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Abstract
To understand the heterogeneity of functional connectivity results reported in the literature, we

analyzed the separate effects of grey and white matter damage on functional connectivity and net-

works in multiple sclerosis. For this, we employed a biophysical thalamo-cortical model consisting

of interconnected cortical and thalamic neuronal populations, informed and amended by empirical

diffusion MRI tractography data, to simulate functional data that mimic neurophysiological signals.

Grey matter degeneration was simulated by decreasing within population connections and white

matter degeneration by lowering between population connections, based on lesion predilection

sites in multiple sclerosis. For all simulations, functional connectivity and functional network orga-

nization are quantified by phase synchronization and network integration, respectively. Modeling

results showed that both cortical and thalamic grey matter damage induced a global increase in

functional connectivity, whereas white matter damage induced an initially increased connectivity

followed by a global decrease. Both white and especially grey matter damage, however, induced a

decrease in network integration. These empirically informed simulations show that specific topol-

ogy and timing of structural damage are nontrivial aspects in explaining functional abnormalities in

MS. Insufficient attention to these aspects likely explains contradictory findings in multiple sclero-

sis functional imaging studies so far.

K E YWORD S
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1 | INTRODUCTION

Cognitive deterioration is common in multiple sclerosis (MS) (Chiaravalloti

& DeLuca 2008), but poorly understood (Benedict & Zivadinov 2011;

Rocca et al., 2015a). Previous functional imaging studies in MS hypothe-

sized that a process called “functional reorganization” compensates for

accumulating structural damage before the functional network collapses,

leading to inadvertent cognitive decline (Schoonheim, Meijer, & Geurts,

2015b). Interestingly, however, studies investigating connectivity changes

demonstrate contradictory results: both increases and decreases in con-

nectivity are reported to correlate with cognitive decline (Schoonheim

et al., 2015b). Therefore, it is now crucial to elucidate how both increased
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and decreased connectivity can arise in the same set of patients in differ-

ent disease stages, and how both can relate to worse cognitive outcomes

at the same time. We postulate that the reason for such contradictory

results can only be elucidated in a completely controlled system.

Discrepancy between results on connectivity in MS may be driven

by several factors (Stam 2014). Heterogeneity is one factor that could

play a major role, both heterogeneity in demographic factors and

disease-specific factors. For example, studies differ with respect to pro-

portion of disease types in the population of interest, disease duration,

female versus male ratios, age, physical status, but also in terms of MRI

characteristics, for example, the amount of diffuse white matter dam-

age or grey matter atrophy. Other more technical factors may also

have contributed to divergent results on connectivity and activity in

MS, for instance, suboptimal processing of fMRI data and suboptimal

statistics using well-known functional imaging toolboxes (Eklund, Nich-

ols, & Knutsson, 2016).

However, another more fundamental hurdle is a lack of under-

standing how functional connectivity changes in MS relate to structural

abnormalities, such as thalamic or cortical atrophy, assumed to reflect

loss of neuronal connections and neurons (Popescu et al., 2015). We

hypothesize that understanding the relationship between structure and

function in MS could elucidate how discrepant connectivity results may

emerge in a disease with ubiquitous heterogeneity. Disentangling the

separate effects of white matter (WM) and grey matter (GM) pathology

on connectivity and networks from empirical data is currently challeng-

ing due to several factors such as lack of longitudinal data, limited sam-

ple sizes, heterogeneity in patient groups, use of different MRI

scanners with different field strength and hardware, and differences in

imaging pipelines. Biophysical models, mimicking electrophysiological

signals, have been used successfully to understand pathophysiological

processes in several other neurological diseases (Breakspear et al.,

2006; Modolo et al., 2010; Moran et al., 2011; van Dellen et al., 2013).

These models allow for realistic longitudinal data simulations that may

help to understand the effects of demyelinating and neurodegenerative

MS pathology on functional connectivity and functional network orga-

nization. In other words, at this stage, these models are both an

adequate and a necessary alternative for longitudinal empirical data

and allow analyzing the influence of structural damage (in its various

forms) on the functional network in a completely controlled and sys-

tematic way.

