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Brain–Computer Interfaces for
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Communication: A Tutorial
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Purpose: Brain–computer interfaces (BCIs) have the potential
to improve communication for people who require but are
unable to use traditional augmentative and alternative
communication (AAC) devices. As BCIs move toward clinical
practice, speech-language pathologists (SLPs) will need to
consider their appropriateness for AAC intervention.
Method: This tutorial provides a background on BCI
approaches to provide AAC specialists foundational knowledge
necessary for clinical application of BCI. Tutorial descriptions
were generated based on a literature review of BCIs for
restoring communication.
Results: The tutorial responses directly address 4 major
areas of interest for SLPs who specialize in AAC: (a) the
of Speech-Language-Hearing: Sciences and Disorders,
Graduate Program, The University of Kansas,

of Speech-Language-Hearing: Sciences and Disorders,
y of Kansas, Lawrence
ion Sciences and Disorders Department, Missouri State
ringfield
Graduate Program, The University of Kansas,

ce to Jonathan S. Brumberg: brumberg@ku.edu

ef: Krista Wilkinson
Finke

ember 31, 2016
ived April 6, 2017
ust 14, 2017
/10.1044/2017_AJSLP-16-0244

an Journal of Speech-Language Pathology • Vol. 27 • 1–12 • February 2
current state of BCI with emphasis on SLP scope of
practice (including the subareas: the way in which
individuals access AAC with BCI, the efficacy of BCI
for AAC, and the effects of fatigue), (b) populations for
whom BCI is best suited, (c) the future of BCI as an
addition to AAC access strategies, and (d) limitations
of BCI.
Conclusion: Current BCIs have been designed as
access methods for AAC rather than a replacement;
therefore, SLPs can use existing knowledge in AAC as
a starting point for clinical application. Additional training
is recommended to stay updated with rapid advances
in BCI.
I ndividuals with severe speech and physical impair-
ments often rely on augmentative and alternative
communication (AAC) and specialized access tech-

nologies to facilitate communication on the basis of the
nature and severity of their speech, motor, and cognitive
impairments. In some cases, people who use AAC are able
to use specially modified computer peripherals (e.g., mouse,
joystick, stylus, or button box) to access AAC devices,
whereas in other, more severe cases, sophisticated methods
are needed to detect the most subtle of movements (e.g.,
eye gaze tracking; Fager, Beukelman, Fried-Oken, Jakobs,
& Baker, 2012). In the most serious cases of total paralysis
with loss of speech (e.g., locked-in syndrome; Plum &
Posner, 1972), even these advanced methods are not suf-
ficient to provide access to language and literacy (Oken
et al., 2014). Access to communication is critical for main-
taining social interactions and autonomy of decision-making
in this population (Beukelman & Mirenda, 2013); therefore,
individuals with paralysis and akinetic mutism have been
identified as potential candidates for brain–computer inter-
face (BCI) access to AAC (Fager et al., 2012).

BCIs for communication take AAC and access tech-
nology to the next level and provide a method for selecting
and constructing messages by detecting changes in brain
activity for controlling communication software (Wolpaw,
Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002).
In particular, they are devices that provide a direct link be-
tween an individual and a computer device through brain
activity alone, without requiring any overt movement or
behavior. As an access technique, BCIs have the potential
to reduce or eliminate some physical barriers to successful
AAC intervention for individuals with severe speech and
physical impairments. Similar to AAC and associated access
techniques, current BCI technology can take a variety of
forms on the basis of the neural signal targeted and the method
used for individuals to interact with the communication
Disclosure: The authors have declared that no competing interests existed at the time
of publication.

018 • Copyright © 2018 American Speech-Language-Hearing Association 1

https://doi.org/10.1044/2017_AJSLP-16-0244


interface. Each of these factors may impose different de-
mands on the cognitive and motor abilities of individuals
who use BCI (Brumberg & Guenther, 2010). Although the
field of BCI has grown over the past decade, many stake-
holders including speech-language pathologists (SLPs), other
practitioners, individuals who use AAC and potentially
BCI, and caretakers are unfamiliar with the technology.
SLPs are a particularly important stakeholder given their
role as the primary service providers who assist clients with
communicative challenges secondary to motor limitations
through assessment and implementation of AAC interven-
tions and strategies. A lack of core knowledge on the poten-
tial use of BCI for clinical application may limit future
intervention with BCI for AAC according to established
best practices. This tutorial will offer some basic explana-
tions regarding BCI, including the benefits and limitations
of this access technique, and the different varieties of BCI.
It will also provide a description of individuals who may be
potentially best suited for using BCI to access AAC. An
understanding of this information is especially important
for SLPs specializing in AAC who are most likely to inter-
act with BCI as they move from research labs into real-world
situations (e.g., classrooms, home, work).
Tutorial Descriptions by Topic Area
Topic 1: How Do People Who Use BCI Interact
With the Computer?

