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The success of genome-wide association studies (GWAS) in deciphering the genetic architecture 

of complex diseases has fueled the expectations whether the individual risk can also be quantified 

based on the genetic architecture. So far, disease risk prediction based on top-validated single-

nucleotide polymorphisms (SNPs) showed little predictive value. Here, we applied a support 

vector machine (SVM) to Parkinson disease (PD) and type 1 diabetes (T1D), to show that apart 

from magnitude of effect size of risk variants, heritability of the disease also plays an important 

role in disease risk prediction. Furthermore, we performed a simulation study to show the role of 

uncommon (frequency 1–5%) as well as rare variants (frequency <1%) in disease etiology of 

complex diseases. Using a cross-validation model, we were able to achieve predictions with an 

area under the receiver operating characteristic curve (AUC) of ~0.88 for T1D, highlighting the 

strong heritable component (~90%). This is in contrast to PD, where we were unable to achieve a 

satisfactory prediction (AUC ~0.56; heritability ~38%). Our simulations showed that simultaneous 

inclusion of uncommon and rare variants in GWAS would eventually lead to feasible disease risk 

prediction for complex diseases such as PD. The used software is available at http://

www.ra.cs.unituebingen.de/software/MACLEAPS/.
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Introduction

Apart from confirming previously reported genetic associations, genome-wide association 

studies (GWAS) also identified new genetic loci that led to a new mechanistic insight into 

the genetic architecture of complex diseases [Hirschhorn and Daly, 2005; Ioannidis et al., 

2009; Zeggini et al., 2008; Zondervan and Cardon, 2007]. Although the first wave of GWAS 

unequivocally confirmed a number of susceptible variants in different disorders in different 

populations, they explain only a small proportion of heritability, that is, the proportion of 

phenotypic variability in a population due to additive genetic factors. With the release of the 

1000 Genomes data (www.1000genomes.org), it is anticipated that future genetic studies 

will fill the gap between known and yet-to-be defined heritability in complex disorders 

[Altshuler et al., 2010; Olsen et al., 2007]. For example, a recent study on Parkinson disease 

using 1000 Genomes data revealed new putative loci that were overlooked in previous 

genome scans [Nalls et al., 2011]. Apart from identifying risk factors for complex diseases, 

geneticists are also interested in disease risk prediction for multifactorial disorders, such as 

Diabetes, Crohn’s disease, and neurodegenerative disorders, to provide patients with an early 

diagnosis that is based on their genetic architecture, as determined by array-based 

genotyping technologies.

Compared to complex disorders, genetic risk profiling already exists for monogenic 

disorders such as phenylketonuria (PKU) and Huntington disease’s (HD) [Janssens et al., 

2006]. Monogenic disorders are caused by mutation(s) within a single gene; the risk of a 

disease to carriers is substantially higher than to noncarriers. Unlike monogenic disorders, 

multiple genes either act alone or synergistically along with environmental factors in 
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complex disorders, each having a minor effect in influencing the disease susceptibility and 

progression, which makes genetic risk prediction difficult in complex disorders [Janssens 

and van Duijn, 2008; Manolio, 2010].

A number of studies have performed genomic profiling using most significant single-

nucleotide polymorphisms (SNPs) nominated by either a single GWAS or a meta-analysis of 

GWAS [Janssens and van Duijn, 2006; Janssens et al., 2006; Nalls et al., 2011]. Genomic 

profiling is carried out based on the assumption that top-validated markers could also be 

effective classifiers and eventually be used in clinical decision-making to improve treatment. 

Thus far, risk-profiling analyses performed on top-validated SNPs have not been very 

encouraging [Jakobsdottir et al., 2009; Janssens et al., 2006]. The results showed only a 

marginal increase in area under the receiver operating characteristic (ROC) curve (area 

under the receiver operating characteristic curve [AUC]) performance, thus making it 

difficult to put these findings into clinical practice [Jakobsdottir et al., 2009]. These results, 

nevertheless, were not unexpected because most GWAS showed that the effect sizes of 

uncommon variants on complex disorders are smaller than anticipated and heritability 

ismoderate [So et al., 2011;Visscher et al., 2008]. Therefore, the clinical utility of genetic 

predictions based on a small number of SNPs is likely to be negligible.