In this study, we employ a biophysical model, informed by empiri-

cal data, to investigate the separate effects of white matter, cortical,

and thalamic degeneration on functional connectivity and network

organization in MS. We hypothesize that the stage and amount of grey

and white matter MS pathology can elucidate the contradictory results

that were previously explained as “functional reorganization.”

2 | METHODS

2.1 | Cortico-thalamic mean field model

Given the strong clinical relevance of cortico-thalamic involvement

for cognition in MS (Houtchens et al., 2007; Schoonheim et al.,

2015a), we employ a well-known cortico-thalamic mean field model

in this study (Abeysuriya, Rennie, & Robinson, 2014; Robinson, Lox-

ley, O’connor, & Rennie, 2001; Robinson, Rennie, Rowe, & O’Connor,

2004). This model is informed by empirical data and optimized to pro-

duce realistic power spectra mimicking electroencephalogram/magne-

toencephalography recordings. It is also one of the few large-scale

biophysical models that include the thalamus. In short, the model con-

sists of units, where each unit comprises two cortical (excitatory and

inhibitory) and two thalamic (relay nuclei and a reticular nucleus) pop-

ulations (Figure 1a). We denote these groups as a 2 e; i; r; sf g, where

e; i; r; s denote excitatory, inhibitory, reticular, and relay, respectively.

For each group, a, and region j, the mean membrane potential is

denoted by Va;j and the mean firing rate by Qa;j, which were interre-

lated by a sigmoid function:

Qa;j5
Qmax

11exp 2 Va;j2u
� �

=r
� �Þ (1)

Here, Qmax refers to the maximum firing rate in Hz, u is the mean

firing threshold in mV, and r is the standard deviation of this threshold.

The mean membrane potential Va;j itself fluctuates under the influence

of incoming firing input from other groups within the same population

Qa;j

�
, a 2 e; i; r; sf gÞ and from other excitatory regions belonging to

other populations, /e;n, outside its own region. The mean membrane

potential Va;j can be considered as a low-pass filter. For every group, its

dynamics can be described by

DaVe;j tð Þ5vee/e;j tð Þ1veiQi;j tð Þ1vesQs;j t2sctð Þ1e
1
N

XN

n51; n 6¼j
Ajn/e;n t2sjn

� �
(2a)

DaVi;j tð Þ5vie/e;j tð Þ1viiQi;j tð Þ1vesQs;j t2sctð Þ (2b)

DaVs;j tð Þ5vse/e;j t2sctð Þ1vsrQr;j tð Þ1vn/noise;j tð Þ (2c)

DaVr;j tð Þ5vre/e;j t2sctð Þ1vrsQs;j tð Þ (2d)
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1
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1

1
b

� �
d
dt

11: (2e)

Here a and b are constants, which are independent of time and

correspond to the synaptic rise and decay rates in s21; vaa denotes the

synaptic densities between the population types and e corresponds to

the global structural coupling strength between populations. The last

term in Equation 2c corresponds to noise, which is defined as

/noise;j tð Þ5rnabv tð Þ, where v tð Þ denotes a unit variance Gaussian

white-noise process, and rn is the strength of this process. A number

of cortical populations is sampled over the cortex and connected to

each other through empirically informed white matter connections (Fig-

ure 1b) (Gong et al., 2009), which is of the same size as previously

described empirical networks in MS (Tewarie et al., 2013, 2014a,

2014b; Tewarie, van Dellen, Hillebrand, & Stam, 2015). Therefore,

external firing input from other populations is mediated by the pres-

ence of an structural connection Ajn, where A denotes a 78 3 78 adja-

cency matrix of a literature based structural network (Gong et al.,

2009). Input from the thalamus to the cortex and vice versa is delayed

by sct, and cortico-cortical excitatory input between regions is also

mediated with a delay sjn, depending on the Euclidian distance in the
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AAL atlas between region j and n. As incoming excitatory firing input

from other populations /e;n is propagated over long range white matter

tracts, its initial activity Qe;n is damped by the following expression

1
g2

d2

dt2
1
2
g

d
dt

11

� �
/e;n tð Þ5Qe;n tð Þ (3)

The constant g refers to the cortical damping rate. Equation 3 usu-

ally has an extra term on the left hand side, which contains the differ-

ential Laplace operator r2. Similar to Robinson, Rennie, and Rowe

(2002), we ignore the spatial dynamics by setting r250 and therefore

all observables in the model become independent of position in space.