BCIs are designed to allow individuals to control
computers and communication systems using brain activ-
ity alone and are separated according to whether signals
are recorded noninvasively from/through the scalp or inva-
sively through implantation of electrodes in or on the brain.
Noninvasive BCIs, those that are based on brain record-
ings made through the intact skull without requiring a sur-
gical procedure (e.g., electroencephalography or EEG,
magnetoencephalography, functional magnetic resonance
imaging, functional near-infrared spectroscopy), often use
an indirect technique to map brain signals unrelated to com-
munication onto controls for a communication interface
(Brumberg, Burnison, & Guenther, 2016). Though there
are many signal acquisition modalities for noninvasive
recordings of brain activity, noninvasive BCIs typically
use EEG, which is recorded through electrodes placed on
the scalp according to a standard pattern (Oostenveld &
Praamstra, 2001) and record voltage changes that result
from the simultaneous activation of millions of neurons. EEG
can be analyzed for its spontaneous activity, or in response
to a stimulus (e.g., event-related potentials), and both
have been examined for indirect access BCI applications.
In contrast, another class of BCIs attempts to directly out-
put speech from imagined/attempted productions (Blakely,
Miller, Rao, Holmes, & Ojemann, 2008; Brumberg, Wright,
Andreasen, Guenther, & Kennedy, 2011; Herff et al., 2015;
Kellis et al., 2010; Leuthardt et al., 2011; Martin et al., 2014;
Mugler et al., 2014; Pei, Barbour, Leuthardt, & Schalk,
2011; Tankus, Fried, & Shoham, 2012); however, these
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techniques typically rely on invasively recorded brain sig-
nals (via implanted microelectrodes or subdural electrodes)
related to speech motor preparation and production. Though
in their infancy, direct BCIs for communication have the
potential to completely replace the human vocal tract for
individuals with severe speech and physical impairments
(Brumberg, Burnison, & Guenther, 2016; Chakrabarti,
Sandberg, Brumberg, & Krusienski, 2015); however, the
technology does not yet provide a method to “read thoughts.”
For the remainder of this tutorial, we focus on noninvasive,
indirect methods for accessing AAC with BCIs, and we refer
readers to other sources for descriptions of direct BCIs for
speech (Brumberg, Burnison, & Guenther, 2016; Chakrabarti
et al., 2015).

Indirect methods for BCI parallel other access methods
for AAC devices, where nonspeech actions (e.g., button
press, direct touch, eye gaze) are translated to a selection on
a communication interface. The main difference between
the two access methods is that BCIs rely on neurophysio-
logical signals related to sensory stimulation, preparatory
motor behaviors, and/or covert motor behaviors (e.g., imag-
ined or attempted limb movements), rather than overt motor
behavior used for conventional access. The way in which
individuals control a BCI greatly depends on the neurologi-
cal signal used by the device to make selections on the
communication interface. For instance, in the case of an
eye-tracking AAC device, one is required to gaze at a com-
munication icon, and the system makes a selection on the
basis of the screen coordinates of the eye gaze location. For
a BCI, individuals may be required to (a) attend to visual
stimuli to generate an appropriate visual–sensory neural
response to select the intended communication icon (e.g.,
Donchin, Spencer, & Wijesinghe, 2000), (b) take part in
an operant conditioning paradigm using biofeedback of
EEG (e.g., Kübler et al., 1999), (c) listen to auditory stimuli
to generate auditory–sensory neural responses related to the
intended communication output (e.g., Halder et al., 2010),
or (d) imagine movements of the limbs to alter the sensori-
motor rhythm (SMR) to select communication items (e.g.,
Pfurtscheller & Neuper, 2001).

At present, indirect BCIs are more mature as a tech-
nology, and many have already begun user trials (Holz,
Botrel, Kaufmann, & Kübler, 2015; Sellers, Vaughan, &
Wolpaw, 2010). Therefore, SLPs are most likely to be in-
volved with indirect BCIs first as they move from the re-
search lab to the real world. Indirect BCI techniques are very
similar to current access technologies for high-tech AAC;
for example, the output of the BCI system can act as an
input method for conventional AAC devices. Below, we
review indirect BCI techniques and highlight their possible
future in AAC.

The P300-Based BCI
The visual P300 grid speller (Donchin et al., 2000) is

the most well-known and most mature technology with on-
going at-home user trials (Holz et al., 2015; Sellers et al.,
2010). Visual P300 BCIs for communication use the P300
event-related potential, a neural response to novel, rare
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visual stimuli in the presence of many other visual stimuli,
to select items on a communication interface. The tradi-
tional graphical layout for a visual P300 speller is a 6 ×
6 grid that includes the 26 letters of the alphabet, space,
backspace, and numbers (see Figure 1). Each row and
column1 on the spelling grid are highlighted in a random
order, and a systematic variation in the EEG waveform is
generated when one attends to a target item for selection,
the “oddball stimulus,” which occurs infrequently com-
pared with the remaining items (Donchin et al., 2000). The
event-related potential in response to the target item will
contain a positive voltage fluctuation approximately 300 ms
after the item is highlighted (Farwell & Donchin, 1988).
The BCI decoding algorithm then selects items associated
with detected occurrences of the P300 for message creation
(Donchin et al., 2000). The P300 grid speller has been
operated by individuals with amyotrophic lateral sclerosis
(ALS; Nijboer, Sellers, et al., 2008; Sellers & Donchin, 2006)
and has been examined as part of at-home trials by indi-
viduals with neuromotor impairments (Holz et al., 2015;
Sellers & Donchin, 2006), making it a likely candidate for
future BCI-based access for AAC.

In addition to the cognitive requirements for operat-
ing the P300 speller, successful operation depends some-
what on the degree of oculomotor control (Brunner et al.,
2010). Past findings have shown that the P300 amplitude
can be reduced if individuals are unable to use an overt
attention strategy (gazing directly at the target) and, instead,
must use a covert strategy (attentional change without
ocular shifting), which can degrade BCI performance (Brunner
et al., 2010). An alternative P300 interface displays a single
item at a time on the screen (typically to the center as in
Figure 1, second from left) to alleviate concerns for individ-
uals with poor oculomotor control. This interface, known
as the rapid serial visual presentation speller, has been suc-
cessfully controlled by a cohort of individuals across the
continuum of locked-in syndrome severity (Oken et al., 2014).
All BCIs that use spelling interfaces require sufficient
levels of literacy, though many can be adapted to use icon
or symbol-based communication (e.g., Figure 2).

