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Abstract

Introduction: Tobacco use is associated with variation at the 15q25 gene cluster and the cytochrome 
P450 (CYP) genes CYP2A6 and CYP2B6. Despite the variety of outcomes associated with these 
genes, few studies have adopted a data-driven approach to defining tobacco use phenotypes for 
genetic association analyses. We used factor analysis to generate a tobacco use measure, explored 
its incremental validity over a simple indicator of tobacco involvement: cigarettes per day (CPD), 
and tested both phenotypes in a genetic association study.
Methods: Data were from the University of California, San Francisco Family Alcoholism Study (n = 
1942) and a Native American sample (n = 255). Factor analyses employed a broad array of tobacco 
use variables to establish the candidate phenotype. Subsequently, we conducted tests for associa-
tion with variants in the nicotinic acetylcholine receptor and CYP genes. We explored associations 
with CPD and our measure. We then examined whether the variants most strongly associated with 
our measure remained associated after controlling for CPD.
Results: Analyses identified one factor that captured tobacco-related problems. Variants 
at 15q25 were significantly associated with CPD after multiple testing correction (rs938682: 
p  =  .00002, rs1051730: p  =  .0003, rs16969968: p  =  .0003). No significant associations were 
obtained with the tobacco use phenotype; however, suggestive associations were observed 
for variants in CYP2B6 near CYP2A6 (rs45482602: ps = .0082, .0075) and CYP4Z2P (rs10749865: 
ps = .0098, .0079).
Conclusions: CPD captures variation at 15q25. Although strong conclusions cannot be drawn, 
these finding suggest measuring additional dimensions of problems may detect genetic variation 
not accounted for by smoking quantity. Replication in independent samples will help further refine 
phenotype definition efforts.
Implications: Different facets of tobacco-related problems may index unique genetic risk. CPD, a 
simple measure of tobacco consumption, is associated with variants at the 15q25 gene cluster. 
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Additional dimensions of tobacco problems may help to capture variation at 19q13. Results dem-
onstrate the utility of adopting a data-driven approach to defining phenotypes for genetic associa-
tion studies of tobacco involvement and provide results that can inform replication efforts.

Introduction

In the United States, tobacco consumption results in more than 
480 000 premature deaths and productivity losses of $289 billion 
annually.1 Despite its health and financial costs, many individuals 
continue to use tobacco: in 2014, estimated smoking prevalence in 
the United States was 16.8%.2 Genetic factors influence tobacco 
involvement, and heritability estimates for smoking-related out-
comes are in excess of 50%.3–6 Identifying genes that contribute to 
tobacco use can help clarify its biological underpinnings and iden-
tify individuals at risk for problems.

Variants in genes that encode the nicotinic acetylcholine recep-
tor (CHRN) subunits are robustly associated with smoking and 
have been implicated in a number of outcomes, including age of ini-
tiation,7,8 subjective response,9,10 nicotine dependence (ND),11,12 lung 
cancer,13,14 cotinine levels,15,16 and exhaled carbon monoxide.17

Cytochrome P450 (CYP) genes CYP2A6 and CYP2B6 also dem-
onstrate replicable associations. CYP2A6 and CYP2B6 are associ-
ated with smoking cessation success,18–21 and CYP2A6 is linked 
with cigarette consumption and dependence.22–24 Many tobacco-
related measures are related to the CHRN and CYP genes; how-
ever, cigarettes per day (CPD) is commonly used and is a strong 
candidate for genetic association studies. Genome-wide meta-
analyses have found CPD to be associated with the CHRNA5/A3/
B4 gene cluster25–28 and variants at CHRNB3, CHRNA6, CYP2A6, 
and CYP2B6.25

Despite the many tobacco-related outcomes associated with the 
CHRN and CYP genes, few studies have adopted a data-driven 
approach to defining phenotypes for association analyses. This may 
increase power to detect variants for tobacco involvement. It may 
also change the associations obtained. For instance, CPD is often 
used as a proxy for ND; however, Rice et al.29 found that in a multi-
ethnic sample, dependence as assessed by the Fagerström Test for 
Nicotine Dependence (FTND)—but not CPD—was associated 
with a genetic locus in the region of CHRNB3. Hancock et al.,30 in 
the largest GWAS meta-analysis of ND to date, observed associa-
tions between FTND scores and variants in CHRNA4 that have 
not been associated with CPD. Thus, different phenotypes may 
show stronger associations with different variants. Encompassing 
more dimensions of use should help identify variants that over-
lap with those obtained in analyses of CPD and variants specific 
to other facets of use. This can improve our understanding of the 
mechanisms underlying genotype-phenotype associations.