Note that there is still spatial dependence based on the incoming con-

nections over the white matter tracts in the network (Equation 2a). Val-

ues for all constants can be found in Supporting Information, Table S1

and are the same parameters as used to simulate resting-state activity

in previous studies (Hindriks & van Putten 2012, 2013; Robinson et al.,

2002), with the only exception that we increased vei to account for the

extra excitatory input from the network. Simulations based on the

cortico-thalamic mean-field model were performed using the Euler–

Maruyama method with an integration time step of 1 3 1024. The first

2 s (20,000 samples) of the simulated data were discarded to exclude

any non-oscillatory data. Only the time series of the 78 excitatory cort-

ical populations /e;n tð Þ were used as the model output to mimic MEG

signals (Robinson et al., 2002), as it is believed that measurable and

empirical neurophysiological signals outside the head mainly originate

from excitatory pyramidal neurons (Hämäläinen, Hari, Ilmoniemi, Knuu-

tila, & Lounasmaa, 1993). Note that the thalamic populations are

required to generate realistic alpha band oscillations in a thalamo-

cortical loop (Hindriks & van Putten, 2013); however, they are not used

as model output to mimic MEG signals since they are usually difficult

to detect using MEG. Thus, signals from excitatory cortical populations

were used and filtered in the alpha band (8–13 Hz), which is the domi-

nant frequency band of the model, but also the frequency band which

most often shows cognitively relevant altered connectivity and dis-

rupted network organization in MS (Cover et al., 2006; Schoonheim

et al., 2013; Tewarie et al., 2013, 2014a, 2014b). Analysis of the signals

from the excitatory populations enables us to study a realistic system

of coupled brain regions in terms of their activities and functional con-

nectivity between them.

2.2 | Outcome measures

We define four outcome measures: mean activity, mean functional

connectivity, network diameter, and leaf fraction. (a) Mean activity is

defined as the average magnitude of the alpha band activity across all

excitatory cortical populations, where strength of the activity corre-

sponds to the spectral power of the alpha band. (b) Mean functional

connectivity is defined as phase synchronization measured by the phase

locking value (PLV) (Lachaux, Rodriguez, Martinerie, & Varela, 1999).

The PLV assumes that there is high connectivity when the phase differ-

ence of two signals is stable over a certain amount of time, and was

used to estimate alpha band connectivity between all possible region

pairs to obtain a weighted functional connectivity matrix. We subse-

quently average across regions to obtain a single average PLV value for

each simulation.

In addition, we examined network organization corresponding to

the functional connectivity matrix obtained in the previous paragraph.

The difference between functional connectivity and functional network

organization is that functional connectivity refers to the strength of con-

nections between brain regions, whereas functional network organiza-

tion (topology) corresponds to the pattern of connections between

regions in the brain. Specifically, we assess network organization by

computing two network topology measures based on the minimum

spanning tree (MST) (Stam et al., 2014; Tewarie et al., 2015b): diameter

and leaf fraction. (c) Diameter is defined as the longest shortest path

within the MST and (d) leaf fraction refers to the fraction of regions in

the MST with only one connection. Here, diameter captures information

about network integration (i.e., the smaller the diameter, the more the

network is integrated), while leaf fraction captures information about

segregation. The rationale to use these MST metrics is that these metrics

showed significant associations with cognitive decline and thalamic atro-

phy in previous empirical network studies in MS (Tewarie et al., 2014a,

b2014b,2015a).

