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Summary

� Terrestrial primary productivity and carbon cycle impacts of droughts are commonly quanti-

fied using vapour pressure deficit (VPD) data and remotely sensed greenness, without

accounting for soil moisture. However, soil moisture limitation is known to strongly affect

plant physiology.
� Here, we investigate light use efficiency, the ratio of gross primary productivity (GPP) to

absorbed light. We derive its fractional reduction due to soil moisture (fLUE), separated from

VPD and greenness changes, using artificial neural networks trained on eddy covariance data,

multiple soil moisture datasets and remotely sensed greenness.
� This reveals substantial impacts of soil moisture alone that reduce GPP by up to 40% at sites

located in sub-humid, semi-arid or arid regions. For sites in relatively moist climates, we find,

paradoxically, a muted fLUE response to drying soil, but reduced fLUE under wet conditions.
� fLUE identifies substantial drought impacts that are not captured when relying solely on

VPD and greenness changes and, when seasonally recurring, are missed by traditional,

anomaly-based drought indices. Counter to common assumptions, fLUE reductions are largest

in drought-deciduous vegetation, including grasslands. Our results highlight the necessity to

account for soil moisture limitation in terrestrial primary productivity data products, especially

for drought-related assessments.

Introduction

Water availability limits ecosystem productivity across much of
the Earth’s surface (Beer et al., 2010; Schwalm et al., 2010;
Seneviratne et al., 2010; Ahlstr€om et al., 2015). In arid, semi-arid
and Mediterranean ecosystems, limiting water availability is a
recurrent phenomenon and governs plant growth and phenology
(Reichstein et al., 2002). In addition, in temperate, boreal and
tropical ecosystems, sporadic prolonged dry periods can lead to
water-limited conditions and can have far-reaching impacts on
ecosystem carbon (C) balance (Ciais et al., 2005; Granier et al.,
2007; Doughty et al., 2015) and structure (Orth et al., 2016).
Here, we investigate ‘droughts’, identified by their impact on veg-
etation productivity. This corresponds most closely to the defini-
tion of ‘agricultural droughts’ (Trenberth et al., 2007) and also
includes seasonally recurring dry conditions.

Most plants tightly co-regulate water loss and CO2 assimila-
tion with the effect that, under conditions of low soil moisture
and high atmospheric water vapour pressure deficit (VPD), stom-
atal conductance and hence assimilation and transpiration rates

are reduced in order to prevent exceedingly low leaf water poten-
tials and resulting plant tissue damage from cavitation (Cowan &
Farquhar, 1977; McDowell et al., 2008; Sperry & Love, 2015).
The CO2 assimilation rate at the leaf level, or gross primary pro-
ductivity (GPP) – its integral at the ecosystem level – is the
‘engine’ of C cycling in terrestrial ecosystems. GPP emerges as
the dominant driver of year-to-year variations in the global land
C balance (Poulter et al., 2014; Ahlstr€om et al., 2015), and is
closely controlled by water availability in the rooting zone across
much of the Earth’s surface (Beer et al., 2010; Ahlstr€om et al.,
2015).

The effects of dryness on CO2 assimilation and light use effi-
ciency (LUE, GPP normalized by absorbed light) are represented
in global vegetation models and satellite data-driven products by
accounting for VPD only (Running et al., 2004; Beer et al.,
2010; Best et al., 2011; Clark et al., 2011), soil moisture only
(Knorr & Heimann, 2001; Sitch et al., 2003; Stocker et al.,
2013) or both (Medvigy et al., 2009; Zaehle & Friend, 2010;
Bonan et al., 2014). However, model parametrizations are diver-
gent (Medlyn et al., 2016; Rogers et al., 2017), and there is a lack
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of empirical data covering diverse ecosystems (Sulman et al.,
2016). Furthermore, quantifications of impacts by low soil mois-
ture and high VPD have commonly relied on a priori specified
functional relationships (Reichstein, 2003; Leuning et al., 2005;
Pan et al., 2006; Verstraeten et al., 2006; Granier et al., 2007;
Yuan et al., 2007; Novick et al., 2016). These aspects limit the
power of global vegetation models and our ability to monitor ter-
restrial primary productivity from space.

GPP can generally be formulated as the product of the inci-
dent photosynthetically active radiation (PAR), the fraction of
absorbed PAR (fAPAR) and LUE (Monteith, 1972):

GPP ¼ PAR � fAPAR � LUE Eqn 1

fAPAR is commonly derived from remotely sensed greenness
indices and captures first-order effects on GPP by vegetation
cover (Wang et al., 2014) and – when reflected in ecosystem
structural change – its variation during droughts. Data on fAPAR
alone have served as the basis for the identification and quantifi-
cation of C cycle extreme events (Reichstein et al., 2013; Zscheis-
chler et al., 2013). However, high VPD and dry soil conditions
can lead to severely reduced LUE before becoming manifest in
vegetation structure (Garbulsky et al., 2010). It is commonly held
that this affects mostly evergreen ecosystems (Gamon et al., 2016;
Walther et al., 2016), whereas seasonal GPP variations are well
captured by remotely sensed greenness in regions dominated by
drought-deciduous vegetation, in particular grasslands (Rossini
et al., 2012; Verma et al., 2014; Ali et al., 2016; Konings et al.,
2017). Hence, the accurate prediction of variations in LUE and
its sensitivity to VPD and soil moisture is essential for the simula-
tion of GPP and C cycle variations in response to interannually
varying climate.

Satellite data-based GPP products are widely used in assess-
ments of global C cycle changes, their interannual variability in
recent decades and impacts of droughts (Zhao & Running, 2010;
Ballantyne et al., 2017; Jung et al., 2017; Schwalm et al., 2017).
These commonly rely on the assumption that VPD and vegeta-
tion greenness are correlated with soil moisture and other limita-
tions on vegetation productivity, and should thus suffice for
model predictions across a wide range of environmental condi-
tions without accounting for direct information on soil moisture
(Field et al., 1995; Veroustraete et al., 2002; Running et al.,
2004; Heinsch et al., 2006; Fisher et al., 2008; Biederman et al.,
2017). The correlation between soil moisture and VPD arises as
a result of the feedback between soil moisture, stomatal conduc-
tance and transpiration under dry conditions (Seneviratne et al.,
2010). However, mechanistic considerations suggest that this
coupling deteriorates under very dry conditions (Ruddell &
Kumar, 2009). Therefore, it has been argued that the combina-
tion of dry soil (low soil moisture) and dry air (high VPD) should
be considered for the appropriate modelling of plant responses to
drought (Egea et al., 2011; Sulman et al., 2016; Rogers et al.,
2017). Although needed for the benchmarking of competing rep-
resentations in models and to improve data-based estimates of
global GPP and C cycle changes, independent observational con-
straints for soil moisture effects, additional to VPD, are missing.