The field of machine learning provides a variety of methods to approach these challenges, 

such as linear or logistic regression techniques, decision trees, random forests, and Bayesian 

approaches, which can provide an improvement over standard regression approaches by 

including a statistical analysis in the context of Bayesian inference. Although it is possible to 

directly apply numerical regression methods to classification tasks, these approaches have 

well-known deficiencies compared to methods designed specifically for classification. 

Further, standard regression techniques are not well suited for genome-wide analyses 

because they assume independence of markers, which is usually not true due do linkage 

disequilibrium (LD) [Szymczak et al., 2009].

Recently, the support vector machine (SVM) was proposed to performgenome-wide disease 

risk predictions based on GWAS data [Szymczak et al., 2009; Wei et al., 2009] and was 

shown to outperform logistic regression on type 1 diabetes (T1D) dataset. Both of these 

techniques find linear boundaries in feature space: an intuitive separation surface that leads 

to efficient learning methods.

Unlike logistic regression or number-of-risk-allele-based approaches, which depend upon a 

predetermined model to determine the probability of an event by fitting the data to a logistic 

curve, SVMs discriminate between two classes (here, “case,” and “control”) by finding a 

separating hyperplane for the data points, potentially by transforming input data (SNP 

genotypes) into a higher-dimensional feature space [Ben-Hur et al., 2008; Evans et al., 2009; 

Szymczak et al., 2009]. Most importantly, while many methods find a linear decision 

boundary, the SVM finds the one with the largest margin between both classes (see section 

“Materials and Methods”).

This leads to better generalization performance and deterministic solution. Because of these 

advantages and its prominence in classification, we focus on SVMs in this study. SVMs have 
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been used successfully for disease risk prediction [Wei et al., 2009, 2011] and, particularly, 

they have been successfully applied to type 1 diabetes (heritability is high ~90%). However, 

the utility of SVMs has not been tested on neurodegenerative disorders, such as PD, where 

the heritability component is moderate (~38%).

We applied this unbiased approach on four independent PD-GWAS data sets to assess the 

disease risk prediction. The advantage of using this approach is that it does not require 

external prior knowledge about known risk variants of the underlying disease.

Furthermore, we performed a simulation study using different scenarios to determine 

whether uncommon variants alone or multiple uncommon/rare variants are helpful in clinical 

settings to make better diagnostic assessments for common diseases.

In addition, we developed a stand-alone user-friendly Java-based software, Machine 

Learning Analysis Pipeline for SNP data (MACLEAPS), to perform genome-wide disease 

risk prediction for complex diseases.

Material and Methods

Study Cohorts

For PD, we used four-stage 1 GWAS datasets (French, Dutch, CIDR, and German/US) for 

our study (see Table 1). Those datasets have already been subject to extensive quality control 

procedures, whose details are described elsewhere [Pankratz et al., 2009; Saad et al., 2011; 

Simón-Sánchez et al., 2009, 2011]. All four datasets have nonoverlapping samples. In 

addition, we filtered all datasets to exclude samples or SNPs with more than 5% missing 

values, variants with less than 5% minor allele frequency (MAF), and samples deviating 

from the Hardy–Weinberg equilibrium using the PLINK command line tool [Purcell et al., 

2007].

It should also be noted that in the German/US GWAS dataset [Simón-Sánchez et al., 2009], 

individuals with “three or more relatives with parkinsonism or with an apparent Mendelian 

inheritance of PD were excluded” from the US cohort and “cases showing clear evidence of 

dominant inheritance were excluded” from the German cohort, giving it focus on sporadic 

cases of PD, whereas some of the datasets used for external validation have a focus on 

familiar PD.