2.3 | Experiments

Given the clinical and cognitive impact of white matter, cortical, and

thalamic degeneration, we focus on the effect of these types of

FIGURE 1 Overview of the cortico-thalamic mean field model. Panel (a) shows two units (region I and II), consisting of a cortical excitatory
(E), cortical inhibitory (I), thalamic relay (S), and thalamic reticular (R) populations. These populations are linked by within-unit and between-
unit connections (e.g., the green line that crosses the midline between the two hemispheres). Connections can either be excitatory (green)
or inhibitory (red). The connection between the thalamus and the cortex is reciprocal. The cortical parts of the units are sampled over the
cortex and only the excitatory populations are connected between units using an empirically informed anatomical network (panel b). Note
that these connections are green and thus excitatory [Color figure can be viewed at wileyonlinelibrary.com]
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damage on connectivity and networks. As the initial parameters of

the model were obtained after parameter estimation based on

empirical data from healthy controls (Robinson et al., 2001), we con-

sider these parameter settings as our initial working point. For each

experiment described below, we simulate network activity followed by

computing the outcome measures. All simulations were repeated 50

times, and the mean and standard deviations across 50 realizations for

each iteration were visualized in a graph. We follow a three-step

approach.

2.3.1 | White matter damage

WM damage was modeled by nonrandom and systematic reduction of

the white matter connections between units up to 14% in known pred-

ilection sites (Daams et al., 2016; Li et al., 2013) (n524 and n5202).

A reduction of 14% was based on the percentage change in structural

connectivity strength that can be observed when comparing empirical

data of MS patients (n539) compared to those of healthy controls

(n539) (see figure 3c in Shu et al., 2011).

2.3.2 | Cortical degeneration

Cortical degeneration was modeled by linearly decreasing the strength

of within cortical unit connections. The reductions were informed by

empirical values measured in a study on cortical thickness in longstand-

ing MS that used exactly the same parcellation scheme as in the cur-

rent modeling study (n5102) (Tewarie et al., 2014a, 2014b). Data

from this study were a subset of the data used in a recent paper on

nonrandom patterns of cortical atrophy in MS (n5208) (Steenwijk

et al., 2015). The maximum reduction for every region was based on

the relative decrease (%) in cortical thickness in MS patients compared

to healthy controls (see Supporting Information, Figure S1 for regional

cortical thickness values).

2.3.3 | Thalamic degeneration

Thalamic degeneration was modeled by linearly decreasing the strength

of within thalamic unit connections. The reductions were informed by

thalamic volumes measured in an empirical study in longstanding MS

(n5202) (Daams et al., 2016). The maximum reduction was equal to

the relative reduction (%) in thalamic volumes in MS patients compared

to healthy controls (100%2 (18.50/20.78 3 100%)511%, see table 1

in a previous study) (Daams et al., 2016).

As within-unit connections in both the cortex and the thalamus

correspond to neuronal connection densities (Robinson et al., 2001),

alteration of these parameters in experiments 2 and 3 correspond

more to neuronal/axonal/synaptic loss (neurodegeneration/atrophy)

within the cortex than demyelination, which is not modeled in this

study. The inclusion of neuronal/axonal loss can be justified given find-

ings from a recent study demonstrating that MRI-measured atrophy in

MS is driven by neuronal/axonal loss (Popescu et al., 2015). Modeling

of grey matter demyelination would require within-unit delays, which is

computationally not straightforward and requires future studies. In

addition, the stronger association between neurodegeneration and dis-

ability justifies focusing on that aspect of the disease in the current

study rather than demyelination (Geurts & Barkhof 2008).

3 | RESULTS

3.1 | White matter damage

The effect of white matter damage on functional activity, connectivity,

and network organization is shown in Figure 2. Increasing white matter

damage induces a monotonic decrease in mean neuronal activity, while

functional connectivity changes are characterized by an inverted U-

curve, meaning that white matter damage initially causes an increase in

connectivity, followed by a subsequent decrease. This inverted U-curve

is explained by damage to long range tracts that initially leads to higher

local connectivity (i.e., connectivity of local groups is not perturbed by

distant groups), followed by a global collapse of the network associated

with lower connectivity. The effect of white matter damage on net-

work integration and segregation remains small during the initial stages,

but subsequently features a sudden and steep change during the tran-

sitional period between increased and decreased connectivity. The

increased MST diameter (Figure 2c) can be interpreted as a decrease in

network integration, whereas the decrease in MST leaf fraction (Figure

2d) can be interpreted as an increased network segregation. Figure 2c

could give the impression that the initial stage of stable MST diameter

values (during 0–10 iterations), is actually characterized by a decrease

in MST diameter. However, note that there is still a large overlap

between the standard deviations during this regime, and therefore this

slight decrease cannot be considered as significant.