Recently, global-scale, satellite-based observations of soil
moisture based on microwave measurements have become
available. However, their representativeness is limited to mois-
ture in upper soil layers, complicating their usability for the
estimation of productivity of deeper rooting vegetation
(Hirschi et al., 2014; Dorigo et al., 2017). Other information
based on surface reflectance (Xiao et al., 2004), the Earth’s
gravitational field and information from the Gravity Recovery
and Climate Experiment (GRACE) mission (Tapley et al.,
2004; Rodell et al., 2009; Humphrey et al., 2016), or from
alternative remotely sensed vegetation indices (PRI (photo-
chemical reflectance index) (Gamon et al., 1992, 2016; Pe~nue-
las et al., 1995; Goerner et al., 2009; He et al., 2016), SiF
(sun-induced fluorescence) (Porcar-Castell et al., 2014) or
NIRV (near-infrared reflectance of terrestrial vegetation) (Badg-
ley et al., 2017)), has the potential to provide complementary
information relevant for the capture of drought impacts on
LUE and GPP. However, the spatial resolution of GRACE is
very low (c. 102 km) and is affected by other surface water
storage, and the complementarity of PRI, SiF and NIRV to
greenness indices (normalized difference vegetation index
(NDVI) and Enhanced Vegetation Index (EVI)) and how their
information is to be used to capture drought impacts remain
challenging (He et al., 2016; Vicca et al., 2016).

Eddy covariance measurements provide data on CO2 gas
exchange at a high temporal resolution (Baldocchi et al., 2001).
These data can be used to estimate GPP and to reveal, at scales
ranging from hours to years, how ecosystem functioning is
affected by the combination of multiple, simultaneously chang-
ing drivers. The recently published FLUXNET 2015 dataset pro-
vides an unprecedented wealth of flux data, complemented by
meteorological variables and soil moisture, measured in parallel.
However, these data cannot provide direct information on partial
effects by soil moisture. Such effects would ideally be quantified
in an experimental setup with and without limiting soil water
availability around the flux measurement towers (Beier et al.,
2012). However, this is generally not feasible because of the rela-
tively large spatial extent of tower footprints and the required
resources for controlled conditions at this scale. Furthermore,
feedbacks between soil moisture and VPD would confound a sep-
aration (Beier et al., 2012). Hence, analyses of VPD and soil
moisture controls commonly rely on a priori specified functional
relationships and model-based analyses of observational data
from unmanipulated sites alone (Granier et al., 2007; Novick
et al., 2016).

Here, we identify soil moisture-related reductions in LUE and
derive their empirical functional relationship from data alone,
across sites in the FLUXNET 2015 dataset, covering a wide range
of biomes and vegetation types. We make use of c. 250 000 site
days to empirically estimate the potential light use efficiency
(LUEpot) under hypothetical, non-soil moisture-limited condi-
tions. The ratio of actual over potential LUE (fLUE) reveals the
timing and quantifies the magnitude of soil moisture effects, sep-
arated from VPD effects and additional to changes in vegetation
greenness (fAPAR). This analysis thereby provides an impact-
oriented quantification of droughts.
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Materials and Methods

An extended methods description is available as Supporting
Information Methods S1 and as reproducible code (RMARK-

DOWN) through https://github.com/stineb/nn_fluxnet2015 (doi:
10.5281/zenodo.1158575). fLUE data are available through doi:
10.5281/zenodo.1158524.

Approach

We quantify the fractional reduction in LUE due to soil mois-
ture, separated from VPD and greenness effects, as the ratio of
actual over potential LUE:

fLUE ¼ LUEact=LUEpot Eqn 2

‘Potential’ light use efficiency (LUEpot) is predicted using arti-
ficial neural networks (NNs, see later), trained on the empirical
relationship between observed LUE (LUEobs) and its predictors
(temperature, VPD and PAR) during days in which soil moisture
is relatively high (‘moist days’). All NN training is performed for
each site specifically. ‘Actual’ LUE (LUEact) is derived from NNs
using all data and, in contrast with the NN for LUEpot, with soil
moisture as an additional predictor (Fig. 1). LUEobs is calculated on
the basis of daily total observed GPPobs (GPP_NT_VUT_REF
in the FLUXNET 2015 dataset), PAR (based on incoming
shortwave radiation, SW_IN_F in FLUXNET 2015) and
fAPAR (fraction of absorbed PAR, based on MODIS EVI,
extracted for site location) (see Eqn 1). The use of NN-derived
LUEact instead of LUEobs in Eqn 2 reduces noise in fLUE as

LUEact and LUEobs are affected by similar errors. fLUE distills
the effect of accounting for information on soil moisture.

We limit the NN training to a small number of predictors that
are reflective of process understanding regarding the controls on
LUE (Prentice et al., 2014) and to avoid over-fitting. Data are
split into ‘moist’ and ‘dry’ days, where ‘moist days’ data are used
to train NNpot and all data are used to train NNact (Fig. 1). The
threshold for splitting is determined by optimal model perfor-
mance in the face of the trade-off between the number of data
points and including data in which low soil moisture affects
fluxes. The criterion applied is the smallest variance in fLUE dur-
ing moist days of a subset of thresholds in which the difference
between LUEact and LUEpot during dry days is highest. The
agreement between potential and actual LUE, using the two NN
models’ prediction, should be good during ‘moist days’ (high soil
moisture). By contrast, LUEpot, trained at ‘moist days’ data, is
expected to overestimate LUE during days in which soil moisture
is low (see Figs 2, 3). With the only difference between NN mod-
els being soil moisture as an additional predictor, the ratio fLUE
thus indicates the separated effect of soil moisture on LUE.
‘fLUE droughts’ are identified when fLUE falls below a site-
specific threshold. To test the power of VPD as a predictor for
LUE, we used an alternative NN setup in which temperature,
VPD and PAR are used as predictors (but not soil moisture)
and all days (moist and dry) are used for training (LUEVPD =
NNVPD(T, VPD, PAR)). The only difference compared with
NNpot is that dry day data are also used for training.

NN training

Feed-forward artificial NNs (one hidden layer) are trained (R
packages ‘NNET’ (Venables & Ripley, 2002) and ‘CARET’ (Kuhn,
2016)) using repeated (five times) five-fold cross-validation,
where 75% of the data are used for training in each iteration.
The learning rate decay rate is set to 0.1 and the number of nodes
in the hidden layer is sampled from 4 to 20 (step size 2). The
best-performing NN (by root-mean-square error (RMSE)) is
selected and the same procedure is repeated five times. In order
to reduce scatter in time series, we used the mean across repeti-
tions for further analyses. All predictors are scaled by range to
within 0 and 1. NN training is performed for multiple soil mois-
ture datasets (see subsection ‘Soil moisture’) separately. In order
to enhance the robustness of NN models under uncertain soil
moisture data, we use the mean across the resulting set of fLUE
realizations for further analyses.

