; lamprey; Megías 
et al. 2003; lungfish; Morona et al. 2010), however, mamma-
lian spinal motoneurons have been shown to lack PV (Ince 
et al. 1993; Elliott and Snider 1995). The expression of CB 
appears to be more variable between different species. In 
our study, all axial motoneurons in the adult zebrafish spi-
nal cord were found to be CB−. Similar to our observations 
the motoneurons of the turtle (Morona et al., 2007), and 
rat (Antal et al. 1990; Ren and Ruda 1994) were observed 
to lack CB. However, in lizards (Morona et al. 2006a), in 
primates (Fahandejsaadi et al. 2004), in xenopus (Morona 
et al. 2006b) and in other fish species several CB contain-
ing spinal motoneurons have been observed (Denizot et al. 
1988; Díaz-Regueira and Anadón 2000; Megías et al. 2003; 
Morona et al. 2010). Besides this high variability regard-
ing the presence of CBPs in secondary motoneurons, the 
prominent expression of CR in primary motoneurons that we 
observed has been documented also in other fishes (Denizot 
et al. 1988; Díaz-Regueira and Anadón 2000; Castro et al. 
2005). Finally, we observed that zebrafish motoneurons con-
tain PV, similar to previous studies that suggest the existence 
of PV in vertebrate brain motor nuclei and in the spinal cord 
(Philippe et al. 1993; Reiner et al. 1995; Sasaki et al. 2006).

The initiation of all animal body movements depends on 
the activation of brain descending neurons that project to the 
spinal cord (Grillner and Jessell 2009; Esposito et al. 2014; 
Kiehn 2016). The reticulospinal neurons drive the activity 
of the spinal locomotor networks that are responsible for the 
generation of locomotion at different speeds and modali-
ties. Moreover, recent findings suggest that the supraspinal 
descending neurons provide in addition the necessary “stop” 
signals to terminate any ongoing movement (Bouvier et al. 
2015). However, whether there are neuronal subpopulations 
that constitute functionally distinct modules in descending 
neurons remain unclear. Here we show that the vast majority 
of the brain descending neurons to spinal cord express PV 
and only a fraction of these neurons was found to express 
CR. Moreover, none of the reticulospinal neurons were 
observed to contain CB. The presence of CR in a large popu-
lation of reticulospinal neurons was reported before in fish 
(Díaz-Regueira and Anadón 2000; Castro et al. 2005; Graña 
et al. 2012, 2013) as well as in other vertebrate species 
(Smeets and González 2000; Morona and González 2009). 
In contrast to previous studies demonstrating the existence of 
CB in brain to spinal cord descending neurons (Wang et al. 
1996; Goodchild et al. 2000; Morona et al. 2006a,b), we 

could not reveal the presence of CB in retrogradely labeled 
zebrafish brain neurons. With regard to the presence of CBPs 
in the Mauthner cell, a gigantic reticulospinal neuron in the 
brainstem that generates the escape behavior (Zottoli 1977; 
Prugh et al. 1982), we found that these cells contain only 
PV. This observation is in agreement with observations in 
other teleosts, in which CR was not present in the Mauthner 
cell body (Crespo et al. 1998; Díaz-Regueira and Anadón 
2000; Castro et al. 2005), whereas PV positive Mauthner cell 
bodies where identified before in tench (Tinca tinca; Crespo 
et al. 1998). Interestingly, the Mauthner cell axon in the spi-
nal cord was found to lack PV. This is similar to results of 
previous studies that suggest the complementary expression 
of CBP in different cellular elements of the Mauthner cell, 
revealing the existence of a prominent complexity in the 
calcium buffering system (Crespo et al. 1998).