Auditory stimuli can also be used to elicit P300 re-
sponses for interaction with BCI devices for individuals
with poor visual capability (McCane et al., 2014), such as
severe visual impairment, impaired oculomotor control,
and cortical blindness. Auditory interfaces can also be used
in poor viewing environments, such as outdoors or in the
presence of excessive lighting glare. Like its visual counter-
part, the auditory P300 is elicited via an oddball paradigm,
and has been typically limited to binary (yes/no) selection
by attending to one of two different auditory tones pre-
sented monaurally to each ear (Halder et al., 2010), or lin-
guistic stimuli (e.g., attending to a “yep” target among
“yes” presentations in the right ear vs. “nope” and “no” in
the left; Hill et al., 2014). The binary control achieved
1Each individual item may also be highlighted, rather than rows and
columns.
using the auditory P300 interface has the potential to be
used to navigate a spelling grid similar to conventional au-
ditory scanning techniques for accessing AAC systems, by
attending to specific tones that correspond to rows and col-
umns (Käthner et al., 2013; Kübler et al., 2009). There is
evidence that auditory grid systems may require greater at-
tention than their visual analogues (Klobassa et al., 2009;
Kübler et al., 2009), which should be considered when
matching clients to the most appropriate communication
device.
Steady State Evoked Potentials
BCIs can be controlled using attention-modulated

steady state brain rhythms, as opposed to event-related
potentials, in both visual (steady state visually evoked po-
tential [SSVEP]) and auditory (auditory steady state response
[ASSR]) domains. Both the SSVEP and ASSR are physiolog-
ical responses to a driving input stimulus that are amplified
when an individual focuses his or her attention on the stim-
ulus (Regan, 1989). Strobe stimuli are commonly used for
SSVEP, whereas amplitude-modulated tones are often
used for ASSR (Regan, 1989).

BCIs using SSVEP exploit the attention-modulated
response to strobe stimuli by simultaneously presenting
multiple communication items for selection, each flickering
at a different frequency (Cheng, Gao, Gao, & Xu, 2002;
Friman, Luth, Volosyak, & Graser, 2007; Müller-Putz,
Scherer, Brauneis, & Pfurtscheller, 2005).2 As a result, all
item flicker rates will be observed in the EEG recordings,
but the frequency of the attended stimulus will contain the
largest amplitude (Lotte, Congedo, Lécuyer, Lamarche,
& Arnaldi, 2007; Müller-Putz et al., 2005; Regan, 1989)
and greatest temporal correlation to the strobe stimulus (Chen,
Wang, Gao, Jung, & Gao, 2015; Lin, Zhang, Wu, & Gao,
2007). The stimulus with the greatest neurophysiological re-
sponse will then be selected by the BCI to construct a message,
typically via an alphanumeric keyboard (shown in Figure 1),
though icons can be adapted for different uses and levels of
literacy (e.g., Figure 2). Major advantages of this type of
interface are the following: (a) high accuracy rates, often
reported above 90% with very little training (e.g., Cheng
et al., 2002; Friman et al., 2007); (b) overlapping, centrally
located stimuli could be used for individuals with impaired
oculomotor control (Allison et al., 2008). A major con-
cern with this technique, however, is an increased risk for
seizures (Volosyak, Valbuena, Lüth, Malechka, & Gräser,
2011).

BCIs that use the ASSR require one to shift his or
her attention to a sound stream that contains a modulated
stimulus (e.g., a right monoaural 38-Hz amplitude modula-
tion, 1000-Hz carrier tone presented with a left mono-
aural 42-Hz modulated, 2500-Hz carrier; Lopez, Pomares,
Pelayo, Urquiza, & Perez, 2009). As with the SSVEP, the
modulation frequency of the attended sound stream is
2There are other variants that use a single flicker rate with a specific
strobe pattern that is beyond the scope of this tutorial.

Brumberg et al.: AAC-BCI Tutorial 3



Figure 1. From left to right, example visual displays for the following BCIs: P300 grid speller, RSVP P300, SSVEP, and motor-based (SMR
with keyboard). For the P300 grid, each row and column are highlighted until a letter is selected. In the RSVP, each letter is displayed
randomly, sequentially in the center of the screen. For the SSVEP, this example uses four flickering stimuli (at different frequencies) to
represent the cardinal directions, which are used to select individual grid items. This can also be done with individual flicker frequencies
for all 36 items with certain technical considerations. For the motor-based BCI, this is an example of a binary-selection virtual keyboard;
imagined right hand movements select the right set of letters. RSVP = rapid serial visual presentation; SSVEP = steady state visually evoked
potential; SMR = sensorimotor rhythm; BCI = brain–computer interfaces. Copyright © Tobii Dynavox. Reprinted with permission.
observable in the recorded EEG signal and will be ampli-
fied relative to the other competing stream. Therefore,
in this example, if the BCI detects the greatest EEG ampli-
tude at 38 Hz, it will perform a binary action associated
with the right-ear tone (e.g., yes or “select”), whereas de-
tection of the greatest EEG amplitude at 42 Hz will gen-
erate a left-ear tone action (e.g., no or “advance”).