Soil moisture

Soil moisture data are based on direct measurements, provided
through the FLUXNET 2015 dataset, and five alternative
bucket-type models. Measured soil moisture is provided in units
of volume water per volume soil. Where separate data for multi-
ple depths were available, we used them as individual predictors
for NN training. As a result of the limited observational soil
moisture data availability and mostly unavailable soil moisture
data for deep soil layers, we also used simulated soil moisture,

Soil moisture

LUE

Moist daysDry days

NN training
LUEpot = NNpot (T, VPD, PAR)

NN prediction 
LUEpot

NN training
LUEact = NNact(T, VPD, PAR, soil moisture)
LUEVPD = NNVPD (T, VPD, PAR)

Threshold

Fig. 1 Illustration of the methods for neural network (NN) training.
‘Potential’ light use efficiency (LUEpot) is predicted using NN models,
trained on the empirical relationship between observed LUE (LUEobs) and
its predictors, temperature (T), vapour pressure deficit (VPD) and
photosynthetically active radiation (PAR), during days in which soil
moisture is relatively high (‘moist days’). The threshold between moist and
dry days is optimized with respect to NN model performance (see the
Materials and Methods section). ‘Actual’ LUE (LUEact) is derived from NNs
using all data and with soil moisture as an additional predictor. LUEVPD is
derived from NNs, trained at all data, but without soil moisture as a
predictor.
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provided by alternative, bucket-type soil water balance models,
described later.

SPLASH SPLASH (Davis et al., 2017) is based on a Priestley–
Taylor formulation for the simulation of evapotranspiration
(ET). Two alternative water-holding capacities (‘bucket depth’)

are used: 150 mm (as in Davis et al., 2017) and 220 mm (as for
the SWBM model, see Orth et al., 2013).

SWBM SWBM (Orth et al., 2013) uses measured net radiation
from local measurements (FLUXNET 2015 data) and generates
runoff before the bucket water-holding capacity (220 mm) is

(a) (b)

(c) (d)

Fig. 2 Neural network (NN)-based predicted vs observed gross primary productivity (GPP). (a) Predicted values are based on the NN model estimating
actual light use efficiency, NNact, using all input variables (temperature, vapour pressure deficit (VPD), photosynthetically active radiation (PAR), soil
moisture) and ‘all days’ data. (b) Predicted values are based on the NN model estimating potential light use efficiency, NNpot, trained at data from days
above the soil moisture threshold (‘moist days’), using temperature, VPD and PAR as input and evaluated only on ‘moist days’ data. (c) Same as (b) but
evaluated on ‘dry days’ data. (d) Predicted values based on NNpot vs predicted values based on NNact, evaluated only on ‘moist days’ data. NSE, Nash-
Sutcliffe model efficiency; RMSE, root-mean-square error.
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reached (see Eqn 3 in Orth et al. (2013), a = 6.4 used here). Simi-
larly, an empirical function down-scales the fraction of ET to net
radiation as a function of soil water content (Eqn 2 in Orth et al.
(2013), c = 0.06 used here).

ET-driven bucket The soil water balance is simulated using pre-
cipitation and latent heat flux, measured at the FLUXNET sites.
The latent heat flux is converted to mass H2O using a constant
conversion factor of 2.264769 106 J mm�1. Latent heat flux
data from FLUXNET 2015 (variable LE_F_MDS) are cleaned
first if > 80% of the underlying half-hourly data are gap-filled,
and then gap-filled using NNs (temperature, PAR, VPD and ET
simulated by the SPLASH model as predictors, using R package
‘NNET’ (Venables & Ripley, 2002) and ‘CARET’ (Kuhn, 2016), sin-
gle hidden layer, 20 nodes, 10-fold cross-validated). The water-
holding capacity of the ET-driven buckets is set to 220 mm. Two
bucket versions are used. One in which no runoff is generated
before the soil water-holding capacity is reached, and one in
which runoff is generated before as in the SWBM model.

All models are driven by observed precipitation, measured at
the FLUXNET sites.

GPP data

Daily data are used from the FLUXNET 2015 Tier 1 dataset,
downloaded on 13 November 2016. We use GPP based on the
night-time partitioning method, and the variable u-star threshold
method, named GPP_NT_VUT_REF. In the FLUXNET 2015
dataset, daily values are sums over half-hourly data. We use
only daily values in which < 50% of the respective half-hourly
data are gap-filled. We further remove data points in which the

daytime and night time methods (GPP_DT_VUT_REF and
GPP_NT_VUT_REF, resp.) are inconsistent, that is, the upper
and lower 2.5% quantiles of the difference between each
method’s GPP quantification. Finally, we remove all negative
daily GPP values.

Greenness (fAPAR) data

We use MODIS EVI (MOD13Q1, 16 d, 250 m, Collection
5) and tested MODIS fraction of PAR (FPAR) (MOD15A2,
8 d, 1 km) data to quantify fAPAR. As a result of its higher
spatial resolution, smaller scatter and smaller tendency to sat-
urate at high values (Fig. S1), EVI is preferred here and all
results below are based on analyses with EVI data. Data were
downloaded for the pixel surrounding each flux tower loca-
tion using the ‘MODISTOOLS’ R package. Data were cleaned,
eliminating contamination associated with clouds, shadows
and snow/ice, and were interpolated to daily values using a
Savitzky–Golay smoothing filter (‘SIGNAL’ R package) of order
3 and length 31 d. This generally maintains the full seasonal
amplitude, crucial for analyses performed here, but does not
fully remove noise.

Site selection

We evaluated fLUE for 135 sites of the total of 166 sites in the
FLUXNET Tier 1 dataset, where modelled soil moisture gave
consistent results across different models and was consistent with
observed soil moisture where available. For 63 sites, the available
cleaned data were either too small (< 500 d, 24 sites) or NN
results failed performance criteria. Primary criteria, excluding 14
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Fig. 3 (a) Sensitivity of light use efficiency (LUE) to vapour pressure deficit (VPD), derived from different neural network (NN) setups. The evaluation of
sensitivity is performed by holding all predictors, except VPD, at their pre-drought median (across 20 d preceding drought, identified by fLUE deviation
from 1). Shown is the median and the 40–60% quantile range of LUE values, normalized relative to LUE(VPD = 0), pooled across sites for models NNact,
NNpot and NNVPD (see text and Fig. 1). (b) Distribution of the bias of predicted LUE, based on different NN setups. Biases are evaluated for days with low
VPD (below 10% quantile) and low soil moisture (below 0.25 relative soil water content, left) and high VPD (above 90% quantile) and high soil moisture
(above 0.75 relative soil water content, right). Boxes represent the interquartile range of values (Q25,Q75, logarithm of modelled over observed LUE),
whiskers coverQ25� 1.59 (Q75�Q25) toQ75 + 1.59 (Q75�Q25). Data are for NN predictions using soil moisture from the SWBMmodel and represent
pooled sites from clusters ‘cDD’ and ‘cGR’ (see ‘Materials and Methods’, ‘Site clustering’).
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sites, were as follows: mean LUEact during fLUE drought days
had to be smaller than LUEpot; RMSE of LUEact or LUEpot had
to be smaller than 2.8 g Cmol�1; R2 of LUEact and LUEobs had
to be > 0.5; R2 of LUEpot and LUEobs had to be > 0.3. Additional
performance criteria, excluding 19 sites, plus six sites excluded by
visual inspection, are described in Methods S1. The remaining
71 sites provide 233 369 d of data and were used for subsequent
analyses. These are listed in Table 1.