In brief, when using a simple cross-validation model, we considered the German/US GWAS 

dataset as a single dataset, as it is also done in the study from which it originates [Simón-

Sánchez et al., 2009] because analyses of the pairwise Identity by State (IBS) showed that 

the cohort clearly shared common Caucasian ancestry. When using an independent GWAS 

dataset approach, we also evaluated a model where we treated German and US GWAS 

datasets as separate studies. Apart from that, we also accessed type 1 diabetes (T1D), type 2 

diabetes (T2D), and bipolar disorder (BD) data from WTCCC as described in The Wellcome 

Trust Case Control Consortium [The Wellcome Trust Case Control Consortium, 2007]. For 

T1D, T2D, and BD, roughly 2,000 cases and 1,500 controls from the 1958 British Birth 
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Control Cohort were used (Table 2). The WTCCC data was genotyped using Affymetrix 

500K chips.

Nomenclature

Throughout this document, we use the following terms to denote variants with a certain 

minor allele frequency: “rare” for SNPs with an MAF < 1%, “uncommon” for SNPs with an 

MAF between 1% and 5%, and “common” for variants with an MAF > 5%, as it was also 

done in Cirulli and Goldstein (2010).

Overview of the Analysis Pipeline

We applied the support vector machine (SVM) algorithm to train models based on GWAS 

SNP data that act as binary classifiers for new datasets. We then evaluated the ability of 

these models to correctly predict the phenotypes of a new set of samples with their given 

genotypes. We performed two different types of evaluation for our models: (1) within-study 

cross-validation, where one dataset is split into a training and validation set, and (2) 

between-study validation, where the data from one study is used to train a classifier, which is 

then validated using the data from a second study. Finally, we evaluated the predictive 

performance of the models using the AUC.

Feature Encoding

A GWAS dataset consisting of n individuals and p SNPs can be represented by an n × p 
matrix G = (gi,j ), where gi,j denotes the genotype of SNP j for individual i. A 

straightforward approach for the numerical encoding of a genotype is to represent it as the 

number of minor alleles that are present, that is, as 0, 1 or 2. Hence, each individual i is 

represented through his/her genotype vector xi = (gi1, …, gip ) and his/her disease status yi ∈ 
− 1, + 1}, where −1 denotes unaffected (control) and +1 denotes affected (case).

Support Vector Machines

The basic principle of SVMs is to find a hyperplane that separates a set of labeled data 

points into two classes, with a large gap (or margin) between them. Their main difference 

compared to regression methods is that this hyperplane is only defined by the data points 

that lie on or violate the margin, which are called support vectors, and enables SVM models 

to perform well on unknown data. Further, using kernel functions, SVMs are also able to 

learn nonlinear decision boundaries (as discussed below).

As described above, the data is represented as vectors xi ∈ ℜp for each of the n data points 

(genotype vectors) with their respective class label yi. The goal of training is to find a 

decision function f(x) that assigns the correct class label to each data point:

f (xi) = yi ∀1 ≤ i ≤ n .

SVMs use a decision function of the form f (x) = sgn (〈w, x〉+ b), where w is the 

hyperplane’s normal vector, b
‖w‖  the offset from the origin, and sgn is the sign function 

which yields +1, if its input is greater than zero and −1 otherwise. The hyperplane can be 
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represented as a linear combination of the input vectors, so that w = ∑
i = 1

n
αiyixi with αi ≥ 0, 

making the decision function equivalent to

f (x) = sgn ∑
i = 1

n
αiyi 〈xi, x〉 + b . (1)

Consequently, only those input vectors with αi > 0 define the decision boundary and are thus 

called support vectors. In addition, w is constrained so that the distance of the hyperplane to 

these support vectors point is 1
‖w‖ , the margin of the hyperplane. Therefore, the optimization 

problem of maximizing the separating hyperplane’s margin is equivalent to minimizing ||w||
2. Thus, the SVM optimization problem is

min
w, b

1
2‖w‖2 subject to: yi(〈w, xi〉 + b) ≥ 1. (2)

However, perfect linear separation of the data into cases and controls is often not possible. 