3.2 | Grey matter damage: Cortical damage

Simulations for the effect of cortical damage on functional activity,

connectivity, and network organization are shown in Figure 3 (blue

traces). Increasing cortical degeneration induces initially an increase in

cortical neuronal activity (Figure 3a), followed by a plateau. Increasing

cortical damage also brings about an increase in cortical functional con-

nectivity (Figure 3b), but note that functional connectivity hardly

changes in the initial phases of cortical damage. However, the effect of

cortical matter damage on activity and connectivity is very distinct

compared to the effect of white matter damage on these functional

outcome measures. This discrepancy is however not very evident with

respect to functional network organization. For cortical damage we can

observe that MST diameter increases with increasing damage, that is,

the networks become less integrated. The difference with white matter

damage is, however, that this increase follows very quickly after the ini-

tial stages of damage, in contrast to the effect of white matter damage

on the MST diameter, which initially stays quite stable. MST leaf frac-

tion shows a rapid decrease after a short stable phase. Again the sign

of the change is similar to that of white matter damage, being again the

difference that network segregation is less robust against cortical dam-

age than white matter damage.

3.3 | Grey matter damage: Thalamic damage

Simulations for the effect of thalamic damage on functional activity,

connectivity and networks are shown in Figure 3 (red traces). Similar to

cortical damage, increasing thalamic degeneration induces an increase
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in neuronal activity, however, less pronounced than for cortical dam-

age. Change in neuronal activity in the cortex during the course of tha-

lamic damage follows a nonlinear effect with two maxima over time.

Thalamic degeneration also brings about an increase in mean cortical

functional connectivity, which occurs earlier during the course than for

cortical damage, but thalamic damage has a less strong effect on

FIGURE 3 Effect of grey matter damage on function. The effect of grey matter damage on neuronal activity (a), functional connectivity (b),
and functional network organization is shown (c,d). The blue curves correspond to the effect of cortical damage and the red curve to the
effect of thalamic damage. Dashed lines correspond to mean values across realizations for every iteration, and the shaded area around
these dashed lines corresponds to the standard deviation across realizations, which can be interpreted as heterogeneity [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 2 Effect of white matter damage on function. The effect of white matter damage on neuronal activity (a), functional connectivity
(b), and functional network organization is shown (c,d). Dashed lines correspond to mean values across realizations for every iteration, and
the shaded area around these dashed lines corresponds to the standard deviation across realizations, which can be interpreted as
heterogeneity [Color figure can be viewed at wileyonlinelibrary.com]
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cortical functional connectivity than cortical damage. However, tha-

lamic damage seems to induce a comparable effect on network integra-

tion (MST diameter) and segregation (MST leaf fraction) to cortical

damage, with the difference of a steeper slope for thalamic damage

and a lack of an initial stable phase.

4 | DISCUSSION

In this study, we used biophysical modeling to investigate the separate

effects of white matter, cortical and thalamic degeneration on func-

tional connectivity/activity and network organization in MS. We

observed a nonlinear effect of white matter damage on functional con-

nectivity, in the form of an initially increased, but subsequently

decreased overall brain connectivity. Grey matter damage only resulted

in increased connectivity, especially for simulated cortical degeneration.

At the same time, both white and grey matter degeneration led to

decreased network integration and segregation, albeit occurring at a

faster pace for grey matter degeneration. Taken together, these find-

ings could explain the heterogeneity of connectivity results in the

literature.