Site clustering

First, we identified 21 sites that were not affected by low soil
moisture during the period in which measurements were avail-
able, that is where available values of relative soil moisture (as a
fraction of water-holding capacity) did not fall below 0.25. This
cluster is referred to as cNA (not affected) in the figures below.
Second, we identified 23 sites that exhibited a particularly small
reduction in fLUE at low soil moisture (cLS, low sensitivity).
After removing cNA sites from the 71 sites investigated, cLS sites
were identified based on the magnitude of the fLUE reduction
with soil moisture approaching zero (termed fLUE0, see Fig. S2),
and contained sites with fLUE0 > 0.8. Third, we used the remain-
ing sites (26) to distinguish between clusters of sites with similar
responses in greenness and LUE during droughts. We used a
k-means algorithm (R package ‘CLUSTER’ (Maechler et al., 2016))
with predefined k = 2 (two clusters). Each site formed one obser-
vation, with data points given by a vector of length six, contain-
ing the median relative reduction of greenness and of fLUE,
aggregated across drought events within the respective site and
averaged across days �20� (�1), 0–19 and 20–39 after fLUE
drought onset (day 0 is the fLUE drought onset). This separates
sites into a cluster with no reduction in greenness and an interme-
diate reduction in fLUE (cGR, evergreen) and a cluster with a
clear greenness reduction, accompanied by a strong reduction in
fLUE (cDD, drought-deciduous).

Results

NN performance

Across all sites and days (pooled), the NN-based GPP predictions
following Eqn 1 and using LUEact achieve an R2 of 0.84 against
observed GPP, an RMSE of 1.6 g Cm�2 d�1 and a negligible
bias (Fig. 2). A similar performance is achieved by NNpot for the
subset of data above the soil moisture threshold (‘moist days’). It
should be noted that NNpot refers to the ‘model’, whereas LUEpot
refers to its prediction of LUE. By contrast, the NNpot-based pre-
diction of GPP is consistently biased high during days below the
soil moisture threshold (‘dry days’). This is a direct consequence
of the method and performance criteria (LUEpot > LUEact).
When comparing LUEact directly with LUEobs =GPPobs/
(fAPAREVI9 PAR), R2 is reduced to 0.7 (Fig. S3). During moist
days, the two NN-based predictions, in which LUEact includes
soil moisture as a predictor and LUEpot does not, agree closely
(R2 = 0.99), indicating that NNpot and NNact capture very simi-
lar sensitivities to VPD, temperature and PAR during moist days.

This is confirmed by the evaluation of sensitivities of different
NN setups to VPD (Fig. 3a).

The sensitivity to VPD warrants particular attention. The
NN-based separation between soil moisture and VPD effects is
subject to the accuracy of their sensitivities to partly covarying
VPD and soil moisture. We tested this using an additional setup,
NNVPD, trained at all data, but without soil moisture as a predic-
tor, and evaluated its performance under conditions in which soil
moisture and VPD are decoupled, that is, under simultaneously
high (low) soil moisture and VPD. In general, NNVPD exhibits a
higher sensitivity than NNact and NNpot to VPD (Fig. 3a).
Under conditions in which soil moisture is high (non-limiting)
and VPD is high (limiting), the strong sensitivity of NNVPD to
VPD leads to an underestimation of LUEVPD compared with
LUEobs (Fig. 3b). By contrast, LUEact and LUEpot are both unbi-
ased with respect to LUEobs and hence accurately capture effects
of VPD alone. Under conditions of low soil moisture (limiting)
and low VPD (non-limiting), the NNpot model strongly overesti-
mates LUE. Also, LUEVPD is biased high compared with LUEobs
under dry soil and moist air conditions. This indicates that infor-
mation contained in VPD is insufficient to fully capture dryness
effects – even with a model that features a relatively high sensitiv-
ity to VPD. By contrast, NNact yields unbiased LUE estimates
also under these conditions, indicating that its sensitivity to soil
moisture alone is accurate.

Time series

The evaluation of fLUE reveals substantial soil moisture impacts
across a wide range of climatic zones and ecosystem types. Peri-
ods of significant fLUE reductions below 1.0 (referred to as
‘fLUE droughts’) are seasonally recurring in dry grasslands (e.g.
US-Var), savannahs (e.g. US-Ton, AU-How, AU-DaS), shrub-
lands (e.g. IT-Noe), broadleaf evergreen (e.g. FR-Pue, FR-LBr)
and deciduous (e.g. IT-Ro1) forests, and occur sporadically in
needleleaf evergreen ecosystems in the temperate (e.g. DE-Tha)
and boreal (e.g. FI-Hyy) zones (Figs 4, S4).

fLUE droughts cover from a few days per year at mesic sites to
over 90% of days in desert sites (see also Fig. S5). Impacts of
known droughts, for example summer 2003 in Europe, are
reflected by particularly strong fLUE reductions, clearly visible at
sites with sporadically occurring fLUE droughts (e.g. FR-LBr
and DE-Tha, Fig. S4). Anomalously high GPP deficits, that is
cumulative fLUE deviations from 1, may trigger legacy effects on
ecosystem structure via mortality and aboveground primary pro-
ductivity (Zhang et al., 2013; Anderegg et al., 2015). We investi-
gated whether high cumulative fLUE deficits are reflected in
greenness anomalies, but found no clear relationship between the
two (not shown).

Aligned and aggregated by drought events

To distill regularities in the co-evolution of multiple variables
during the course of recurring fLUE droughts, all events (grey
bands in Fig. 4) per site are aligned by their fLUE drought onset
and data are aggregated across drought events. Examples from
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Table 1 FLUXNET Tier 1 sites in clusters cDD, cGR, cLS and cNA