We aimed to characterize a broad spectrum of tobacco involve-
ment. We therefore surveyed a number of behaviors, including age of 
onset, duration of use, and disorder. Factor analysis is ideal for defin-
ing the latent structure of interrelated items. Behavior genetic studies 
have demonstrated its utility for characterizing substance use pheno-
types for genetic analyses. For instance, Lessov et al.31 used pheno-
typic and genetic factor analyses of the DSM-IV ND criteria and the 
Heaviness of Smoking Index to identify a highly heritable depend-
ence phenotype. To our knowledge, however, no such approach has 
been used to define tobacco use phenotypes for molecular genetic 
studies.

This study adopted a data-driven approach to define a candidate 
tobacco use phenotype for genetic association studies. We conducted 
phenotypic analyses in two independent samples to establish the 
measure. Subsequently, we evaluated the utility of this measure by 
conducting single variant tests for genetic association, focusing on a 
set of variants within the CHRN and CYP genes. We first conducted 
tests with CPD. Next, we examined whether the genetic variants 
most strongly associated with our phenotype remained associated 
after controlling for CPD. This was done to determine the incremen-
tal validity of our measure over a simple and commonly used meas-
ure of tobacco involvement.

Methods

Participants
Data were collected at the University of California, San Francisco 
(UCSF) and The Scripps Research Institute (La Jolla, CA). 
Assessment procedures were approved by each organization’s insti-
tutional review boards. Participants were fully briefed on the study 
and provided informed consent. Management and analysis of data 
collected at UCSF were approved by the institutional review board 
at the University of North Carolina at Chapel Hill. Data collection 
at The Scripps Research Institute was also approved by the Indian 
Health Council.

UCSF Family Alcoholism Study Sample
Participants are a subset of the UCSF Family Alcoholism Study who 
reported European ancestry and exposure to tobacco as defined by 
smoking more than 100 cigarettes, 30 cigars or pipes, or 30 pouch-
fuls of snuff or chewing tobacco in their lifetime. This threshold was 
derived by the authors of the Semi-Structured Assessment for the 
Genetics of Alcoholism (SSAGA32) and is consistent with the crite-
rion employed by the Centers for Disease Control to classify smok-
ers.2 The lifetime smoking threshold was considered the minimal 
level of exposure to cigarettes; thus, individuals who did not meet 
this threshold were not administered questions concerning tobacco-
related problems.

The UCSF Family Alcoholism Study33 consists of 2524 par-
ticipants from 890 families (average size = 2.8 members). It was a 
nationwide study on the genetics of alcoholism and other substance 
dependence designed to recruit small family pedigrees enriched for 
alcohol dependence. Probands were invited to participate if they 
met criteria for alcohol dependence in their lifetime and had at least 
one sibling or both parents available to participate. Probands were 
excluded if they reported serious drug addictions; history of intra-
venous substance use; current or past diagnosis of schizophrenia, 
bipolar disorder, or other psychiatric illness involving psychotic 
symptoms (those with depressive and anxiety disorders were not 
excluded); life-threatening illness; or an inability to speak English. 
Permission was then obtained from the proband to invite relatives 
to participate. Of the 2524 participants, 1841 (39.6% male, mean 
age = 48.7 years [SD = 13.3]) reported tobacco exposure and were 
included in this report.
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One hundred one individuals did not provide data concerning 
tobacco exposure. In most cases, these individuals did not exhibit 
a sufficient level of smoking to continue that interview section. For 
a small number of participants, however, their reason for failing 
to respond and/or their responses to prior questions were deemed 
clinically relevant, and they were administered subsequent items. 
Thus, they provided a modest amount of data. For instance, of 
these respondents, 3.0%–27.7% endorsed tobacco-related prob-
lems. They were included in analyses, for a total sample of 1942 
individuals.