One way to circumvent this problem is to introduce slack variables ξi, which allow data to 

violate the margin. The penalty for this violation is controlled by the cost parameter C. The 

soft-margin SVM optimization can be then defined as

min
w, b, ξ

1
2‖w‖2 + C ∑

i = 1

n
ξi subject to yi(〈w, xi〉 + b) ≥ 1 − ξi, ξi ≥ 0. (3)

The choice of C has a large impact on the classification performance because it directly 

affects the generalization ability of the learned models. Selecting a large C value can lead to 

overfitting of data resulting in scenarios in which the model is accurate on training data, but 

fails to perform well on new data [Guyon and Elisseefi, 2003]. Alternatively, selecting a 

small C threshold may allow for too many misclassifications and thus leads to failure in 

learning.

There still remains the problem that the data may not be linearly separable. To address this 

issue, a standard modification to the linear SVM was made by substituting the dot product 

〈x, xi〉 in Equation (1) for a kernel function K(x, xi ) as follows:

f (x) = sgn ∑
i = 1

n
αiyiK(x, xi) + b . (4)
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This enables the SVM to learn a model that incorporates nonlinear interactions between 

features, which in this case can be SNP–SNP interactions. A commonly used kernel function 

is the Gaussian radial basis function [Ben-Hur et al., 2008], which introduces the γ 
parameter controlling the width of the Gaussian “bell” that determines the influence of a 

support vector on its surroundings:

K(x, xi) = e
−γ‖x − xi‖

2
. (5)

Smaller values of gamma widen the bell, increasing the area of influence of each support 

vector. This limits the overall number of support vectors and yields more linear decision 

boundaries [Ben-Hur et al., 2008]. Large values for gamma restrict the influence of each 

support vector, which results in a k-nearest neighbor-like behavior and can lead to 

overfitting. The optimal choice of gamma has to be evaluated for each training set and also 

depends on the choice for the parameter C (see below).

For the radial basis function (RBF) kernel, we used the LIBSVM implementation [Chang 

and Lin, 2011] and a modified LIBLINEAR implementation for linear models. Our version 

of LIBLINEAR is based on the work of Fan et al. (2008).

Parameter Optimization of SVM

We performed an extensive grid search, where C and γ span a grid of parameter 

combinations. Usually, the step size of this grid is exponentially growing, for example, 2−5, 

2−3, …, 215 for C and 2−15, 2−13, …, 23 for γ (for more details on grid search, please refer to 

Guyon and Elisseefi, 2003). In brief, each combination of C and γ is evaluated using a k-

fold cross-validation. This process is repeated m times. For each fold, k – 1 parts of the 

dataset are used to train a model, which is then used to predict the phenotypes of the 

remaining part. The results of the m cross-validation runs with k-folds each are then 

averaged and the parameters that exhibit the best performance are chosen to train a model 

using the entire dataset. Our parameter optimization performed 10 twofold cross-validations 

(k = 2,m= 10) for each parameter combination in the above stated range.

Filtering and Cross-Validation

To increase the optimization of SVM, we applied standard quality control measures on all 

our datasets. The details are described elsewhere [Nalls et al., 2011; Pankratz et al., 2009; 

Saad et al., 2011; Simón-Sánchez et al., 2009, 2011]. In brief, we included SNPs that have a 

call rate greater than 95%, minor allele frequency greater than 5%, and pass a Hardy–

Weinberg equilibrium test with P value of 0.01 or better. No external knowledge about 

known risk variants or similar was used to maintain an unbiased approach. Moreover, we 

selected only those SNPs for model building that pass a certain significance level in a 

standard case/control association analysis, a basic allelic trend test, in the training data using 

PLINK and we used different P value thresholds ranging P < 1 × 10−8 to P < 1 × 10−3 to 

build our disease risk prediction models. We used twofold and fivefold cross-validation 
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models to test our data, where 50% and 80% of the data were used to train a model and the 

rest of the data was used to assess its performance for disease prediction.