Site Longitude Latitude Start End IGBP class Cluster Reference

AU-ASM 133.25 �22.28 2010 2013 ENF cDD Cleverly (2011)
AU-DaP 131.32 �14.06 2007 2013 GRA cDD Beringer (2013b)
AU-Fog 131.31 �12.55 2006 2008 WET cDD Beringer (2013e)
AU-Stp 133.35 �17.15 2008 2014 GRA cDD NA
SD-Dem 30.48 13.28 2005 2009 SAV cDD Sj€ostr€om et al. (2008)
SN-Dhr �15.43 15.4 2010 2013 SAV cDD NA
US-SRG �110.83 31.79 2008 2014 GRA cDD Biederman et al. (2016)
US-SRM �110.87 31.82 2004 2014 WSA cDD Scott (2016)
US-Ton �120.97 38.43 2001 2014 WSA cDD Baldocchi (2016a)
US-Var �120.95 38.41 2000 2014 GRA cDD Baldocchi (2016b)
ZM-Mon 23.25 �15.44 2000 2009 DBF cDD Merbold et al. (2011)
AR-Vir �56.19 �28.24 2009 2012 ENF cGR Posse et al. (2016)
AU-Ade 131.12 �13.08 2007 2009 WSA cGR Beringer (2013a)
AU-DaS 131.39 �14.16 2008 2014 SAV cGR Beringer (2013c)
AU-Dry 132.37 �15.26 2008 2014 SAV cGR Beringer (2013d)
AU-Gin 115.71 �31.38 2011 2014 WSA cGR NA
AU-How 131.15 �12.49 2001 2014 WSA cGR Eamus et al. (2001)
AU-Whr 145.03 �36.67 2011 2014 EBF cGR Beringer (2013f)
CN-Qia 115.06 26.74 2003 2005 ENF cGR Yu et al. (2006)
FR-LBr �0.77 44.72 1996 2008 ENF cGR Berbigier et al. (2001)
FR-Pue 3.6 43.74 2000 2014 EBF cGR Rambal et al. (2004)
IT-Cp2 12.36 41.7 2012 2014 EBF cGR Fares & Loreto (2014)
IT-Cpz 12.38 41.71 1997 2009 EBF cGR Garbulsky et al. (2008)
IT-Noe 8.15 40.61 2004 2014 CSH cGR Spano et al. (2006)
IT-Ro1 11.93 42.41 2000 2008 DBF cGR Rey et al. (2002)
IT-SRo 10.28 43.73 1999 2012 ENF cGR Matteucci et al. (2015)
AU-Wom 144.09 �37.42 2010 2012 EBF cLS NA
CH-Oe1 7.73 47.29 2002 2008 GRA cLS Ammann et al. (2007)
CN-Cng 123.51 44.59 2007 2010 GRA cLS Dong et al. (2011)
CZ-wet 14.77 49.02 2006 2014 WET cLS NA
DE-Akm 13.68 53.87 2009 2014 WET cLS NA
DE-Geb 10.91 51.1 2001 2014 CRO cLS Anthoni et al. (2004)
DE-Hai 10.45 51.08 2000 2012 DBF cLS Knohl et al. (2003)
DK-Sor 11.64 55.49 1996 2014 DBF cLS Pilegaard et al. (2001)
FR-Fon 2.78 48.48 2005 2014 DBF cLS Migliavacca et al. (2010)
IT-Col 13.59 41.85 1996 2014 DBF cLS Van Dijk & Dolman (2004)
IT-PT1 9.06 45.2 2002 2004 DBF cLS Migliavacca et al. (2009b)
IT-Ren 11.43 46.59 1998 2013 ENF cLS Marcolla et al. (2005)
IT-SR2 10.29 43.73 2013 2014 ENF cLS Matteucci et al. (2015)
IT-Tor 7.58 45.84 2008 2014 GRA cLS Galvagno et al. (2013)
NL-Hor 5.07 52.24 2004 2011 GRA cLS Vandermolen et al. (2004)
NL-Loo 5.74 52.17 1996 2013 ENF cLS Dolman et al. (2002)
RU-Fyo 32.92 56.46 1998 2014 ENF cLS Kurbatova et al. (2008)
US-GLE �106.24 41.37 2004 2014 ENF cLS NA
US-Me2 �121.56 44.45 2002 2014 ENF cLS Sun et al. (2004)
US-MMS �86.41 39.32 1999 2014 DBF cLS Philip (2016)
US-UMB �84.71 45.56 2000 2014 DBF cLS Gough et al. (2008)
US-UMd �84.7 45.56 2007 2014 DBF cLS Curtis (2016)
US-WCr �90.08 45.81 1999 2014 DBF cLS Desai (2016a)
BE-Bra 4.52 51.31 1996 2014 MF cNA Carrara et al. (2003)
BE-Vie 6 50.31 1996 2014 MF cNA Aubinet et al. (2001)
CH-Fru 8.54 47.12 2005 2014 GRA cNA Eugster & Zeeman (2006)
CH-Lae 8.37 47.48 2004 2014 MF cNA G€ockede et al. (2008)
DE-Gri 13.51 50.95 2004 2014 GRA cNA Gilmanov et al. (2007)
DE-Kli 13.52 50.89 2004 2014 CRO cNA Ceschia et al. (2010)
DE-Obe 13.72 50.78 2008 2014 ENF cNA Zimmermann et al. (2006)
DE-RuR 6.3 50.62 2011 2014 GRA cNA Borchard et al. (2015)
DE-Spw 14.03 51.89 2010 2014 WET cNA NA
DE-Tha 13.57 50.96 1996 2014 ENF cNA Gr€unwald & Bernhofer (2007)
DK-NuF �51.39 64.13 2008 2014 WET cNA Westergaard-Nielsen et al. (2013)
FI-Hyy 24.3 61.85 1996 2014 ENF cNA Vesala et al. (2005)
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clusters cGR (FR-Pue and AU-DaS) and cDD (US-Var) are
shown in Fig. 5 (further examples in Fig. S7). At all sites, fLUE
shows an abrupt transition, whereas soil moisture starts its grad-
ual decline well before the onset of fLUE droughts. This reveals a
sharp delineation between a soil moisture-controlled regime
below a given threshold and a regime in which changes in soil
moisture do not affect LUE. Although soil moisture follows a
very narrow typical course during progressive droughts, VPD
exhibits more day-to-day variability and does not follow the same
pattern of a continued decline during drought events at all sites
(Fig. 5). The fLUE reductions during drought periods range
from c. 10% at mesic sites (DE-Tha, FI-Hyy, Fig. S7) to over

90% at the US-Var grassland site. The course of vegetation
greenness during drought periods varies substantially between
sites and gives rise to a distinction between ecosystems with simi-
lar structural responses to drought (see later).

Site clustering

After grouping sites not affected by low soil moisture into cluster
cNA (‘not affected’, 21 sites) and sites exhibiting a particularly
low sensitivity to soil moisture into cluster cLS (‘low sensitivity’,
23 sites, see Materials and Methods), we clustered the remaining
26 sites according to the co-evolution of fLUE and EVI during

Table 1 (Continued)

Site Longitude Latitude Start End IGBP class Cluster Reference

FI-Sod 26.64 67.36 2001 2014 ENF cNA Suni et al. (2003)
IT-Isp 8.63 45.81 2013 2014 DBF cNA Ferr�ea et al. (2012)
IT-Lav 11.28 45.96 2003 2014 ENF cNA Cescatti & Zorer (2003)
IT-MBo 11.05 46.01 2003 2013 GRA cNA Migliavacca et al. (2009a)
JP-SMF 137.08 35.26 2002 2006 MF cNA Yamazaki et al. (2013)
US-Ha1 �72.17 42.54 1991 2012 DBF cNA Urbanski et al. (2007)
US-Los �89.98 46.08 2000 2014 WET cNA Desai (2016b)
US-Syv �89.35 46.24 2001 2014 MF cNA Desai (2016b,c)
US-Wi4 �91.17 46.74 2002 2005 ENF cNA Noormets et al. (2008)

Cluster refers to the clustering of sites according to their greenness response and sensitivity to soil moisture (cDD: drought-deciduous, 11 sites; cGR:
evergreen, 15 sites; cLS: low sensitivity to soil moisture, 23 sites; and cNA: not affected by low soil moisture, 21 sites). Longitude and latitude in decimal
degrees. Start and End are the first and last years in which data are available for the respective site. IGBP class is the vegetation class (GRA, grasslands; SAV,
savannah; WSA, woody savannah; ENF, evergreen needleleaved forest; EBF, evergreen broadleaved forest; DBF, deciduous broadleaved forest; CSH,
closed shrubland; WET, wetland; CRO, cropland; MF, mixed forest). NA, not available.
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droughts. An overview of all sites by clusters is given in Fig. S5.
The stark difference in greenness changes is the dominant factor
that separates sites into clusters cDD (‘drought-deciduous’, 11
sites) and cGR (‘evergreen’, 15 sites) (see Fig. 6).

fLUE is reduced most strongly in cDD with values reaching
0.4. This is a 60% reduction in LUE from pre-drought values
due to soil moisture alone. In cluster cGR, fLUE declines to typi-
cal values of c. 0.7 (30% reduction). In cGR, EVI shows no gen-
eral response to drought, whereas, in cDD, greenness starts to
decline before soil moisture effects on LUE become apparent.
Similarly, soil moisture and VPD�1 (the inverse of the relative
VPD change is shown in Fig. 6) gradually decline well before the
onset of fLUE droughts, but start to diverge directly thereafter.