Native American Sample
Participants were recruited from eight contiguous reservations 
with a total population of approximately 3000. Participants 
were recruited using a venue-based method for sampling hard-to-
reach populations34,35 and a respondent-driven procedure.36,37 To 
be included in the study, an individual had to be at least 1/16th 
Native American Heritage, 18–70 years old, and mobile enough to 
be transported to The Scripps Research Institute. Participants were 
included in this study if they reported prior exposure to tobacco 
as defined by having smoked at least 100 cigarettes in their life-
time. Of the 418 participants administered the SSAGA tobacco 
assessment, 253 (46.3% male, mean age = 34.7 years [SD = 14.6]) 
reported exposure. Two individuals provided no data regarding 
exposure. To remain consistent with analyses conducted in the 
UCSF sample, these participants were included, for a total sample 
of 255 individuals.

Differences exist between the UCSF and Native American sam-
ples (eg, cultural norms concerning substance use, sample recruit-
ment/inclusion procedures). Thus, we anticipated variability across 
cohorts with regard to nature and severity of tobacco involvement. 
However, a primary goal of this analysis was to develop a factor 
solution that might replicate across diverse samples. Replication 
analyses within the Native American cohort were considered impor-
tant in helping to produce a generalizable phenotype. However, only 
the UCSF sample was employed for the association analysis, as the 
small number of individuals (n = 191) with genotype and phenotype 
data in the Native American sample provided limited power for a 
replication analysis.

Measures
Semi-Structured Assessment for the Genetics of Alcoholism
Both samples were administered a modified version of the SSAGA. 
The present study used demographic variables and data pertaining 
to tobacco use. Criteria from the DSM-IV, ICD-10, and FTND defi-
nitions of ND were included. These included a detailed assessment 
of withdrawal. Additional indicators included the ages of onset and 
offset of milestones (eg, daily smoking and dependence) and dura-
tion of use (eg, length of time smoked daily, duration of abstinence). 
CPD was operationalized as a continuous measure.

To survey a broad scope of tobacco-related behaviors, we 
adopted an over-inclusive method of variable selection. As many 
items as possible were identified, and prior to analyses, redundant 
variables were consolidated or removed. 42 items were included 
(Supplementary Tables S1a–S2).

Genotyping: UCSF Family Alcoholism Study Sample
The Affymetrix Axiom Exome Genotyping Array (Affymetrix Inc.) 
was used for genotyping. We focused on a final set of 231 single 
nucleotide variants (SNVs) within the CHRN and CYP genes. We 

included variants with prior evidence of association with tobacco 
involvement (eg, CHRNA6, CYP2A6, CYP2B6, CHRNB1, 
CHRNA4, and the CHRNA5/A3/B4 gene cluster12,20,22,25,26,30,38–42) 
and SNPs not previously implicated (Supplementary Table S3). This 
was for several reasons. First, we predicted that a comprehensive 
approach would help identify unique genetic signals. For instance, 
Saccone et al.,12 in an analysis of all nAChr subunits, identified an 
association between ND and the CHRND-CHRNG gene cluster (a 
finding that has been replicated with cotinine levels43). Second, we 
included a variety of smoking behaviors, which might help identify 
a range of genetic variation. Third, we employed an exome geno-
typing array that captures rare variants. Lastly, many CYP variants 
are clustered within regions, sometimes making it difficult to iden-
tify the causal SNP. Thus, we included variants that exhibit broader 
effects (eg, CYP1A1, which includes polymorphisms associated 
with caffeine consumption44,45 and lung cancer46) and other novel 
SNVs. Since not all SNPs had evidence for prior association (and we 
could not conduct a replication), we adhered firmly to the multiple 
testing correction as the minimum p value necessary for statistical 
significance.

Genotyping quality control was conducted using PLINK47 and 
degree of relatedness estimations were conducted using PREST.48 
36 individuals were removed due to unresolved pedigree errors, 
six due to unresolved discrepant sex codes, and five due to low 
genotype call rates (<95%). Of the pool of originally selected 2085 
SNVs, 1675 did not vary and were excluded. An additional 58 
were excluded due to low genotype call rates (<95%), and three 
were excluded due to deviations from Hardy-Weinberg equilib-
rium (p < 1e-05). Cross-referencing allele frequencies with the 
European samples for the 1000 Genomes Project49 resulted in the 
exclusion of 113 SNVs whose allele frequencies differed more than 
0.20 from this reference panel, leaving a final set of 231 SNVs. Of 
the 1841 individuals who reported tobacco exposure, 1308 had 
valid genotype data.