For the WTCCC-T1D dataset, we also compared the results to an analysis where we 

removed all SNPs in the MHC region (chromosome 6, from 25–34 Mbps, see [Wei et al., 

2009]) prior to model training to assess the influence of this region.

Genotype Imputation

We used a multimarker tagging-based approach for imputation as implemented in PLINK 

[Purcell et al., 2007]. For SNPs to be imputed, we used the HapMap phased haplotype data 

(release 22) on CEU subjects, as downloaded from HapMap website (www.hapmap.org). A 

reference panel was used to select a small set of flanking SNPs, which when phased together 

lead to a haplotype background with high LD with these SNPs. In the second step, genotype 

data from the study sample and reference panel were jointly phased with these SNPs and the 

missing genotypes in the study samples were imputed during phasing. In addition to that, we 

used the Markov chain haplotyper (MACH) for imputation on markers which are present on 

our training datasets but not on our prediction model. We used low coverage sequencing of 

112 samples of Caucasian ancestry in the 1000 genomes project (August 2009) as a 

reference panel. A default two-stage procedure is used for imputation. In brief, 200 

randomly selected individuals are used to estimate error rates and crossover rates for 

parameter estimation for imputation. In the second step, default parameters were used to 

impute genotypes on more than 7 million SNPs for disease risk prediction.

Performance Evaluation

We evaluated the predictive performance of our models using the AUC value, which is the 

area under the ROC curve. The ROC curve is obtained by plotting the true positive rate 

(TPR) versus the false positive rate (FPR) for varying decision thresholds. Removing the 

sgn-function from the decision function of the SVM leads to a continuous decision value for 

each sample that reflects the predicted distance to the hyperplane, thus making it possible to 

rank the predictions from lowest to highest:

f (x) = ∑
i = 1

n
αiyiK(xi, x) + b . (6)

The AUC can be interpreted as the probability that, given a pair of random samples from the 

positive and the negative class, the positive sample will be ranked higher than the negative 

one [Wray et al., 2010]. Consequently, classifiers with an AUC of 0.5 are as good as random 

predictions, whereas an AUC of 1.0 represents a perfect classification.

We chose the AUC as our performance measure because of its robustness against class skew 

and for comparability to other disease risk assessment studies.
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Role of Uncommon and/or Multiple Rare Variants

We simulated two different scenarios (model A and model B) to investigate the 

discriminative accuracy of genomic profiling, which is the extent to which genomic profiles 

can distinguish between those who will or will not develop disease. We simulated all 

genomic profiles consisting of 500,000 SNPs with only 100 of them being associated to the 

phenotype using PLINK.

In the first scenario, we generated genomic profiles for 1,000, 3,000 and 5,000 subjects, 

where the odds ratio (OR) of the associated SNPs varies from 2 to 5 and risk allele 

frequencies vary from 1% to 5%. We designed model A to assess the performance of 

MACLEAPS when uncommon variants with strong effect size are involved in disease 

susceptibility. As is shown in recently published GWAS, effect sizes for most common 

diseases are more moderate than previously anticipated. On the other hand, a recent GWAS 

[Do et al., 2011] and a meta-analyses of GWAS of PD [Nalls et al., 2011] already reach 

sample sizes of the next order of magnitude with ~33,000 and ~17,000 samples total. 

Therefore, in model B (mixed model), genomic profiles were designed for 1,000, 3,000, 

5,000, and 20,000 subjects, where we simulated 10 rare variants (this includes LRRK2 and 

GBA mutations) and 90 uncommon risk variants, where the OR varies from 3 to 9 and from 

0.7 to 1.5 for rare variants and uncommon variants, respectively. Furthermore, risk allele 

frequency varies from <1% to 5% for the mixed model. Because neurodegenerative 

disorders are age dependent, their prevalence increases linearly with age. We, therefore, 

varied the prevalence of the disease from 1% to 3% to assess the age-dependent genomic 

profile for neurodegenerative disorders such as PD.