Functional relationship

The functional relationship between fLUE and soil moisture is
analysed by plotting pooled fLUE values against soil moisture
(mean across multiple datasets) (Fig. 7). Its general form is simi-
lar across clusters, but shows substantial differences in the magni-
tude of the fLUE reduction with soil moisture approaching zero
(fLUE0). The distribution of fLUE values at soil moisture below
0.1 from pooled data exhibits three peaks (Fig. 7a). These are
associated with distinct fLUE0 values within clusters. Reflecting
the temporal course shown in Figs 5 and 6, the strongest reduc-
tion in fLUE as a function of soil moisture is recorded for cDD,
for which most common fLUE0 values are c. 0.4, but can reach

values below 0.1 at sites at which GPP approaches zero, whereas
EVI (and FPAR) remain substantially higher (e.g. site US-Var).
The most common magnitude of fLUE0 in cGR is c. 0.7, but
individual sites (e.g. IT-Noe) show a stronger reduction. By defi-
nition, sites in cNA are not affected by very low soil moisture.

Above a relative soil water content of 0.5, effects on LUE are
negligible. This is true for all clusters and is consistent with previ-
ous studies (Reichstein, 2003; Granier et al., 2007). An exception
is the reduction in fLUE with soil moisture approaching satura-
tion, as apparent at some sites, mostly in cLS (see also fLUE1
column in Fig. S5). This indicates negative effects of very wet soil
conditions on GPP. Sites in clusters cDD and cGR show no
fLUE reductions at the high end of the soil moisture range. Clus-
ter cLS is, by definition, characterized by small fLUE reductions.

GPP loss

Clusters identified by drought responses exhibit a clear relation-
ship to climate (Fig. 8). Aridity, quantified by precipitation/po-
tential evapotranspiration (P/PET) (ratio of annual totals) or the
mean of daily actual evapotranspiration (AET)/PET, is systemati-
cally related to the association of sites and clusters. This ranges
from cDD at the arid end of the spectrum to cGR, cLS and cNA
at the moist end.

The magnitude of additional, soil moisture-related reductions
in annual GPP follows the same pattern (Fig. 9). We find that
separate effects of soil moisture reduce annual GPP by up to c.
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40% each year, and that the magnitude of annual GPP reduc-
tions scales linearly with the annual mean ratio of AET/PET
(Fig. 9a). Annual GPP loss due to low soil moisture is 15–45%
at sites in cluster cDD, located in arid and semi-arid regions
(AET/PET < 0.6), and 5–35% at sites in cGR, located in
regions of intermediate aridity (0.6 < AET/PET < 0.9, Fig. 9a).
At relatively humid sites (AET/PET > 0.9), soil moisture-
limited conditions are sporadic and average annual GPP loss
due to soil moisture is relatively small, but highly variable
between years (Fig. S4).

Relationships to water table depth (WTD) and soil
properties

To test whether the low fLUE sensitivity to soil moisture in cLS
is related to hydrological settings, we extracted WTD values for
each site from a global dataset provided at a resolution of 1 km
(Fan et al., 2013) and an alternative dataset provided at a 0.1° (c.
10 km) resolution (de Graaf et al., 2015). However, WTD from
neither dataset showed any predictive power in explaining the
variations in the maximum reduction in fLUE (fLUE0, adjusted
R2 =�0.02 using data by Fan et al. (2013) and adjusted
R2 =�0.01 using data by de Graaf et al. (2015)). Similarly, infor-
mation on soil drainage conditions and available water content,
extracted from the Harmonized World Soil Database (Shangguan

et al., 2014) showed no power in explaining the patterns in the
functional relationship between soil moisture and fLUE between
clusters.

Discussion

The quantification of fLUE reveals the threshold, duration and
magnitude of soil moisture limitation on GPP and is indepen-
dent of the use of modelling assumptions or other a priori-
specified functional relationships. Instead, it relies on empirical
patterns identified by machine learning and benefits from an
unprecedented wealth of data, accessible through the FLUXNET
2015 data release.

NNs, as applied here, cannot account for lagged relationships
between predictors and target variables. By targeting LUE, we
eliminate effects of ecosystem structural change, which responds
more slowly than leaf-level parameters that determine LUE
(stomatal and mesophyll conductance, maximum assimilation
rate). Nevertheless, a remaining fraction of variability (see Fig. 2)
may not be explainable by the daily environmental forcing data
used here, but instead relates to measurement imprecision and
biotic responses (Richardson et al., 2007). The latter may also be
induced by a shift in vegetation composition during the period of
flux measurements, if not captured by greenness data (Ahmed
et al., 2017).
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Fig. 6 Evolution of variables throughout
drought periods, aggregated by clusters cDD
(left, drought-deciduous cluster) and cGR
(right, evergreen cluster). Top: fractional
reduction in light use efficiency (fLUE).
Middle: changes in Enhanced Vegetation
Index (EVI), relative to its value before the
onset of droughts (median across preceding
20 d). Bottom: changes in soil moisture and
vapour pressure deficit (VPD), relative to
values before the onset of droughts (median
across preceding 20 d). VPD�1 is shown here
for a better comparison with soil moisture
variations and is calculated as the inverse of
the relative VPD change. Data are aligned by
the drought onset and aggregated across
each event and site in the respective cluster.
Bold lines represent the median, and shaded
areas represent the upper and lower 10%
and 25% quantiles across all events and all
sites pooled within a cluster.
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(c) (d)

(a) (b)

(e) (f)

Fig. 7 Functional relationship of the fractional reduction in light use efficiency due to soil moisture (fLUE) vs soil moisture by cluster. (a) Distribution of fLUE
values at a fractional soil water content below 0.1. Grey bars represent pooled data from drought-deciduous (cDD), evergreen (cGR) and low sensitivity
(cLS) clusters. Coloured bars represent data by clusters. (b) Functional relationship of fLUE vs soil moisture for pooled data from clusters cDD, cGR and cLS.
(c–f) Functional relationship by cluster. Colours in the point cloud represent a Kernel Density Estimation (R package ‘LSD’; Schwalb et al., 2015) and
visualize overlapping points.
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Relationships to drought indices

The quantification of fLUE provides an impact-oriented identifi-
cation of droughts, related to ‘agricultural droughts’ (Trenberth
et al., 2007). In climates with seasonally recurring water-limited
conditions, traditional statistical approaches based on anomalies
relative to a mean seasonal cycle do not necessarily capture limiting
conditions during the dry season (Zscheischler et al., 2014). This
affects drought assessments based on widely used drought indices
(Palmer drought severity index (PDSI), standardized precipitation
index (SPI) and standardized precipitation–evapotranspiration
index (SPEI)) (Schwalm et al., 2017), and other anomaly-based
approaches (Schwalm et al., 2010). The approach followed here
does not rely on anomaly statistics, but is based on how the
relationship between absorbed light and GPP changes, and thereby
captures drought effects that operate through physiological mecha-
nisms of water stress. It also identifies regularly recurring water-
stressed conditions (fLUE droughts) which are not captured by
SPI or SPEI (Fig. 10). This highlights that climate anomaly-based
drought indices are not directly indicative of plant water stress and
thus have limited power for the identification of drought impacts.
By contrast, average daily AET/PET is more directly reflective of
drought impacts on vegetation productivity.