Motor-Based BCIs
Another class of BCIs provides access to communi-

cation interfaces using changes in the SMR, a neurological
signal related to motor production and motor imagery
(Pfurtscheller & Neuper, 2001; Wolpaw et al., 2002), for
individuals with and without neuromotor impairments
(Neuper, Müller, Kübler, Birbaumer, & Pfurtscheller,
2003; Vaughan et al., 2006). The SMR is characterized
by the μ (8–12 Hz) and β (18–25 Hz) band spontaneous
EEG oscillations that are known to desynchronize, or re-
duce in amplitude, during covert and overt movement
attempts (Pfurtscheller & Neuper, 2001; Wolpaw et al.,
Figure 2. From left to right, examples of how existing BCI paradigms can be
motor based (with icon grid). For the P300 grid interface, a row or column is
SSVEP, either directional (as shown here) or individual icons flicker at specifi
motor based, the example shown here uses attempted or imagined left hand
choose the currently selected item. SSVEP = steady state visually evoked
interfaces; AAC = augmentative and alternative communication. Copyright
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2002). Many motor-based BCIs use left and right limb
movement imagery because the SMR desynchronization
will occur on the contralateral side, and are most often
used to control spelling interfaces (e.g., virtual keyboard:
Scherer, Müller, Neuper, Graimann, & Pfurtscheller, 2004;
DASHER: Wills & MacKay, 2006; hex-o-spell: Blankertz
et al., 2006; see Figure 1, right, for an example), though
they can be used as inputs to commercial AAC devices
as well (Brumberg, Burnison, & Pitt, 2016).

Two major varieties of motor-based BCIs have been
developed for controlling computers: those that provide
continuous cursor control (analogous to mouse/joystick and
eye gaze) and others that use discrete selection (analogous
to button presses). An example layout of keyboard-based
and symbol-based motor-BCI interfaces are shown in Fig-
ures 1 and 2. Cursor-style BCIs transform changes in the
SMR continuously over time into computer control signals
(Wolpaw & McFarland, 2004). One example of a continu-
ous, SMR-based BCI uses imagined movements of the hands
and feet to move a cursor to select progressively refined
applied to page sets from current AAC devices: P300 grid, SSVEP,
highlighted until a symbol is selected (here, it is yogurt). For the
ed strobe rates to either move a cursor or directly select an item. For
movements to advance the cursor and right hand movements to
potential; SMR = sensorimotor rhythm; BCI = brain–computer

© Tobii Dynavox. Reprinted with permission.
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groups of letters organized at different locations around a
computer screen (Miner, McFarland, & Wolpaw, 1998;
Vaughan et al., 2006). Another continuous-style BCI is
used to control the “hex-o-spell” interface in which imag-
ined movements of the right hand rotate an arrow to point
at one of six groups of letters, and imagined foot move-
ments extend the arrow to select the current letter group
(Blankertz et al., 2006).

Discrete-style motor BCIs perform this transforma-
tion using the event-related desynchronization (Pfurtscheller
& Neuper, 2001), a change to the SMR in response to
some external stimulus, like an automatically highlighted
row or column via scanning interface. One example of a
discrete-style motor BCI uses the event-related desynchro-
nization to control a virtual keyboard consisting of a
binary tree representation of letters, in which individuals
choose between two blocks of letters, selected by (imag-
ined) right or left hand movements until a single letter or
item remains (Scherer et al., 2004). Most motor-based
BCIs require many weeks or months for successful opera-
tion and report accuracies greater than 75% for individ-
uals without neuromotor impairments and, in one study,
69% accuracy for individuals with severe neuromotor
impairments (Neuper et al., 2003).

Motor-based BCIs are inherently independent from
interface feedback modality because they rely only on an
individual’s ability to imagine his or her limbs moving,
though users are often given audio or visual feedback of
BCI choices (e.g., Nijboer, Furdea, et al., 2008). A recent,
continuous motor BCI has been used to produce vowel
sounds with instantaneous auditory feedback by using limb
motor imagery to control a two-dimensional formant fre-
quency speech synthesizer (Brumberg, Burnison, & Pitt,
2016). Other recent discrete motor BCIs have been devel-
oped for row–column scanning interfaces (Brumberg,
Burnison, & Pitt, 2016; Scherer et al., 2015).

Operant Conditioning BCIs
This interface operates by detecting a stimulus-

independent change in brain activity, which is used to select
options on a communication interface. The neural signals
used for controlling the BCI are not directly related to
motor function or sensation. Rather, it uses EEG biofeed-
back for operant conditioning to teach individuals to volun-
tarily change the amplitude and polarity of the slow cortical
potential, a slow-wave (< 1 Hz) neurological rhythm that
is related to movements of a one-dimensional cursor. In BCI
applications, cursor vertical position is used to make binary
selections for communication interface control (Birbaumer
et al., 2000; Kübler et al., 1999).