Results

Evaluation of MACLEAPS Using PD-GWAS Data

We used predefined P value thresholds (see section “Methods”) to filter SNPs for disease 

prediction. Compared to recently published studies, which only focus on top-validated SNPs 

to determine genetic prediction, we conducted genomic profiling in an unbiased and 

systematic manner. We incorporated SNPs that, based on a standard association analysis on 

the respective dataset, passed a genome-wide threshold (P < 1 × 10−8) to SNPs that showed 

suggestive evidence of association for PD (P < 1 × 10−3). We observed that when using a 

liberal threshold for SNP selection, those SNPs are scattered across the genome, whereas we 

found only a few SNPs, when using genome-wide threshold (this mainly covers a few SNPs 

in the α-synuclein [SNCA] and microtubule-associated protein tau genes [MAPT]). The 

SNP selection process does not take LD into account, but the results show that the predictive 

performance drops noticeably when the datasets are preprocessed using LD pruning (Supp. 

Fig. S1), which is also in agreement with the results in Wei et al. (2009), and does not 

improve significantly when additional nongenotyped SNPs were imputed (Supp. Table S1).

We followedtwo different approaches to evaluate the performance of MACLEAPS. First, we 

evaluated the risk assessment by performing a within-study cross-validation approach using 

the dataset of German and United States as a single study. AUC values range from 0.49 to 

0.56, which suggests that our model did not increase the disease prediction beyond chance 
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alone (Table 3). Using radial kernel functions, which can implicitly assess gene–gene 

interaction, showed no significant difference in the predictive power compared to a linear 

kernel (data not shown).

One of the major concerns in GWAS is that observed associations could be false positives. 

This could be caused by population structuring, the use of different genotyping platforms, or 

a lack of statistical power due to small sample sizes. Within-study cross-validation strategies 

cannot overcome such biases. Therefore, we evaluated the performance of MACLEAPS 

using three independent PD-GWAS datasets (Tables 4 and 5, and Fig. 1). Because these PD 

datasets were genotyped using different SNP arrays, we used imputation strategies (see 

“Methods”) to match SNPs with our training model. The highest AUC values (0.55–0.58) 

could be observed for P value thresholds of 1×10−7 and 1×10−6 with only 3 and 13 SNPs, 

respectively. We observed that, using independent PD datasets, AUC values did not increase 

beyond chance, highlighting the importance of large sample sizes to detect clinically 

relevant markers for PD.

When comparing the results of the linear SVM models with the ones from RBF SVMs, we 

observe that if only a small number of SNPs were selected (four or less), the performance of 

RBF models drops to the level of chance or even below. For larger numbers of selected 

SNPs, the performance of both types of SVM models is comparable, without an obvious 

superiority of one over the other.

Evaluation of T1D, T2D, and BD Using within Study Cross-Validation Model

As a control analysis, we evaluated the performance of MACLEAPS on the WTCCC type 1 

diabetes (T1D) dataset using a fivefold cross validation; that is, as described in the section 

“Methods,” 80% of the data are used to train a disease model and the rest of the data is used 

for disease prediction. Using different P value threshold, MACLEAPS was able to achieve a 

maximum performance (AUC = 0.88) when using a threshold of P < 1 × 10−5, and an only 

slightly worse performance (AUC = 0.81–0.87) when using the other thresholds, for the 

within-study cross validation approach for T1D (see Table 6). These results are in agreement 

with a recently published study [Wei et al., 2009] using the same approach as in our study. It 

is important to mention here that, unlike other complex diseases, the majority of the genetic 

architecture of T1D can be explained by the major histocompatibility complex (MHC) 

region because the AUC drops to 0.64 when all SNPs from this region are removed (see 

Table 6). Therefore, simultaneous evaluation of two extreme traits (heritability component in 

T1D ~90% compared to ~38% in PD) provided a better perspective on the underlying 

genetic architecture of PD.