Additional GPP loss

We identified soil moisture-related losses in annual GPP of up to
40% (Fig. 9a). These are additional to effects by dry air (VPD)
and drought-induced loss of photosynthetically active tissue,
reflected by reduced greenness. Multiple studies have indicated
that remote sensing-based GPP estimates tend to be biased high

under dry conditions (Leuning et al., 2005; Turner et al., 2005;
Pan et al., 2006; Verstraeten et al., 2006; Mu et al., 2007; Maselli
et al., 2009). The results shown here suggest that soil moisture
data will be crucial to resolve this bias. Semi-arid regions exert a
dominant control on the interannual terrestrial C balance and
atmospheric CO2 growth rate (Poulter et al., 2014; Ahlstr€om
et al., 2015). The substantial and annually recurring soil mois-
ture-related GPP reductions found at almost all sites in the inter-
mediate to dry part of a global aridity spectrum indicate that the
resolution of drought-related biases in global datasets is impor-
tant for the accurate monitoring of vegetation activity and C
cycle variability. It remains to be shown whether the accurate
accounting for drought effects improves the weak performance of
remote sensing-based GPP models in the simulation of interan-
nual variability in semi-arid regions (Biederman et al., 2017).

Functional relationship for global predictions

The relationship between LUE, VPD and soil moisture, and its
generality across different biomes and vegetation types, is needed
to inform remote sensing-based GPP products and as a bench-
mark for Earth System Models. The evaluation of the data from
all pooled sites suggests three distinct groups of sites with values
of the maximum fLUE reduction at very low soil moisture
(fLUE0) clustering at c. 0.4, 0.7 and 0.9 (Fig. 7a). The prediction
of this functional relationship and fLUE0 is key for the accurate
modelling of soil moisture effects.

Independent of the clustering of fLUE0 values, we found stark
differences in phenological responses (greenness change) to
drought across sites. This greenness response-based separation of
sites coincides largely with the clusters of fLUE0 values in Fig. 7(a).
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We found that the degree of drought-deciduousness of the vegeta-
tion explains c. 30% of the variation in maximum fLUE reduc-
tions (fLUE0) within clusters cDD and cGR (Fig. 9c). Aridity
(annual average AET/PET) also emerges as a good predictor of
fLUE0 variations and explains c. 50% of its variation within clus-
ters cDD, cGR and cLS (Fig. 9d). Greenness changes and aridity
may be extracted from global datasets for the prediction of fLUE0
and the modelling of soil moisture effects on GPP.

cDD and fAPAR data

We found that sites with the strongest fLUE reduction are simul-
taneously characterized by a clear drought phenology (cluster

cDD). These sites are located in the driest climates (Fig. 8), are
characterized by particularly low ratios of AET/P (Fig. 9b) and
consist predominantly of grasslands and savannas (Fig. S5). This
is consistent with the particularly strong soil moisture control
found in arid and semi-arid regions (Seneviratne et al., 2010; He
et al., 2016; Nicolai-Shaw et al., 2017).

Remotely sensed greenness is often used to estimate vegetation
productivity, and relationships are commonly assumed to be
strongest in drought-deciduous vegetation, particularly in grass-
lands (Gamon et al., 1995; Goerner et al., 2009; Rossini et al.,
2012; Verma et al., 2014; Ali et al., 2016; Konings et al., 2017).
The parallel reduction in fLUE and EVI recorded at sites in clus-
ter cDD highlights that the information contained in remotely
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Fig. 9 (a) Average annual gross primary productivity (GPP) loss due to soil moisture effects vs the annual average ratio of actual over potential
evapotranspiration (AET/PET). (b) Sites in Budyko space (P is annual total precipitation). (c) Maximum reduction in the fractional reduction in light use
efficiency (fLUE) with soil moisture approaching zero (fLUE0) vs greenness change. 1� EVI/EVI0 quantifies the degree of drought-deciduousness of the
vegetation (EVI (Enhanced Vegetation Index) quantifies vegetation greenness, MODIS data), quantified as the relative reduction in greenness during fLUE
droughts. Values of 1� EVI/EVI0 = 0 represent no response in greenness during fLUE drought events. The black line represents a linear fit to values from
sites in clusters cDD and cGR. (d) fLUE0 vs AET/PET. The black line represents a linear fit to values from sites in clusters cDD, cGR and cLS. Clusters are
defined based on vegetation responses to drought, with cDD referring to drought-deciduous, cGR to evergreen, and cLS to vegetation with low sensitivity
to low soil moisture. Sites in cNA are not affected by low soil moisture. Symbols represent vegetation types, colours represent clusters (see legend in b).
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sensed optical greenness indices does not capture the full extent
of drought impacts on GPP. Consistent with previous studies
that noted limited information in greenness data for the predic-
tion of GPP (Goerner et al., 2009; He et al., 2016; Biederman
et al., 2017), we found here that the relative reduction in EVI is
smaller than the relative reduction in GPP. In parallel with phe-
nological changes, LUE is strongly reduced, reflecting a correla-
tion between LUE and greenness noted earlier (Sims et al.,
2006). Hence, the often assumed direct relationship between rel-
ative changes in vegetation greenness and productivity in grass-
lands and other drought-deciduous ecosystems (Gamon et al.,
1995; Goerner et al., 2009) implies an underestimation of
drought impacts on GPP. fLUE shows an even stronger decline
during droughts in drought-deciduous vegetation than in ever-
green forest ecosystems.

The analysis presented here is centred around the prediction of
LUE, whereby observational LUE, used as a target for NN train-
ing, is derived from GPP and remotely sensed fAPAR using
Eqn 1. This implies a linear relationship between fAPAR data
and GPP, and the magnitude of the derived LUE variations dur-
ing droughts is sensitive to the magnitude of simultaneous rela-
tive fAPAR variations. We used MODIS EVI data here to
represent fAPAR for its high spatial resolution and relatively low
scatter compared with MODIS FPAR, and note that absolute
EVI values are generally lower than FPAR, implying higher abso-
lute LUE values. However, our finding of strong LUE reductions
in drought-deciduous ecosystems is robust against the use of dif-
ferent greenness data products. We tested this by alternatively

using MODIS FPAR data (not shown). The robustness of the
derived relative LUE changes is a result of the linear relationship
between EVI and MODIS FPAR across a wide range of values
(Fig. S1). However, EVI tends to saturate less than FPAR and
NDVI at high values (Huete et al., 2010), and should thus imply
even smaller relative LUE variations and soil moisture impacts.
Whether EVI is affected by significant PAR absorption by non-
photosynthetically active tissue, and thereby underestimates
fAPAR reductions in seasonally ‘brown’ vegetation, remains to be
addressed.