Topic 2: Who May Best Benefit From a BCI?
At present, BCIs are best suited for individuals with

acquired neurological and neuromotor impairments lead-
ing to paralysis and loss of speech with minimal cognitive
involvement (Wolpaw et al., 2002), for example, brainstem
stroke and traumatic brain injury (Mussa-Ivaldi & Miller,
2003). Nearly all BCIs require some amount of cognitive
effort or selective attention, though the amount of each
depends greatly on the style and modality of the specific
device. Individuals with other neuromotor disorders, such
as cerebral palsy, muscular dystrophies, multiple sclerosis,
Parkinson’s disease, and brain tumors, may require AAC
(Fried-Oken, Mooney, Peters, & Oken, 2013; Wolpaw et al.,
2002) but are not yet commonly considered for BCI stud-
ies and interventions (cf. Neuper et al., 2003; Scherer et al.,
2015), due to concomitant impairments in cognition, atten-
tion, and memory. In other instances, elevated muscle
tone and uncontrolled movements (e.g., spastic dysarthria,
dystonia) limit the utility of BCI due to the introduction of
physical and electromyographic movement artifacts (i.e.,
muscle-based signals that are much stronger than EEG
and can distort recordings of brain activity). BCI research
is now beginning to consider important human factors
involved in appropriate use of BCI for individuals (Fried-
Oken et al., 2013) and for coping with difficulties in brain
signal acquisition due to muscular (Scherer et al., 2015)
and environmental sources of artifacts. Developing BCI
protocols to help identify the BCI technique most appro-
priate for each individual must be considered as BCI
development moves closer to integration with existing
AAC techniques.

BCI Summary
BCIs use a wide range of techniques for mapping

brain activity to communication device control through a
combination of signals related to sensory, motor, and/or
cognitive processes (see Table 1 for a summary of BCI
types). The choice of BCI protocol and feedback methods
trade off with cognitive abilities needed for successful de-
vice operation (e.g., Geronimo, Simmons, & Schiff, 2016;
Kleih & Kübler, 2015; Kübler et al., 2009). Many BCIs
require individuals to follow complex, multistep procedures
and require potentially high levels of attentional capacity
that are often a function of the sensory or motor process
used for BCI operation. For example, the P300 speller BCI
(Donchin et al., 2000) requires that individuals have an
ability to attend to visual stimuli and make decisions about
them (e.g., recognize the intended visual stimulus among
many other stimuli). BCIs that use SSVEPs depend on the
neurological response to flickering visual stimuli (Cheng
et al., 2002) that is modulated by attention rather than
other cognitive tasks. These two systems both use visual
stimuli to elicit neural activity for controlling a BCI but dif-
fer in their demands on cognitive and attention processing.
In contrast, motor-based BCI systems (e.g., Pfurtscheller
& Neuper, 2001; Wolpaw et al., 2002) require individuals
to have sufficient motivation and volition, as well as an
ability to learn how changing mental tasks can control a
communication device.

Sensory, Motor, and Cognitive Factors
Alignment of the sensory, motor, and cognitive re-

quirements for using BCI to access AAC devices with indi-
viduals’ unique profile will help identify and narrow down
Brumberg et al.: AAC-BCI Tutorial 5



Table 1. Summary of BCI varieties and their feedback modality.

EEG signal type Sensory/Motor modality User requirements

Event-related potentials Visual P300 (grid) Visual oddball paradigm, requires selective attention
around the screen

Visual P300 (RSVP) Visual oddball paradigm, requires selective attention
to the center of the screen only (poor oculomotor
control)

Auditory P300 Auditory oddball paradigm, requires selective
auditory attention, no vision requirement

Steady state evoked potentials Steady state visually evoked potential Attention to frequency tagged visual stimuli, may
increase seizure risk

Auditory steady state response Attention to frequency modulated audio stimuli
Motor-based Continuous sensorimotor rhythm Continuous, smooth control of interface (e.g., cursors)

using motor imagery (first person)
Discrete event-related desynchronization Binary (or multichoice) selection of interface items

(# choices = # of imagined movements), requires
motor imagery ability

Motor preparatory signals, for example,
contingent negative variation

Binary selection of communication interface items
using imagined movements

Operant conditioning Slow cortical potentials Binary selection of communication interface items
after biofeedback-based learning protocol

Note. BCI = brain–computer interface; EEG = electroencephalography; RSVP = rapid serial visual presentation.
the number of candidate BCI variants (e.g., feature match-
ing; Beukelman & Mirenda, 2013; Light & McNaughton,
2013), which is important for improving user outcomes with
the chosen device (Thistle & Wilkinson, 2015). Matching
possible BCIs should also include overt and involuntary
motor considerations, specifically the presence of spasticity
or variable muscle tone/dystonia, which may produce
electromyographic artifacts that interfere with proper BCI
function (Goncharova, McFarland, Vaughan, & Wolpaw,
2003). In addition, there may be a decline in brain signals
used for BCI decoding as symptoms of progressive neuro-
motor diseases become more severe (Kübler, Holz, Sellers,
& Vaughan, 2015; Silvoni et al., 2013) that may result in
decreased BCI performance. The wide range in sensory,
motor, and cognitive components of BCI designs point to
a need for user-centered design frameworks (e.g., Lynn,
Armstrong, & Martin, 2016) and feature matching/screening
protocols (e.g., Fried-Oken et al., 2013; Kübler et al.,
2015), like those used for current practices in AAC inter-
vention (Light & McNaughton, 2013; Thistle & Wilkinson,
2015).

Topic 3: Are BCIs Faster Than Other
Access Methods for AAC?