Statistical Analysis
Phenotypic Analyses
Phenotypic analyses were conducted in Mplus version 7 using the 
method of maximum likelihood with robust standard errors.50,51 
A clustering variable (the family number for each participant) was 
included. To evaluate the phenotypic structure of the items, a series 
of factor analyses were conducted. First, the UCSF sample was ran-
domly split into two halves; one dataset was used for the exploratory 
factor analysis (EFA) and the other was used for the confirmatory 
factor analysis (CFA). Subsequently, we cross-validated the factor 
solution obtained in the UCSF sample in the Native American sam-
ple. Employing the items from the initial factor analysis, we con-
ducted an EFA and CFA in the Native American sample using the 
same split-half procedure. Two sets of analyses were run: one includ-
ing CPD and one excluding CPD. A geomin rotation solution was 
employed. Model fit was evaluated using the Akaike Information 
Criterion (AIC52), the Bayesian Information Criterion (BIC53), and 
Log-Likelihood (LL) values.

Problems can arise when conducting factor analyses with dichoto-
mous items, including generation of spurious factors due to nonlinear 
associations between items and latent variables, distortion of the cor-
relation matrix due to differing response proportions,54 and reduced 
power of fit indices.55 To address these issues we used Mplus, to allow 
for nonlinear relations between items and latent variables and use of 
estimators robust to deviations from normality.56,57 Because statistical 
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power can also be reduced when analyzing categorical variables, we 
employed a large sample for the initial EFA and CFA.

Factor scores for association analyses were derived using mul-
tiple-group CFA, followed by multiple indicators multiple causes 
(MIMIC) models to test for differential item functioning (DIF) 
across samples.58 A p value of .001 was adopted for tests of DIF to 
control for experiment-wise error given the large number of tests, 
and because chi-square tests evaluating model fit become more 
biased toward complex models as sample sizes increase. To control 
for sample-specific effects and increase the phenotype’s generaliz-
ability, factor scores accounted for DIF. Scores were derived from a 
model in which the loadings and thresholds of items exhibiting DIF 
were freed across samples.

Single Variant Association Tests
Ancestry estimations were calculated from variants with a minor 
allele frequency ≥ 0.01 using principal components analysis59 in the 
GCTA software.60 The resulting estimates correlated highly with 
self-reported ancestry (first eigenvector and European ancestry in 
full sample: r = 0.718; second eigenvector and African ancestry 
(excluding European ancestry individuals): r = 0.792). Thus, these 
estimates were used as covariates to control for population substruc-
ture. Single variant association tests were conducted for CHRN and 
CYP variants with minor allele frequency ≥ 0.01 using EPACTS.61 
Models included sex, age, age-squared, and the first three eigenvec-
tors generated from the PCA as covariates.

The first analysis examined the main effect of CPD. The second 
two sets of analyses examined the main effect of each factor score 
before and after controlling for CPD. EPACTS excludes individu-
als who are missing on covariates; therefore, the unadjusted models 
were run using only individuals with CPD data. Of the 1297 life-
time smokers with CPD data, 1253 had factor score data and were 
included in the unadjusted models.

Results

Phenotypic Analyses
Exploratory Factor Analysis
The first EFA–CFA included CPD. The EFA in the UCSF sample pro-
vided modest support for a two-factor solution. It yielded a better 
fit to the data (LL = −30623.93, AIC = 61517.85, BIC = 61746.69) 
than the single-factor solution (LL = −32041.47, AIC = 64270.94, 
BIC  =  64728.83), and although the second factor contained only 
four items, three loaded highly and the factors were weakly corre-
lated (r = 0.11). Further, the item content of each factor was distinct; 
the first consisted predominantly of items concerning tobacco-related 
problems, while the second consisted of items regarding length of 
tobacco use and ages of milestones. We therefore specified a two-
factor solution for the CFA. Prior to the CFA, eight items with load-
ings below 0.30 and one item with a cross-loading were removed, 
and the two-factor structure was reconfirmed. Two items with low 
loadings were removed during the CFA. The final solution contained 
31 items (27 items on the “tobacco use problems” factor and four 
items on the “age” factor; see Supplementary Tables S4a–S5b, S8a, 
and S8b). Of the “problems” items, 26 exhibited moderate to high 
loadings (range  =  0.46–0.91). Of the “age” items, three exhibited 
high loadings (range = 0.82–0.98). CPD loaded onto the “problems” 
factor (loading = 0.37).