Our simulations demonstrated that white matter damage can

induce both an increase and decrease in functional connectivity

depending on the amount of white matter damage (in terms of axonal/

neuronal damage). This inverted U-curve curve of functional connectiv-

ity during the course of increasing white matter damage may explain its

inconsistent relationships with clinical outcome measures (Rocca et al.,

2010, 2015b; Sbardella et al., 2016; Tona et al., 2014). This would

especially be the case for cross-sectional studies, where patients with

different amounts of white matter damage could be found on different

points along the curve in Figure 2b. At the same time, functional net-

work organization seems to be fairly robust against white matter dam-

age up to a critical point after which the functional network undergoes

a rapid disintegration.

In contrast to the white matter, damage of the gray matter

induced functional network disintegration at an earlier stage, that is,

less cortical damage is required to lead to disintegration of functional

networks. Apparently, functional network organization is less robust

for grey matter damage than for white matter damage. This could

explain why cognitive and clinical measures correlate more strongly

to grey matter than white matter alterations in MS. The discrepancy

between damage within the nodes (i.e., atrophy) and damage between

the nodes (i.e., structural connections) on network organization seems

to be a generic principle in a diverse range of networks, which is

related to the concept of degeneracy (Fornito, Zalesky, & Breakspear,

2015): due to the fact that the brain has many more structural con-

nections than nodes (e.g., nodes are usually connected to several

other nodes), network function can be retained in the presence of

damage between the nodes by using one of the many alternative con-

nection routes. The pool of alternatives for damage within the nodes

(i.e., in the gray matter) is much smaller (i.e., there is less redundancy

for grey matter than for white matter connections), which could

explain its sensitivity for network disruption.

Our findings have important implications. First, our results demon-

strate that an increase in connectivity and activity can occur as a result

of structural damage and thus not solely as a result of a compensatory

process. Therefore, caution should be exercised when interpreting

increased functional connectivity values in cross-sectional studies as

“compensation” (in the sense that it is a beneficial, teleological response

to damage). Second, as demonstrated by the fast transitions in Figures

2c,d and 3c,d, depending on the type and amount of damage, changes

in functional network integration and segregation measures are dispro-

portionate to the amount of damage. Little damage may cause large

changes in network topology. Third, given the observed specific effects

of different types of damage, functional connectivity changes in the

beginning of the disease might be different compared to later stages of

the disease, as it is known from empirical data that thalamic atrophy is

present in the earliest phases of the disease (Minagar et al., 2013),

while cortical atrophy is thought to be more prominent and developing

in patterns in later stages (Fisniku et al., 2008). Whether the supposed

sequential occurrence of thalamic and cortical atrophy is driven by one

of the changes remains to be investigated. In contrast to functional

connectivity, the direction in which network integration and segrega-

tion changes, seems to be unambiguous for white and grey matter

damage, indicating that it may be more fruitful to analyze network

topology measures in empirical studies as a correlate for cognitive and

clinical outcomes.

Some methodological aspects of our study warrant discussion. First,

our results apply to resting-state functional networks and not task-based

connectivity findings, which requires a different way of modeling in

terms of external inputs that drive the dynamics. Second, all large-scale

computational models lack regional specificity along white matter tracts.

Thus we cannot distinguish between lesional damage and diffuse white

matter damage along a white matter tract. Finally, we did not investigate

the effects of heterogeneity of conduction velocities along white matter

tracts to simulate diffuse white matter demyelination, and did not use

thalamo-cortical connectivity as an outcome measure, warranting future

studies. Last, the empirical data of the different types of structural dam-

age that has been used to inform the simulations differs in disease dura-

tion. This will have influenced the end points (last iteration) in the graphs

(Figures 2 and 3), but not the shape of the curves.

In conclusion, we have demonstrated that joint white and grey

matter damage can induce concurrent increases and decreases in func-

tional connectivity, warranting caution when interpreting such changes

as a compensatory mechanism. In addition, these concurrent increases

and decreases in connectivity could also explain the reported heteroge-

neity of functional connectivity results reported in the literature. Func-

tional network topology measures show a more insightful pattern of

change, regardless of the type of damage induced, which enforces their

value for future imaging studies in MS.
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