Current AAC devices yield a range of communication
rates that depend on access modality (e.g., direct selection,
scanning), level of literacy, and information represented by
each communication item (e.g., single-meaning icons or
images, letters, icons representing complex phrases; Hill &
Romich, 2002; Roark, Fried-Oken, & Gibbons, 2015), as
well as word prediction software (Trnka, McCaw, Yarrington,
McCoy, & Pennington, 2008). Communication rates using
AAC are often less than 15 words per minute (Beukelman
& Mirenda, 2013; Foulds, 1980), and slower speeds (two to
6 American Journal of Speech-Language Pathology • Vol. 27 • 1–12 •
five words per minute; Patel, 2011) are observed for letter
spelling due to the need for multiple selections for spelling
words (Hill & Romich, 2002). Word prediction and lan-
guage modeling can increase both speed and typing effi-
ciency (Koester & Levine, 1996; Roark et al., 2015; Trnka
et al., 2008), but the benefits may be limited due to addi-
tional cognitive demands (Koester & Levine, 1996). Scan
rate in auto-advancing row–column scanning access methods
also affects communication rate, and though faster scan
rates should lead to faster communication rates, slower
scan rates can reduce selection errors (Roark et al., 2015).
BCIs are similarly affected by scan rate (Sellers & Donchin,
2006); for example, a P300 speller can only operate as fast
as each item is flashed. Increases in flash rate may also
increase cognitive demands for locating desired grid items
while ignoring others, similar to effects observed using
commercial AAC visual displays (Thistle & Wilkinson,
2013).

Current BCIs for communication generally yield
selection rates that are slower than existing AAC methods,
even with incorporation of language prediction models
(Oken et al., 2014). Table 2 provides a summary of selec-
tion rates from recent applications of conventional access
techniques and BCI to communication interfaces. Both
individuals with and without neuromotor impairments
using motor-based BCIs have achieved selection rates un-
der 10 selections (letters, numbers, symbols) per minute
(Blankertz et al., 2006; Neuper et al., 2003; Scherer et al.,
2004), and those using P300 methods commonly operate
below five selections per minute (Acqualagna & Blankertz,
2013; Donchin et al., 2000; Nijboer, Sellers, et al., 2008;
Oken et al., 2014). A recent P300 study using a novel pre-
sentation technique has obtained significantly higher com-
munication rates of 19.4 characters per minute, though
the method has not been studied in detail with participants
February 2018



Table 2. Communication rates from recent BCI and conventional access to communication interfaces.

BCI method Population Selection rate Source

Berlin BCI (motor imagery) Healthy 2.3–7.6 letters/min Blankertz et al. (2006)
Graz BCI (motor imagery) Healthy 2.0 letters/min Scherer et al. (2004)
Graz BCI (motor imagery) Impaired 0.2–2.5 letter/min Neuper et al. (2003)
P300 speller (visual) Healthy 4.3 letters/min Donchin et al. (2000)

19.4 char/min (120.0 bits/min) Townsend and Platsko (2016)
P300 speller (visual) ALS 1.5–4.1 char/min (4.8–19.2 bits/min) Nijboer, Sellers, et al. (2008)

ALS 3–7.5 char/min Mainsah et al. (2015)
RSVP P300 LIS 0.4–2.3 char/min Oken et al. (2014)
RSVP P300 Healthy 1.2–2.5 letter/min Acqualagna and Blankertz (2013),

Oken et al. (2014)
SSVEP Healthy 33.3 char/min Chen et al. (2015)

10.6 selections/min (27.2 bits/min) Friman et al. (2007)
AAC (row–column) Healthy 18–22 letters/min Roark et al. (2015)

LIS 6.0 letters/min
AAC (direct selection) Healthy 5.2 words/min Trnka et al. (2008)

Note. BCI = brain–computer interface; ALS = amyotrophic lateral sclerosis; RSVP = rapid serial visual presentation; LIS = locked-in syndrome;
SSVEP = steady state visually evoked potential; AAC = augmentative and alternative communication; char = character.
with neuromotor impairments (Townsend & Platsko, 2016).
BCIs, on the basis of the SSVEP, have emerged as a prom-
ising technique often yielding both high accuracy (> 90%)
and communication rates as high as 33 characters per min-
ute (Chen et al., 2015).

From these reports, BCI performance has started to
approach levels associated with AAC devices using direct
selection, and the differences in communication rates for
scanning AAC devices and BCIs (shown in Table 2) are
reduced when making comparisons between individuals
with neuromotor impairments rather than individuals with-
out impairments (e.g., AAC: six characters per minute;
Roark et al., 2015; BCI: one to eight characters per min-
ute; Table 2). Differences in communication rate can also
be reduced based on the type of BCI method (e.g., 3–7.5
characters per minute; Mainsah et al., 2015). These results
suggest that BCI has become another clinical option for
AAC intervention that should be considered during the
Table 3. Take-home points collated from the interdisciplinary research team
methods for AAC.

BCIs do not yet have the ability to translate thoughts or speech plans into
for implantation of recording electrodes, are currently being developed

Noninvasive BCIs are most often designed as an indirect method for acce
There are a variety of noninvasive BCIs that can support clients with a ran

most appropriate BCI technique requires individualized assessment and
The potential population of individuals who may use BCIs is heterogeneou

neurological and neuromotor disorders (e.g., locked-in syndrome due to
individuals with congenital disorders such as CP.

BCIs are currently not as efficient as existing AAC access methods for ind
progressing. For these individuals, BCIs provide an opportunity to augm
progressive neurodegenerative diseases, learning to use BCI before spe
technologies may help maintain continuity of communication. For those
the only form of access to communication.

Long-term BCI use is only just beginning; BCI performance may improve a
greater proficiency and familiarity with the device.