The EFA in the Native American sample provided limited sup-
port for a two-factor solution. It yielded a better fit to the data 

(LL = −3811.46, AIC = 7892.91, BIC = 8276.88) than the one-
factor solution (LL = −3954.28, AIC = 8096.57, BIC = 8363.92); 
however, the second factor contained only three items. Our pri-
mary aim was to identify the “problems” factor obtained in the 
UCSF analysis, and the items exhibiting significant loadings in 
the single-factor solution largely replicated this factor. Thus, we 
specified a one-factor solution for the CFA. Seven and five items 
with loadings below 0.30 were removed during the EFA and CFA, 
respectively. Thirty items were retained in the final solution, of 
which 28 exhibited moderate to high loadings (range  =  0.46–
0.88). CPD was retained (loading  =  0.34; see Supplementary 
Tables S6a–S7b, S9a, and S9b).

Multiple-Group Analysis
Items retained on the “problems” factors in the UCSF and Native 
American samples were compared. Five items retained in only one 
sample were excluded, resulting in a set of 26 items. When the EFA–
CFA analyses were re-run excluding CPD, results were consistent, 
with the exception that the item “smoking caused nervousness, jitter-
iness, or emotional problems” was retained on the first factor in the 
UCSF sample (loading = 0.32). It was excluded from the multiple-
group analysis as it was not retained in the Native American sample. 
Standardized loadings for the factor solutions in both samples are 
presented in Tables 1 and 2.

An initial one-factor model was fit to the data, allowing the 
item loadings and thresholds to be freely estimated for 25 of 
the 26 items (including CPD) and 24 of the 25 items (excluding 
CPD). The loading and threshold for the remaining item were 
constrained across groups for model identification. Constraining 
the loadings and thresholds resulted in a significant decrement 
in fit (including CPD: χ2 = 274.92, df = 50, p < .0001; excluding 
CPD: χ2 = 229.47, df = 48, p < .0001). Thus, we tested for DIF as 
a function of sample.

Differential Item Functioning
Seven and six items showed evidence of DIF when including and 
excluding CPD, respectively (Supplementary Tables S10 and S11). 
The items were consistent across analyses. Factor scores were derived 
from multiple-group models in which the loading and threshold 
for each item exhibiting DIF were freed across samples. The factor 
scores were almost perfectly correlated (r = .999).

Sensitivity Analyses
In the UCSF analysis, the variables that loaded onto the second 
factor were continuous. We explored whether operationalizing the 
variables categorically might change the pattern of loadings. We 
dichotomized the variables at their median value and re-ran the EFA. 
Very similar results were observed, with the exception that the vari-
able pertaining to the age of ND onset no longer loaded significantly 
onto the second factor (loading = 0.18).

Relation With ND
We examined associations between the factor scores and individ-
uals’ scores on the FTND (UCSF sample: mean = 4.1 (SD = 2.6), 
range  =  0–10; Native American sample: mean  =  3.0 (SD  =  2.7), 
range = 0–10). The correlations between FTND scores and the factor 
scores including and excluding CPD were 0.64 (p < .0001) and 0.62 
(p < .0001), respectively. Thus, although there was a high degree of 
overlap, our scores included information not captured by diagnostic 
criteria.
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Table 2. Standardized Loadings for the One-Factor Solution Excluding CPD