In addition, the results of our analyses of the WTCCC type 2 diabetes (T2D), and bipolar 

disorder (BD) datasets show similar predictive power (Table 7), with AUCs ranging from 

0.58 to 0.62 for T2D and from 0.55 to 0.61 for BD, two diseases having epidemiological 

characteristics related to PD.

Understanding the Role of Uncommon/Multiple Rare Variants for Disease Prediction

To understand the lack of predictability for PD, we simulated different scenarios by 

simultaneously accounting for the role of multiple uncommon and/or rare variants. Using 
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model A (see “Methods”), which assessed the role of uncommon risk variants (MAF 1% to 

5%) with large effects (OR > 2), we observed that even for a moderate sample size (N = 

1,000) MACLEAPS is successfully able to classify the subjects (AUC ~ 0.78). Likewise, by 

simultaneously increasing the frequency and effect size of risk variants, we were able to 

achieve a very good classification (AUC ~ 0.87) for diseases in which uncommon variants 

with strong effects have been shown to play an important role in disease susceptibility 

(Supp. Tables S2–S5). These results are in agreement with recent studies, which showed 

high predictive values for a few complex diseases such as age macular degeneration and 

hypertriglyceridemia. Similarly, using model B, we observed that our AUC scores increased 

from 0.56 to 0.84 when we incrementally increased the threshold of our parameters (number 

of samples from 1,000 to 20,000; MAF from 1% to 5%; OR from 0.7 to 1.5) (Fig. 2, Supp. 

Tables S6–S20). As expected, MACLEAPS achieves the best performance when using the 

largest sample size (N = 20,000).

Our observations argue in favor of selecting SNPs that are in the lower tail of distribution 

statistics for disease prediction models, because risk variants with a small effect size will 

most likely not reach stringent thresholds of P < 1 × 10−7 or better. This is probably more 

helpful for those disorders for which the heritability component is low (e.g., bipolar disorder, 

type 2 diabetes, and neurodegenerative disorders) arguing in favor of the role of multiple 

loci’s with small effects in disease pathogenesis. The role of multiple uncommon and/or rare 

variants for complex diseases is not surprising because GWAS studies have already 

suggested the role of uncommon as well as rare variants in influencing the disease 

susceptibility [Altshuler et al., 2010].

Discussion

We developed MACLEAPS to perform genome-wide risk prediction in an unbiased manner. 

We tested our algorithm to perform genome-wide risk profiling for PD and T1D. Compared 

to PD, MACLEAPS achieved satisfactory performance when applied to T1D (AUC scores 

range from 0.81 to 0.88). The lack of finding clinical utility markers for PD may be due to 

several reasons: (1) We observed that using strict threshold criteria few SNPs were used to 

train our model. For example, using P value threshold ranges from 1 × 10−6 to 1 × 10−8, we 

obtained only 13 SNPs to train our model. Most of these SNPs were clustered in the SNCA 

or MAPT gene, the most common risk factors for the sporadic form of PD identified to date 

[Singleton et al., 2010]. Therefore, it was not unexpected to have poor prediction for our 

datasets (Table 5). This is in contrast to a recently published study for type 1 diabetes, which 

used approximately 240 SNPs for the same threshold for disease prediction [Wei et al., 

2009]. (2) The genome-wide risk profiling also depends on the heritability component of the 

disease. By comparing the genomic profiling estimates between T1D and PD, we showed 

that in case of T1D, the majority of the genetic component could be explained by the MHC 

region alone [Wei et al., 2009] (see Table 6). Therefore, it is not surprising to observe that 

genome-wide risk profiling of T1D outperforms PD. (3) The magnitude of effect size also 

influenced the ability of disease prediction for most complex diseases. The effect size of 

most complex diseases varies from 0.6 to 1.5 and heritability estimates are very moderate 