Note. BCI = brain–computer interface; AAC = augmentative and alterna
cerebral palsy.
clinical decision-making process. BCIs have particular util-
ity when considered for the most severe cases; the com-
munication rates described in the literature are sufficient
to provide access to language and communication for those
who are currently without both. Recent improvements in
BCI designs have shown promising results (e.g., Chen et al.,
2015; Townsend & Platsko, 2016), which may start to
push BCI communication efficacy past current benchmarks
for AAC. Importantly, few BCIs have been evaluated over
extended periods of time (Holz et al., 2015; Sellers et al.,
2010); therefore, it is possible that BCI selection may im-
prove over time with training.
Topic 4: Fatigue and Its Effects
BCIs, like conventional AAC access techniques, require

various levels of attention, working memory, and cognitive
load that all affect the amount of effort (and fatigue) needed
that highlight the major considerations for BCI as possible access

fluent speech productions. Direct BCIs, usually involving a surgery
as speech neural prostheses.
ssing AAC, whether custom developed or commercial.
ge of sensory, motor, and cognitive abilities—and selecting the
feature matching procedures.
s, though current work is focused on individuals with acquired
stroke, traumatic brain injury, and ALS); limited study has involved

ividuals with some form of movement, though the technology is
ent or complement existing approaches. For individuals with
ech and motor function worsen beyond the aid of existing access
who are unable to use current access methods, BCIs may provide

s the technology matures and as individuals who use BCI gain

tive communication; ALS = amyotrophic lateral sclerosis; CP =
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to operate the device (Kaethner, Kübler, & Halder, 2015;
Pasqualotto et al., 2015). There is evidence that scanning-
type AAC devices are not overly tiring (Gibbons & Beneteau,
2010; Roark, Beckley, Gibbons, & Fried-Oken, 2013), but
prolonged AAC use can have a cumulative effect and reduce
communication effectiveness (Trnka et al., 2008). In these
cases, language modeling and word prediction can reduce
fatigue and maintain high communication performance
using an AAC device (Trnka et al., 2008). Within BCI, reports
of fatigue, effort, and cognitive load are mixed. Individ-
uals with ALS have reported that visual P300 BCIs re-
quired more effort and time compared with eye gaze access
(Pasqualotto et al., 2015), whereas others reported that a visual
P300 speller was easier to use, and not overly exhausting com-
pared with eye gaze, because it does not require precise eye
movements (Holz et al., 2015; Kaethner et al., 2015). Other
findings from these studies indicate that the visual P300
speller incurred increased cognitive load and fatigue for
some (Kaethner et al., 2015), whereas for others, there is
less strain compared to eye-tracking systems (Holz et al., 2015).
The application of many conventional and BCI-based
AAC access techniques with the same individual may per-
mit an adaptive strategy to rely on certain modes of access
based on each individual’s level of fatigue. This will allow
one to change his or her method of AAC access to suit his
or her fatigue level throughout the day.

Topic 5: BCI as an Addition to Conventional AAC
Access Technology

At their current stage of development, BCIs are
mainly the primary choice for individuals with either ab-
sent, severely impaired, or highly unreliable speech and
motor control. As BCIs advance as an access modality for
AAC, it is important that the goal of intervention remains
on selecting an AAC method that is most appropriate
versus selecting the most technologically advanced access
method (Light & McNaughton, 2013). Each of the BCI
devices discussed has unique sensory, motor, and cogni-
tive requirements that may best match specific profiles of
individuals who may require BCI, as well as the training
required for device proficiency. The question then of BCIs
replacing any form of AAC must be determined according
to the needs, wants, and abilities of the individual. These
factors play a crucial role on motivation, which has direct
impact on BCI effectiveness (Nijboer, Birbaumer, & Kübler,
2010). Other assessment considerations include comorbid
conditions, such as a history of seizures, which is a contra-
indication for some visual BCIs due to the rapidly flashing
icons (Volosyak et al., 2011). Cognitive factors, such as dif-
fering levels of working memory (Sprague, McBee, & Sellers,
2015) and an ability to focus one’s attention (Geronimo
et al., 2016; Riccio et al., 2013), are also important consid-
erations because they have been correlated to successful
BCI operation.

There are additional considerations for motor-based
BCIs, including (a) a well-known observation that the SMR,
which is necessary for device control, cannot be adequately
8 American Journal of Speech-Language Pathology • Vol. 27 • 1–12 •
estimated in approximately 15%–30% of all individuals with
or without impairment (Vidaurre & Blankertz, 2010) and
(b) the possibility of performance decline or instability as a
result of progressive neuromotor disorders, such as ALS
(Silvoni et al., 2013). These concerns are currently being
addressed using assessment techniques to predict motor-based
BCI performance, including a questionnaire to estimate
kinesthetic motor imagery (e.g., first person imagery or imag-
ining performing and experiencing the sensations associated
with motor imagery) performance (Vuckovic & Osuagwu,
2013), which is known to lead to better BCI performance
compared with a third person motor imagery (e.g., watching
yourself from across the room; Neuper, Scherer, Reiner, &
Pfurtscheller, 2005). Overall, there is limited research avail-
able on the inter- and intraindividual considerations for BCI
intervention that may affect BCI performance (Kleih &
Kübler, 2015); therefore, clinical assessment tools and guide-
lines must be developed to help determine the most ap-
propriate method of accessing AAC (that includes both
traditional or BCI-based technologies) for each individual.
These efforts have already begun (e.g., Fried-Oken et al.,
2013; Kübler et al., 2015), and more work is needed to en-
sure that existing AAC practices are well incorporated with
BCI-based assessment tools.

In summary, the ultimate purpose of BCI access
techniques should not be seen as a competition or a re-
placement for existing AAC methods that have a history
of success. Rather, the purpose of BCI-based communi-
cation is to provide a feature-matched alternate or comple-
mentary method for accessing AAC for individuals with
suitability, preference, and motivation for BCI or for
those who are unable to utilize current communicative
methods.