Item UCSF NA

Smoke in forbidden places 0.58 [0.53, 0.63] 0.59 [0.45, 0.72]
Smoke when ill 0.62 [0.58, 0.67] 0.60 [0.47, 0.73]
Chain smoke 0.45 [0.39, 0.50] 0.55 [0.42, 0.68]
Reduced activity engagement 0.61 [0.55, 0.67] 0.51 [0.32, 0.71]
Smoke in larger amounts or over longer periods than intended 0.59 [0.54, 0.64] 0.59 [0.47, 0.71]
Run out of cigarettes sooner than expected 0.54 [0.49, 0.59] 0.62 [0.49, 0.75]
Smoke in dangerous places 0.49 [0.44, 0.54] 0.51 [0.36, 0.66]
Desire to quit 0.55 [0.50, 0.60] 0.59 [0.45, 0.73]
Ability to quit 0.55 [0.50, 0.60] 0.58 [0.42, 0.74]
Inability to quit 0.67 [0.62, 0.71] 0.67 [0.51, 0.84]
Withdrawal: Irritability 0.89 [0.86, 0.91] 0.80 [0.71, 0.89]
Withdrawal: Nervousness or anxiety 0.88 [0.86, 0.91] 0.88 [0.81, 0.95]
Withdrawal: Restlessness 0.87 [0.85, 0.90] 0.87 [0.79, 0.94]
Withdrawal: Concentration problems 0.83 [0.80, 0.86] 0.85 [0.77, 0.94]
Withdrawal: Depression 0.76 [0.72, 0.80] 0.75 [0.61, 0.88]
Withdrawal: Appetite increase or weight gain 0.52 [0.48, 0.57] 0.55 [0.42, 0.68]
Withdrawal: Trouble sleeping 0.79 [0.75, 0.82] 0.85 [0.75, 0.94]
Withdrawal: Craving 0.76 [0.73, 0.80] 0.80 [0.71, 0.89]
Four withdrawal symptoms within 24 h of quitting/cutting down 0.91 [0.89, 0.94] 0.89 [0.78, 1.00]
Role interference from withdrawal symptoms 0.78 [0.74, 0.81] 0.57 [0.29, 0.84]
Continue use to avoid withdrawal symptoms 0.75 [0.71, 0.79] 0.72 [0.58, 0.87]
Continue despite health problems from smoking 0.46 [0.41, 0.51] 0.45 [0.28, 0.61]
Continue despite smoking-exacerbated illness 0.57 [0.52, 0.62] 0.57 [0.42, 0.72]
Tolerance 0.55 [0.50, 0.60] 0.66 [0.54, 0.78]
Time to first cigarette 0.52 [0.47, 0.57] 0.64 [0.51, 0.76]

CPD = cigarettes per day; NA = Native American sample; UCSF = University of California, San Francisco Family Alcoholism Study sample. Standardized loadings 
derived from the multiple group confirmatory factor analysis. The positive loadings observed for time to first cigarette and ability to quit are due to reverse-scoring 
the variables. 95% confidence limits presented in brackets.

Table 1. Standardized Loadings for the One-Factor Solution Including CPD

Item UCSF NA

Smoke in forbidden places 0.58 [0.53, 0.63] 0.67 [0.57, 0.78]
Smoke when ill 0.63 [0.59, 0.68] 0.61 [0.48, 0.74]
Chain smoke 0.46 [0.41, 0.52] 0.56 [0.43, 0.68]
Reduced activity engagement 0.62 [0.56, 0.67] 0.53 [0.33, 0.72]
Smoke in larger amounts or over longer periods than intended 0.59 [0.54, 0.64] 0.59 [0.47, 0.71]
Run out of cigarettes sooner than expected 0.54 [0.49, 0.59] 0.63 [0.50, 0.75]
Smoke in dangerous places 0.50 [0.45, 0.55] 0.52 [0.37, 0.67]
Desire to quit 0.55 [0.50, 0.60] 0.59 [0.45, 0.73]
Ability to quit 0.67 [0.63, 0.71] 0.58 [0.42, 0.74]
Inability to quit 0.67 [0.63, 0.71] 0.68 [0.52, 0.84]
Withdrawal: Irritability 0.88 [0.85, 0.91] 0.79 [0.70, 0.88]
Withdrawal: Nervousness or anxiety 0.88 [0.85, 0.90] 0.88 [0.81, 0.95]
Withdrawal: Restlessness 0.87 [0.84, 0.90] 0.87 [0.79, 0.94]
Withdrawal: Concentration problems 0.83 [0.80, 0.86] 0.85 [0.76, 0.94]
Withdrawal: Depression 0.75 [0.72, 0.79] 0.74 [0.60, 0.88]
Withdrawal: Appetite increase or weight gain 0.52 [0.48, 0.57] 0.55 [0.42, 0.68]
Withdrawal: Trouble sleeping 0.78 [0.74, 0.82] 0.85 [0.75, 0.95]
Withdrawal: Craving 0.76 [0.73, 0.80] 0.80 [0.71, 0.89]
Four withdrawal symptoms within 24 h of quitting/cutting down 0.91 [0.88, 0.93] 0.89 [0.78, 1.00]
Role interference from withdrawal symptoms 0.78 [0.74, 0.82] 0.57 [0.29, 0.85]
Continue use to avoid withdrawal symptoms 0.75 [0.71, 0.79] 0.72 [0.58, 0.87]
Continue despite health problems from smoking 0.47 [0.42, 0.52] 0.46 [0.29, 0.62]
Continue despite smoking-exacerbated illness 0.58 [0.53, 0.62] 0.58 [0.43, 0.73]
Tolerance 0.55 [0.50, 0.61] 0.67 [0.55, 0.79]
Time to first cigarette 0.53 [0.48, 0.58] 0.65 [0.53, 0.77]
CPD 0.37 [0.33, 0.42] 0.32 [0.21, 0.43]