[So et al., 2011]. Therefore, for most of these diseases, inclusion of low-frequency variants 

in the GWAS (<5%) along with liberal P value thresholds will lead to an improved disease 
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risk prediction, as is shown by our simulations. (4) Finally, for complex diseases such as PD, 

apart from considering only genetic factors, other nongenetic factors should be taken into 

consideration for disease risk profiling. Although the role of strong genetic components 

cannot be underestimated in early onset cases of PD, for late onset cases other nongenetic 

factors also contribute to disease pathogenesis. Therefore, inclusion of such factors into the 

disease prediction model will eventually increase the disease prediction estimates. Note that 

MACLEAPS has built-in functions to incorporate such additional variables into the analysis.

The lack of high AUC scores for PD might also reflect the fact that our estimates are 

conservative. As described above, we used fivefold and fivefold cross validation (within-

study validation) and independent datasets for disease prediction. As the effect size of PD 

risk variants is low, splitting the data further reduces the statistical power to detect associated 

SNPs, and thus the ability of the trained model to accurately predict the rest of the datasets. 

As expected, we observed approximately 6% of the total genetic variance explained by our 

training datasets using a genome-wide complex trait analysis [Yang et al., 2011], further 

underscoring the need for large sample sizes for disease risk prediction where effect size is 

moderate. Likewise, the exclusion of cases with apparent Mendelian inheritance of PD from 

the cohort [Simón-Sánchez et al., 2009], leading to an underrepresentation of known risk 

variants with strong effect sizes such as LRRK2 and GBA mutations may have also 

influenced our AUC estimates. Indeed, our simulation study also suggests an increase in 

AUC (see “Results”) when we simultaneously increased the sample size from 1,000 to 

20,000 and included the low frequency variants (Tables 8 and 9, and Supp. Tables S6–S20). 

The use of 1000 Genomes data along with next-generation sequencing technologies will 

help to identify more rare variants, which will eventually be used in GWAS settings. This 

will probably help in improving the disease risk assessment for complex diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Performance of risk assessment models trained on the German/US-PD dataset. For all three 

external datasets (Dutch-PD, CIDR-PD, and French-PD) SVM models achieved the best 

performance for a SNP selection threshold of P < 1 × 10−7 and P < 1 × 10−6.
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Figure 2. 
Performance of risk assessment models using 20,000 simulated samples and mixed risk 

model (model B). In the mixed model B, 100 SNPs (out of 500,000 total) were generated 

having an effect on the phenotype, consisting of 10 rare SNPs (MAF 0.1%) with strong 

effect and 90 uncommon SNPs with moderate effect size.
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Table 1

Description of the Parkinson Disease (PD) GWAS Datasets Used in the Study

Dataset Number of cases Number of controls Array platform Reference

GWAS-PD (German cohort) 742 944 Illumina HumanHap550 v3 [Simón-
Sánchez 
et al., 
2009]

GWAS-PD (US cohort) 971 3,034 Illumina HumanHap550 v3/HumanHap300+HumanHap240S [Simón-
Sánchez 
et al., 
2009]

GWAS-PD (German + US) 1,713 3,978 (See cohorts) [Simón-
Sánchez 
et al., 
2009]

Dutch-PD GWAS 772 2,024 Illumina Human 660W-Quad [Simón-
Sánchez 
et al., 
2011]

CIDR-PD GWAS 857 876 Illumina HumanCNV370 v1_C [Pankratz 
et al., 
2009]

French-PD GWAS 1,039 1,984 Illumina Human610-Quad [Saad et 
al., 2011]
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Table 2

Description of the WTCCC GWAS Datasets Used in the Study

Dataset Number of cases Number of controls Array platform

WTCCC-T1D (cases only) 2,000 – Affymetrix GeneChip 500K

WTCCC-T2D (cases only) 1,999 – Affymetrix GeneChip 500K

WTCCC-BD (cases only) 1,998 – Affymetrix GeneChip 500K

WTCCC-58C (shared controls) – 1,504 Affymetrix GeneChip 500K
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