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Abstract
We have long known that rod and cone signals interact within the retina and
can even contribute to color vision, but the extent of these influences has
remained unclear. New results with more powerful methods of RNA expression
profiling, specific cell labeling, and single-cell recording have provided greater
clarity and are showing that rod and cone signals can mix at virtually every level
of signal processing. These interactions influence the integration of retinal
signals and make an important contribution to visual perception.
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When one of us was a graduate student in the early ’70s, Edwin 
Land, the inventor of the Polaroid camera, came to Harvard to 
give a seminar on his “retinex” theory of color vision1,2. Though 
a successful entrepreneur and businessman, Land retained an 
immense curiosity about the eye and especially about color. His 
retinex theory attempted to account for what most scientists 
would call color constancy—the remarkable ability of the visual 
system to maintain the perceived color of an object in quite dif-
ferent conditions of illumination. Apples continue to be red or 
green at dawn and at noon, even though the light reflected from  
the apples at different times of day can be quite different in  
wavelength composition.

After the seminar, Gordon told Land about his experiments on 
interactions between rod and cone signals in the mudpuppy retina3, 
and Land invited him to the research laboratory of the Polaroid 
Corporation to meet Land’s associate John McCann, who was 
working on rod contributions to color vision. Although we are 
accustomed to think of rods as being responsible for dim-light 
vision and cones for color vision, McCann had devised a psy-
chophysical demonstration with light stimulating only the rods 
and long-wavelength cones. He showed with little doubt that rods 
could contribute to the perception of hue4,5. His results and those  
of other psychophysicists (see, for example,6,7) have provided  
clear evidence of a contribution of rods to color.

In addition to these experiments, a large body of psychophysi-
cal literature indicates that signals derived from rods and cones 
can interact at many levels in the retina (see 8). Rod signals 
can influence cone spatial acuity and temporal sensitivity in  
sometimes quite surprising ways. Because rod signals are 
slower than cone signals, the signals from the two kinds of pho-
toreceptors to flickering illumination can arrive at downstream  
targets out of phase with one another so that the flickering light 
stimulating both kinds of photoreceptors can seem to be steady9. 
Even when the rods are not stimulated, they can decrease cone  
sensitivity to flicker during dark adaptation10, and cones can 
depress rod sensitivity and move rod saturation to lower light 
intensities11. These interactions probably occur somewhere in  
the retina, but nothing is known about the details of their  
mechanisms.

Renewed interest in interactions between rods and cones has 
been stimulated by several recent findings. Single-cell RNA 
expression profiling is being used in many parts of the nervous 
system to identify and distinguish different cell types from the 
profiles of the RNAs they express (see, for example,12,13). This 
method has also been used to good advantage on the retina, 
where it has now provided a comprehensive classification of all 
types of mouse bipolar cells14. Careful examination of contacts  
of these cells with another technique—serial-section electron 
microscopy followed by computer-guided reconstruction of cell 
morphology15—has given us a more complete understanding 
of rod and cone pathways through the mammalian retina and 
shown that they intermingle more than previously thought16. 
Physiological studies have also provided new perspectives  
(for example,17). Joesch and Meister18 have shown, for exam-
ple, that mice have a specific kind of ganglion cell (called the 
J-RGC or JAMB; see 19) with a color-opponent receptive field  

(see also 20). These cells resemble ganglion cells thought to medi-
ate color vision in many vertebrates, but the center OFF response 
of the J-RGC can come specifically from ultraviolet-sensitive 
cones, and the ON surround from rods. The center and surround 
are mutually antagonistic, suggesting that the mouse retina  
contains specific microcircuits to provide color information  
resulting from interactions between rod and cone signals.

Another even more surprising finding is the claim of Tikidji-
Hamburyan and colleagues21 that rods can continue to func-
tion at much higher luminance than previously supposed. These 
investigators recorded from the retinas (and the central nervous  
system) of mice genetically engineered to lack cone function and 
showed that responses could be recorded from photoreceptors 
and ganglion cells even in bright, bleaching light. These find-
ings challenge earlier psychophysical measurements in humans  
(22; see 23) and mice24 as well as electrical recordings from single 
mammalian photoreceptors (for example,25–27) and from other reti-
nal neurons18,28, all of which seem to show that rods saturate and 
become essentially non-functional in relatively dim background 
light to allow the cones with their kinetically faster responses to 
dominate perception.

To put this research into perspective and stimulate new  
avenues of research, we will endeavor to describe our present 
understanding of rod and cone interactions in the retina, empha-
sizing more recent findings from the mouse and primate. There 
are several demonstrated pathways for rod and cone signals to 
be communicated through the retina (Figure 1), and each of  
these pathways provides opportunities for the two signals to  
influence one another.