CPD = cigarettes per day; NA = Native American sample; UCSF = University of California, San Francisco Family Alcoholism Study sample. Standardized loadings 
derived from the multiple group confirmatory factor analysis. The positive loadings observed for time to first cigarette and ability to quit are due to reverse-scoring 
the variables. 95% confidence limits presented in brackets.
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Single Variant Association Tests
Using the Genetic type I error calculator,62 we computed the sig-
nificance threshold necessary to control the type I error rate at .05 
across the 231 SNVs, while accounting for correlations among 
variants. The critical p value was .00034. Although this was the 
required threshold for statistical significance for all variants, we 
examined results for SNPs that did not reach this threshold, but 
were within genes for which there was prior evidence for asso-
ciation with smoking. For those variants, we adopted a liberal 
p value cutoff of .10. Table 3 displays the variants that met this 
threshold.

The strongest associations for CPD were obtained for an 
intronic variant (rs938682; p  =  .00002) and a synonymous vari-
ant (rs1051730; p = .0003) in CHRNA3 and a missense mutation 
in CHRNA5 (rs16969968; p  =  .0003). The latter two variants 
(rs1051730 and rs16969968) were in near perfect linkage disequi-
librium. These variants were not associated with our factor scores. 
Thus, in this sample, SNPs within the 15q25 gene cluster related 
more strongly to smoking quantity than tobacco-related problems. 
No other variants were significantly associated with CPD; how-
ever, the significance levels of variants within several previously 
implicated genes fell below .10. These included the missense SNPs 
rs148166815 (p = .0586) and rs28399435 (p = .0588) in CYP2A6 
and a synonymous variant in CHRNA4 (rs2273506; p = .0578).

No associations with our factor scores reached significance 
after multiple testing correction. However, suggestive associations 
were observed for a missense mutation in CYP2B6 (rs45482602; 
ps = .0075, .0082), a gene previously implicated in smoking-related 
outcomes,19,21,25 and these persisted after controlling for CPD 
(ps  =  .0098, .0100). Suggestive associations were also obtained 
with a novel intronic variant at CYP4Z2P (rs10749865; ps = .0079, 
.0098). This signal appeared specific to tobacco-related problems, as 
the SNP was not related to CPD and effects were largely unchanged 
after adjusting for CPD (ps = .0019).

Discussion

We employed a data-driven approach to define a novel candidate 
phenotype for genetic association studies of tobacco involvement. 
Using data from two samples, phenotypic and genetic analyses were 
conducted to establish the generalizability of the phenotype and 
explore its incremental validity over a commonly used and simple 
measure of tobacco involvement: CPD. Analyses identified one factor 
that captured tobacco-related problems. Replicating prior research, 
CPD was associated with variants in CHRNA3 and CHRNA5. No 
significant associations were obtained for our factor scores; however, 
suggestive association was observed with variants in two CYP genes 
that were unrelated to CPD.

Variants within the 15q25 gene cluster were most strongly 
related to CPD and displayed specificity to this phenotype. These 
included SNPs in CHRNA3 (rs938682 and rs1051730) and 
CHRNA5 (rs16969968). rs938682 is in strong linkage disequilib-
rium with rs1051730, which has been previously associated with 
CPD.25,26,28 Further, rs1051730 is in near perfect linkage disequilib-
rium with rs16969968, which is a top hit in analyses of CPD.28,63–65 
rs16969968 has also been associated with tobacco-related biomark-
ers such as cotinine levels16 and exhaled carbon monoxide,17 as 
well as with nicotine-related functional effects (see Wen et al.66 for 
a review). Present findings support the utility of CPD in studies of 
genetic variation at 15q25, and suggest that additional domains of 

problems provide no incremental information concerning variation 
at these regions.