cGR and plant strategies

We found that sites with intermediate fLUE reductions are
simultaneously characterized by evergreen, mostly woody, vegeta-
tion. The respective sites are located at intermediate aridity
(Fig. 8). The separation of clusters along the aridity spectrum and
in Budyko space (Budyko, 1974; Williams et al., 2012) (Fig. 9b)
suggests alternative successful plant strategies, governed by water
availability and its seasonality. Drought adaptation to maintain
intact structure (e.g. deep rooting, adaptation to low leaf water
potentials) and protection against LUE reductions and drought
damage of green tissue are costly (van der Molen et al., 2011),
and appear to be a successful plant strategy only at intermediate
aridity, accessible mostly to woody vegetation. The dominance of
short-lived, drought-deciduous vegetation indicates that the pre-
vention of tissue damage under conditions with extensive soil
moisture-limited periods outweighs the costs of rebuilding
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Fig. 10 (a) Standardized precipitation–evapotranspiration index (SPEI, 1 month timescale), (b) standardized precipitation index (SPI, 1 month timescale)
and (c) the ratio of actual over potential evapotranspiration (AET/PET) during droughts and non-drought periods, as identified by the fractional reduction
in light use efficiency (fLUE). SPI and SPEI were calculated using the R package ‘SPEI’ based on monthly total precipitation data fromWATCH-WFDEI (0.5°)
(Weedon et al., 2014) extracted at site locations, covering the years 1990–2013, and (for SPEI) potential evapotranspiration based on Thornthwaite
(1948). AET/PET was calculated using precipitation measured at FLUXNET and potential and actual evapotranspiration from the SPLASH model (Davis
et al., 2017). The box for fLUE = FALSE is collapsed as all AET/PET values in respective days are 1.0. N is the total number of daily data points and P is the P
value from an unpaired t-test. Boxes represent the interquartile range of values (Q25,Q75) and whiskers coverQ25� 1.59 (Q75�Q25) to
Q75 + 1.59 (Q75�Q25).
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senesced tissue. In particular, a low ratio of annual average
AET/P (Fig. 9b) is indicative of a strong seasonality with asyn-
chronicity of precipitation and radiation and limited surface
water storage capacity (Milly, 1994; Potter et al., 2005; Williams
et al., 2012), and appears to favour drought-deciduous vegeta-
tion, for example grasslands. This is in contrast with the results of
Williams et al. (2012), who found high AET/P values in grass-
lands. It should be noted, however, that both AET and PET used
here are model-derived and do not capture additional factors that
may influence AET over different vegetation types (different sur-
face–atmosphere coupling or drought sensitivity of stomatal con-
ductance).

cLS, soil moisture data and WTD

Sites in cLS are generally located in intermediate to wet climates
(Fig. 8), maintain a relatively high LUE during dry conditions
and we derived only slight reductions related to soil moisture. At
the same time, fLUE appears to be negatively affected by very
wet conditions (Fig. 7). Together, this may indicate particular
local hydrological conditions that enable plants to access water
during prolonged periods without precipitation and that inhibit
effective soil drainage and promote water-logged, anaerobic soil
conditions after high rainfall. GPP and stomatal conductance
have been reported previously to respond negatively within a few
days after the onset of water-logging in laboratory experiments
(Terazawa et al., 1992; Terazawa & Kikuzawa, 1994). In addi-
tion, at the ecosystem scale, persistent water-logging in a boreal
forest has been found to reduce surface conductance, ET and
GPP over years (Ohta et al., 2014). Reduced LUE under very wet
conditions across multiple sites, as found here, suggests that this
phenomenon may be common in wet climates.

The soil moisture data used here are representative of the top-
soil. Information on WTD across FLUXNET sites is not gener-
ally accessible, and whether plants access the saturated zone and
are thus capable of withstanding dry conditions in the topsoil
without effects on LUE is not generally known, and respective
information is mostly lacking in published site descriptions. The
possibility of important effects by access to groundwater on
ecosystem fluxes and drought responses has been discussed previ-
ously (Reichstein et al., 2002). We could not find any relation-
ship between fLUE sensitivity and WTD (Fan et al., 2013;
Shangguan et al., 2014; de Graaf et al., 2015). In view of the scale
and nature of the WTD data used here (1 and 10 km, model-
based), it may be worthwhile to revisit these relationships using
actual, site-specific data.

Soil moisture vs VPD

VPD and soil moisture are correlated at weekly to monthly
timescales (Sulman et al., 2016). Also, at daily timescales, a corre-
lation emerges, at least under dry soil conditions (Fig. S6). This
underlies the use of only VPD data as surrogate for dryness in
global GPP data products, and makes it difficult to unambigu-
ously attribute respective predictive power in a machine-learning
context. We addressed this by assessing whether the sensitivities

of different NN setups are accurate and lead to unbiased predic-
tions under conditions in which only one of the two is expected
to limit plant productivity. Our analysis confirms that NNact and
NNpot pick up the same and appropriate sensitivity to VPD, and
that NNact accurately captures the effects of low soil moisture,
also when VPD is not limiting.

This separation of effects is enabled by the fact that training
data include days in which only one of the two factors limits
LUE. This reflects the high day-to-day variability in VPD and
the known decoupling of VPD and soil moisture at short
timescales (Seneviratne et al., 2010; Sulman et al., 2016). Mecha-
nistically, this arises because VPD is not only affected by soil
moisture, but also by the prevailing atmospheric advection and
entrainment from the boundary layer (Raupach, 1991; Betts &
Ball, 1995). Under wet conditions, soil moisture is not limiting
for ET (Seneviratne et al., 2010) and thus does not control VPD.
A correlation of VPD and soil moisture emerges under interme-
diately dry conditions. However, VPD and soil moisture become
decoupled under very dry conditions and progressive fLUE
droughts (Fig. 6). At this stage, soil moisture is depleted, and so
its variations have a declining impact on changes in ET and no
longer control VPD. Again, atmospheric advection dominates
VPD. This is summarized in Fig. S8 and explains why informa-
tion contained in VPD is not sufficient to fully capture drought
effects and to explain the variability in LUE across the full dry-
ness spectrum. These findings are consistent with Ruddell &
Kumar (2009).

In conclusion, we show that accounting for soil moisture
effects, in addition to VPD, is critical for the estimation of vege-
tation productivity across the globe and to quantify drought
impacts. The general form of the functional relationship between
LUE and soil moisture is uniform across contrasting ecosystems
and climates, but the magnitude of the maximum LUE reduc-
tions is variable and related to shifting plant phenological strate-
gies across the aridity gradient. Evergreen vegetation achieves
higher LUE than drought-deciduous vegetation during dry con-
ditions, but is restricted to zones of intermediate aridity. Newly
available global remote sensing-based soil moisture datasets (Al
Bitar et al., 2016; Dorigo et al., 2017) or alternative vegetation
indices (PRI, chlorophyll-carotenoid index (CCI), SiF) will be
useful to provide critical additional information for global GPP
estimates. Our results indicate that local hydrological conditions
are important for understanding drought impacts on vegetation
productivity. The provision of information on WTD should thus
be made a high priority for future FLUXNET data distributions.
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