Topic 6: Limitations of BCI and Future Directions
Future applications of noninvasive BCIs will con-

tinue to focus on increasing accuracy and communication
rate for use either as standalone AAC options or to access
existing AAC devices. One major area of future work is
to improve the techniques for noninvasively recording brain
activity needed for BCI operation. Though a large majority
of people who may potentially use BCI have reported that
they are willing to wear an EEG cap (84%; Huggins, Wren,
& Gruis, 2011), the application of EEG sensors and their
stability over time are still obstacles needed to be overcome
for practical use. Most EEG-based BCI systems require the
application of electrolytic gel to bridge the contact between
electrodes and the scalp for good signal acquisition. Unfor-
tunately, this type of application has been reported to be
inconvenient and cumbersome by individuals who currently
use BCI and may also be difficult to set up and maintain
by a trained facilitator (Blain-Moraes, Schaff, Gruis, Huggins,
& Wren, 2012). Further, electrolytic gels dry out over time,
gradually degrading EEG signal acquisition. Recent advances
in dry electrode technology may help overcome this limita-
tion (Blain-Moraes et al., 2012) by allowing for recording of
EEG without electrolytic solutions and may lead to easier
February 2018



application of EEG sensors and prolonged stability of EEG
signal acquisition.

In order to be used in all environments, EEG must
be portable and robust to external sources of noise and
artifacts. EEG is highly susceptible to electrical artifacts
from the muscles, environment, and other medical equip-
ment (e.g., mechanical ventilation). Therefore, an assess-
ment is needed for likely environments of use, as are
guidelines for minimizing the effect of these artifacts.
Simultaneous efforts should be made toward improving
the tolerance of EEG recording equipment to these out-
size sources of electrical noise (Kübler et al., 2015).

The ultimate potential of BCI technology is the devel-
opment of a system that can directly decode brain activity
into communication (e.g., written text or spoken), rather
than indirectly operate a communication device. This type
of neural decoding is primarily under investigation using
invasive methods using electrocorticography and intra-
cortical microelectrodes and has focused on decoding pho-
nemes (Blakely et al., 2008; Brumberg et al., 2011; Herff
et al., 2015; Mugler et al., 2014; Tankus et al., 2012), words
(Kellis et al., 2010; Leuthardt et al., 2011; Pei et al., 2011),
and time-frequency representations (Martin et al., 2014).
Invasive methods have the advantage of increased signal
quality and resistance to sources of external noise but require
a surgical intervention to implant recording electrodes
either in or on the brain (Chakrabarti et al., 2015). The goal
of these decoding studies and other invasive electrophysio-
logical investigations of speech processing is to develop a
neural prosthesis for fluent-like speech production (Brumberg,
Burnison, & Guenther, 2016). Although invasive techniques
come at a surgical cost, one study reported that 72% of indi-
viduals with ALS indicated they were willing to undergo
outpatient surgery, and 41% were willing to have a surgical
intervention with a short hospital stay to access invasive
BCI methods (Huggins et al., 2011). That said, very few
invasive BCIs are available for clinical research or long-term
at-home use (e.g., Vansteensel et al., 2016); therefore, non-
invasive methods will likely be first adopted for use in AAC
interventions.

Conclusions
This tutorial has focused on a few important consid-

erations for the future of BCIs as AAC: (a) Despite broad
speech-language pathology expertise in AAC, there are
few clinical guidelines and recommendations for the use
of BCI as an AAC access technique; (b) the most mature
BCI technologies have been designed as methods to access
communication interfaces rather than directly accessing
thoughts, utterances, and speech motor plans from the brain;
and (c) BCI is an umbrella term for a variety of brain-to-
computer techniques that require comprehensive assessment
for matching people who may potentially use BCI with the
most appropriate device. The purpose of this tutorial was
to bridge the gaps in knowledge between AAC and BCI
practices, describe BCIs in the context of current AAC con-
ventions, and motivate interdisciplinary collaborations to
pursue rigorous clinical research to adapt AAC feature
matching protocols to include intervention with BCIs.
A summary of take-home messages to help bridge the gap
between knowledge of AAC and BCI was compiled from
our interdisciplinary team and summarized in Table 3.
Additional training and hands-on experience will improve
acceptance of BCI approaches for interventionists targeted by
this tutorial, as well as people who may use BCI in the future.

Key to the clinical acceptance of BCI are necessary
improvements in communication rate and accuracy via
BCI access methods (Kageyama et al., 2014). However,
many people who may use BCIs understand the current
limitations, yet they recognize the potential positive bene-
fits of BCI, reporting that the technology offers “freedom,”
“hope,” “connection,” and unlocking from their speech
and motor impairments (Blain-Moraes et al., 2012). A sig-
nificant component of future BCI research will focus on
meeting the priorities of people who use BCIs. A recent
study assessed the opinions and priorities of individuals
with ALS in regard to BCI design and reported that indi-
viduals with ALS prioritized performance accuracy of at
least 90% and a rate of at least 15 to 19 letters per minute
(Huggins et al., 2011). From our review, most BCI tech-
nologies have not yet reached these specifications, though
some recent efforts have made considerable progress (e.g.,
Chen et al., 2015; Townsend & Platsko, 2016). A renewed
emphasis on user-centered design and development is
helping to move this technology forward by best match-
ing the wants and needs of individuals who may use BCI
with realistic expectations of BCI function. It is imperative
to include clinicians, individuals who use AAC and BCI,
and other stakeholders into the BCI design process to
improve usability and performance and to help find the
optimal translation from the laboratory to the real world.
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