Electrical coupling of rods and cones
A first stage of interaction between rods and cones occurs within 
the photoreceptor layer itself. Rods are electrically coupled 
to cones in many vertebrate species29, including teleost fish30, 
amphibians31, mice32,33, and primates34,35. Although the coupling 
is known to require connexin 3636,37, and connexin 36 immu-
nolabeling can be readily identified at gap junctions between 
rods and cones on the cone side of the junction33,38,39, the identity 
of the rod connexin has long been uncertain. We think it quite 
likely, however, that the rod protein in the mouse is also some  
form of connexin 36. The evidence is, first, that connexin 36 
expression has been shown to be widespread within the pho-
toreceptor layer, and there is so much labeling that it is unlikely 
to be confined only within the cones36. In addition, Jin and  
colleagues40 have recently shown that coupling is essentially  
abolished when connexin 36 gene expression is deleted spe-
cifically within the rods. However, it remains possible that two  
different isoforms of connexin 36 are expressed in the two kinds  
of photoreceptors.

The preferred direction of current flow will be from rods to 
cones because of the much greater number of rods in most  
mammalian retinas41. Therefore, the extent of coupling between 
rods and cones will set the magnitude of rod signals seen  
within the cone pedicle. Rod–cone coupling has some interest-
ing features. Coupling of rods and cones in goldfish retina is 
under circadian control so that it is strong in darkness at night 
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Figure 1. Rod and cone pathways through the mammalian (mouse) retina. (Left) ON pathways. Rod bipolar cell (RBC) receives input 
mostly from rods but also from cones and makes excitatory glutamatergic synapses onto AII amacrine cells, which in turn make gap junctions 
(squiggly lines) onto ON cone bipolar cells (ON CBCs). The ON CBCs then synapse onto ON-type ganglion cells (ON GCs). Rods also make 
gap junctions onto other rods and onto cones (squiggly lines), and the cones then carry rod signals to ON CBCs. (Center) Mouse horizontal 
cell (HC), whose dendrites contact exclusively cones and whose axon terminal contacts exclusively rods. Both cell body and axon can 
receive both rod and cone signals indirectly by passive spread through gap junctions between receptors. (Right) OFF pathways. RBCs make 
excitatory synapses onto AII amacrine cells, which make inhibitory glycinergic synapses onto OFF cone bipolar cells (OFF CBCs). These in 
turn synapse onto OFF ganglion cells (OFF GCs). Rods make gap-junctional contacts onto cones, which carry rod signals through OFF CBCs 
to OFF GCs. Finally, some OFF bipolar cells receive input from both rods and cones (far right). Dashed line through inner plexiform layer (IPL) 
indicates sublaminae; upper layer (sublamina a) contains terminations of OFF bipolar cells and dendrites of OFF GCs, and lower (sublamina 
b) contains ON bipolar cell terminals and ON GC dendrites42. GCL, ganglion-cell layer; INL, inner nuclear layer; ONL, outer nuclear layer;
OPL, outer plexiform layer; OS, outer segments of photoreceptors. After 43,44.

but much weaker in brighter illumination during the day30. The 
extent of coupling is regulated by dopamine and D

2
 receptors, 

such that increases in dopamine and D
2
-receptor stimulation dur-

ing the day decrease coupling. In primates, on the other hand, 
neither background light nor dopamine has been reported to  
influence the extent of coupling35.

Asteriti and colleagues32 have recorded from photoreceptors 
with perforated patch in mouse retina and observed that the 
amplitude of the rod voltage signal recorded in cones gradually 
increases over many minutes during the duration of the record-
ing. The mechanism of this potential modulation is unclear. Our 
graduate student Norianne Ingram has recorded rod input in  
mouse cones with whole-cell patch recording45 and has seen no 
evidence for time dependence of the rod input. Clearly, much 
more remains to be learned about the physiology of rod–cone  
coupling and its control by light intensity and circadian rhythm.

Rod and cone inputs to bipolar cells
Rods and cones make synapses in the outer plexiform layer 
with two kinds of cells (Figure 1): bipolar cells, whose axons 
transmit information to the next layer of retina called the 

inner plexiform layer, and horizontal cells, whose lateral proc-
esses interconnect photoreceptors and bipolar cells. Vertebrates 
have two kinds of bipolar cells (see 46): ON-type depolariz-
ing to light in the center and hyperpolarizing to surrounding  
illumination and OFF-type hyperpolarizing to central illumi-
nation and depolarizing to the surround47,48. In teleost fish49 
and other lower vertebrates (for example,3,50), rods and cones 
synapse together onto the same ON and OFF bipolar cells,  
although some bipolar cells receive much more rod input than  
others.