No variants reached significance when associations were 
tested with the factor scores. However, suggestive association was 
observed for a missense variant in CYP2B6 (rs45482602; minor 
allele frequency = 0.01 in the present sample). CYP2B6 metabolizes 
bupropion, which is used as a smoking cessation aid.20 It has been 
implicated in a GWAS of nicotine metabolite ratio.67 Certain types 
of problems may be more strongly related to nicotine metabolism 
than others. For instance, some studies have found relations between 
nicotine metabolite ratio and physiological symptoms such as with-
drawal68,69 and craving.70 Therefore, current findings suggest that 
measures of tobacco-related problems rather than smoking quan-
tity may display specificity to variants in CYP2B6. Given the lack 
of significant association, however, this remains unclear. Further, it 
should be noted that the suggestive association with rs45482602 
may have resulted from linkage disequilibrium with other variants in 
the 19q13 locus (particularly those within CYP2A6, which is located 
near CYP2B6 and expression of which has been shown to be influ-
enced by variants near rs4548260271).

An intronic variant at CYP4Z2P (rs10749865) showed sug-
gestive evidence for association with our phenotypes. No prior 
studies of tobacco use have found relations with this gene. 
Nonetheless, two lines of evidence suggest how rs10749865 might 
influence risk for tobacco involvement. First, rs10749865 has 
been identified as an eQTL for CYP4B1,71 which is downstream 
of CYP4Z2P. CYP4B1 is expressed in the surface epithelium72 and 
submucosal gland ducts73 of the lungs and has been related to 
COPD.74,75 Second, variants in CYP4Z2P represent QTLs for fatty 
acid metabolites (tetradecanedioate and hexadecanedioate) meas-
ured in blood.76 These accumulate in the lung tissue of individu-
als suffering from pulmonary arterial hypertension,77 which can 
result from cigarette smoke exposure.78,79 These lines of research 
suggest a possible relation between rs10749865 and tobacco use; 
however, given the lack of significant association with this variant 
and limited prior findings, strong conclusions cannot be drawn. 
Replication will be necessary.

Limitations
Several limitations should be considered. The first concerns gen-
eralizability, as most UCSF sample participants were Caucasian. 
Application of present findings to other racial/ethnic groups may 
thus be limited. However, the generalizability of our measure was 
increased by replicating phenotypic analyses in a Native American 
cohort. Second, the UCSF sample was recruited based on alcohol 
dependence status, and high levels of alcohol involvement exist 
within the Native American cohort. Therefore, the factor structure 
obtained may partly reflect risk for comorbid alcohol and tobacco 
use. This may also limit power to detect associations with tobacco 
involvement within the UCSF sample. Relatedly, although sugges-
tive associations were observed with our factor scores, no effects 
were statistically significant, which may be due to insufficient sta-
tistical power. Third, we were unable to replicate the association 
analyses due to the limited number of individuals with genotype 
data in the Native American sample. Replication is therefore war-
ranted. It should be noted, however, that the effect sizes obtained 
for our factor scores were consistent with those observed in associa-
tion studies of complex traits. Lastly, the genotyping array used was 
designed to capture rare exonic variation and may not capture all 
non-exonic regulatory variants.
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Conclusions
Notwithstanding limitations, the present study provides important 
results that can inform phenotype selection in association analyses of 
tobacco use. Findings replicate research suggesting that CPD detects 
variation at 15q25. Although strong conclusions cannot be drawn 
regarding the incremental validity of our phenotype, findings suggest 
that measuring additional dimensions of problems may capture varia-
tion in CYP genes not accounted for by CPD. Future studies employing 
larger samples should aim to replicate the present findings. Continued 
research exploring the relative utility of CPD and additional dimensions 
of tobacco use will help to further refine phenotype definition efforts.

Supplementary Material

Supplementary Tables S1–S11 can be found online at http://www.ntr.
oxfordjournals.org
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