All three studied CBPs are known to participate in the 
regulation of intracellular calcium homeostasis, neurotrans-
mitter release and synaptic alterations (Blaustein 1988; 
Miller 1991; Heizman and Braun 1992; Lledo et al. 1992; 
Andressen et al. 1993; Chard et al. 1993; Berridge et al. 
2000). As such, Ca2+ regulators possess the ability to pre-
vent or attenuate damage to cells due to toxicity that can 
be caused by the excessive entry of Ca2+ after prolonged 
neuronal activity (Scharfman and Schwartzkroin 1989). 
Such protection has been thought to underlie the selective 
survival, and conversely, selective vulnerability of neurons 
containing or lacking different CBPs (Morrison et al. 1998). 
Indeed, the differential expression or deficiency in CBPs 
in neurons has been suggested to be the key reason for the 
neuronal vulnerability to the progress of pathophysiologi-
cal conditions associated with motoneuron degenerative dis-
eases such as amyotrophic lateral sclerosis (ALS) (Ince et al. 
1993; Alexianu et al. 1994; Elliott and Snider 1995; Reiner 
et al. 1995). It has been shown that already at presympto-
matic stages of ALS, intracellular calcium levels in spinal 
motoneurons are increased (Siklos et al. 1998) and CBPs are 
practically absent (Alexianu et al. 1994; Elliot and Snider 
1995; Ince et al. 1993; Reiner et al. 1995) indicating a neu-
roprotective role for CBPs (Mattson et al. 1991).

If the presence of CBPs could be indeed related to func-
tional neuronal properties, then the anatomical distribution 
of these proteins holds a potentially exceptional tool for 
the study of the functional and anatomical organization of 
the spinal cord networks. More specifically, in mammals 
PV is often associated with fast spiking neurons in the 
hippocampus, in forebrain areas (Celio 1986; Kawaguchi 
1993; Kawaguchi and Kubota 1993; Sik et al. 1995) and 
in the spinal cord (Solbach and Celio 1991). On the other 
hand, neurons related to sensory processing were shown 
to contain CR (Ren and Ruda 1994). Recent studies in the 
cerebellum of mice that lack CR or CB revealed altered 
firing patterns of granule cells (Gall et al. 2003; Cheron 
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et al. 2004): CR-deficient granule cells exhibit faster action 
potentials and generate repetitive spike discharge. These 
results suggest that calcium binding proteins modulate 
neuronal excitability and activity of cerebellar circuits.

In the present study, we observed that cells surrounding 
the central canal express CB. We further saw that the vast 
majority of these cells (~ 80%) are neuronal progenitors/
stem cells since they expressed the pluripotency marker 
Sox-2. From the remaining CB+ population, only a small 
fraction (~ 5%) expressed a neurotransmitter phenotype 
(Fig. 3b,e). It has been demonstrated that the expression 
of Sox-2 protein is not uniform (undetectable low-level 
protein expression) across the entire neural progenitor 
populations and that can explain the presence of CB+/Sox-
2− cells (Hutton and Pevny 2011; Hagey and Muhr 2014). 
In the adult zebrafish, as in all vertebrates, the prolifera-
tion niche of the spinal cord is situated around the central 
canal (Grandel et al. 2006; Kaslin et al. 2008; Hui et al. 
2015). The main cell population in this area is the ependy-
mal cells in both fish and mammals (Alfaro-Cervello et al. 
2012; Hui et al. 2015). It is known that spinal neuronal 
precursors/stem cells exist within the population of cen-
tral canal ependymal cells (Meletis et al. 2008). Under 
physiological conditions, ependymal cells self-renew and 
produce small numbers of glial progenitors that produce 
astrocytes and oligodendrocytes (Horner et  al. 2000). 
However, in response to traumatic injury, ependymal cells 
increase their proliferative activity (Yamada et al. 1997) 
and act as neural stem cells to generate neuroblasts that 
proliferate and differentiate into neurons (Anderson et al. 
1994; Meletis et al. 2008). In addition, mammalian spinal 
cord ependymal cells were found to contain CB (Ren and 
Ruda 1994; Zhang et al. 2016). Therefore, the results of 
the present study primarily indicate that in adult zebrafish 
the new born neurons that arise from the central canal 
ependymal cells use CB to buffer the intracellular calcium. 
However, once they mature and establish a neurotransmit-
ter typology then the vast majority of these neuron uses 
CR and/or PV to mediate the calcium homeostasis.
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