In mammals, rod signals are conveyed down to the inner plexi-
form layer by only a few specific kinds of bipolar cells (see  
Figure 1 and 43). There is a single so-called “rod” bipolar 
cell, which is exclusively ON and which uses metabotropic 
mGluR6 synaptic receptors51. Although these cells receive almost 
entirely rod input, we now know that they can also make a small 
number of contacts with cones16,17. These rod bipolar cells form  
the primary pathway of rod transit through the retina in dim 
light52–54 but can also continue to signal contrast modulation at 
ambient intensities above the cone threshold55. It is currently 
unknown whether they can also respond in even brighter,  
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bleaching light, when rods would be hyperpolarized well  
below their dark resting-membrane potential.

In addition to the rod bipolar, there are a further 13 or 14 kinds 
of bipolar cell in mouse14, which can be either ON-type or  
OFF-type and use either mGluR6 glutamate receptors or  
ionotropic kainate/AMPA glutamate receptors. Most of these 
bipolar cells receive direct input exclusively from cones, but 
at least three types of OFF bipolar cell are also contacted by 
rods16,56–58, in mouse as apparently also in primates59. At present,  
there is little evidence for direct synaptic input of rods to ON 
bipolar cells other than the “rod” bipolar (but see 17). Each of 
the different bipolar cell types has a distinguishing response  
profile and different spatial and temporal characteristics60. These 
differences are probably the combined result of differences 
in their populations of synaptic receptors, voltage-gated ion 
channels, receptor modulation, and inhibition from horizontal  
cells as well as from amacrine cells in the inner plexiform  
layer (see 46,60,61).

Horizontal cells
Horizontal cells in lower vertebrates receive input from cones or 
from both rods and cones and can have light responses of two 
kinds. Some cells (called C-type) have mutually antagonistic 
input from two spectral classes of cones or from rods and 
cones, but most cells are L-type and receive exclusively hyper-
polarizing input (see, for example,3,62,63). Mammals seem not 
to have C-type horizontal cells but can have two morphologi-
cally different kinds of L-type horizontal cells: an A-type, which  
lacks an axon and contacts only cones, and a B-type, whose 
dendritic terminals contact only cones and whose often large 
axon terminal contacts only rods64,65. The mouse retina has only  
the B-type (Figure 1; see 66).

Early recordings from mammalian horizontal cells nearly 50 
years ago revealed that the same cell could receive both rod and 
cone input67. Similar recordings from mice have also demon-
strated that both the cell body and axon terminal of the B-type 
cell can receive input from rods and cones68. Because the axon 
is slender and does not conduct action potentials, it is usually 
assumed that signals from the two kinds of photoreceptors  
cannot be conducted by the axon between the cell body and 
axon terminal69 but must travel via gap junctions between 
the rod and cone photoreceptors before the photoreceptors 
synapse onto the horizontal cells. However, Trümpler and  
colleagues68 have shown that cone signals can be recorded from 
horizontal-cell axon terminals in mice lacking connexin 36,  
suggesting that some signal can make it down the axon at least 
from the cell body to the axon terminal. They were unable to  
demonstrate that rod signals could be recorded from the cell 
bodies after elimination of the gap junctions. This result is  
surprising: if signal spreads from the cell body to the axon  
terminal, we should expect it to spread in the opposite direc-
tion as well, given the passive properties of signal conduction 
down the axon and the large size of the axon terminal relative  
to the cell body.

Horizontal cells provide inhibitory surrounds by feeding back 
onto both rods and cones (see, for example,70,71). Because both the 
soma and the axon terminals of horizontal cells receive signals  

from both kinds of photoreceptors, the rod signal in the hori-
zontal-cell somata could feed back onto cones and the cone sig-
nal in the horizontal-cell axons could feed back onto rods. An 
effect of this kind was recently demonstrated by Szikra and  
colleagues28, who showed that rod photoreceptors can be  
modestly depolarized by cone signals coming from horizon-
tal cells. Because horizontal cells receive input from both kinds 
of photoreceptors, they are potentially capable of mediating  
antagonistic rod–cone interactions in either direction.

Amacrine cells and the inner plexiform layer
Bipolar cells synapse onto both amacrine and ganglion cells 
in the next layer of processing, the inner plexiform layer  
(Figure 1). There are at least 40 different types of amacrine 
cell, each with a distinguishable morphology and pattern of  
synaptic contact15. Amacrine cells receive signals from rods or 
both rods and cones, either directly from bipolar cells or indi-
rectly via the gap junctions between the two kinds of receptors.  
The A17 amacrine cells, for example, receive synapses almost 
exclusively from rod bipolar cells72 and make reciprocal 
GABAergic inhibitory synapses back onto these same bipolar 
cells73,74. In this way, they provide local feedback inhibition 
at rod bipolar cell terminals75, which can shape the temporal  
characteristics of the rod signal conveyed to the rest of the  
retina and visual system76.

Rod and cone inputs have been particularly well studied for 
another amacrine cell, called the AII amacrine (or sometimes 
A2; see, for example,15). In mammals, this cell serves an essen-
tial function in dim-light vision because rod bipolar cells do not 
make direct synaptic connection with ganglion cells. Instead, the 
rod bipolars make glutamatergic excitatory synapses onto AII  
amacrine cells, which then transfer the rod signal to cone ON 
bipolars via gap junctions (see Figure 1 and 46). The AII ama-
crine also makes glycinergic inhibitory synapses onto OFF cone 
bipolars (see also 54). As a result, the depolarizing signal of ON 
rod bipolars produces a depolarizing AII amacrine response, 
which then depolarizes ON cone bipolars and hyperpolarizes  
OFF cone bipolars. The AII amacrines also make gap  
junctions with one another, and, like the rod–cone junctions, 
these gap junctions are more conductive at night than during 
the day and are modulated by presynaptic activity77 and by  
dopamine—but by D

1
 receptors instead of D

2
 receptors78,79.

This classic picture of rod signal flow is subject to several quali-
fications. First, AII amacrines also receive a relatively large 
direct synaptic input from OFF cone bipolar cells80–82. The  
functional consequence of this input remains largely unex-
plored. Second, the gap-junctional input from AII amacrines 
to ON cone bipolars can proceed in either direction83; as a  
consequence, depolarization of ON cone bipolars can depolar-
ize AII amacrines and hyperpolarize OFF cone bipolars, some of 
which receive rod input. Finally, AII amacrine cells are known to  
synapse directly onto ganglion cells80–82, specifically onto  
certain classes of OFF ganglion cells84. All of these pathways  
provide opportunities for rod and cone signals to interact.

Ganglion cells
Recordings from ganglion cells could have special signifi-
cance for our understanding of rod and cone interactions 
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because ganglion cell responses reflect the aggregate of inte-
gration within the whole retina and specify the nature of the  
signal sent by the retina to the central nervous system. Some  
ganglion cells receive only cone signals, most notably the midget  
ganglion cells in the primate fovea, but the large majority 
appear to receive both rod and cone input from amacrine 
cells and cone bipolar cells (see, for example,53,85), allowing  
their activity to span a large, dynamic range of light intensities.

Although it is possible to stimulate rods and cones selectively 
with careful selection of light intensity and spectral compo-
sition, attempts to investigate rod and cone interactions in  
ganglion cells have been few and far between (see 8). One of 
the earliest was the paper of Gouras and Link86, who made  
extracellular recordings from large (presumably parasol) gan-
glion cells in the primate perifovea. When brief flashes were 
given at short intervals to stimulate rods and then cones, or 
cones and then rods, the first response suppressed the second. 
Gouras and Link hypothesized that the first response—whether  
rod or cone—produced a transient inhibition that depressed  
the second response.

This phenomenon was studied in greater detail and with more 
powerful techniques nearly 50 years later by Grimes and  
colleagues87. They also made extracellular recordings from ON 
parasol cells from primate retina and presented two flashes at 
short intervals selectively stimulating the rods or cones. They 
were able to demonstrate clear suppression when stimulation  
of rods preceded stimulation of cones, but they found little or no 
effect when the cone signal came first. They then made patch-
clamp recordings of voltage responses from horizontal cells, ON 
cone bipolar cells, and AII amacrine cells, and in each of these  
cells the rod and cone signals summed linearly. However, they 
noticed a clear difference in the waveform of rod and cone 
responses in ON cone bipolar cells: rod responses to brief  
flashes consisted of a depolarization followed by a pronounced 
hyperpolarizing undershoot, whereas cone responses were  
monotonic depolarizations lacking an undershoot. They then  

constructed a simple model in which rod and cone responses 
arriving independently at an ON cone bipolar cell were summed  
linearly and then passed through a common non-linear filter in 
transit to ganglion cells. This model successfully explained the  
rod suppression of cone responses, ultimately attributable to 
the inhibitory undershoot of the rod signal in the cone ON bipo-
lar. Grimes and colleagues showed that this inhibition could be  
blocked by a cocktail of GABA and glycine receptor inhibitors 
and may reflect, at least in part, feedback inhibition coming from  
amacrine cells.

Conclusions
Although there is a large psychophysical literature describing 
rod and cone interactions in visual behavior as well as detailed 
information about the anatomy and physiology of sites within 
the retina where rod and cone interactions can occur, we still 
know very little about which sites produce which behaviors. 
The tools currently available for investigating retinal processing  
continue to evolve and are vastly more powerful now than even  
10 years ago. As these tools improve, we may be able to 
explain more clearly how the rod and cone systems in the 
eye function separately and together to produce a coherent  
perception of the world around us.
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