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Abstract
Objectives  We aimed to characterise the microbial 
changes associated with histological stages of gastric 
tumourigenesis.
Design  We performed 16S rRNA gene analysis of 
gastric mucosal samples from 81 cases including 
superficial gastritis (SG), atrophic gastritis (AG), intestinal 
metaplasia (IM) and gastric cancer (GC) from Xi’an, 
China, to determine mucosal microbiome dysbiosis 
across stages of GC. We validated the results in mucosal 
samples of 126 cases from Inner Mongolia, China.
Results  We observed significant mucosa microbial 
dysbiosis in IM and GC subjects, with significant 
enrichment of 21 and depletion of 10 bacterial taxa 
in GC compared with SG (q<0.05). Microbial network 
analysis showed increasing correlation strengths 
among them with disease progression (p<0.001). 
Five GC-enriched bacterial taxa whose species 
identifications correspond to Peptostreptococcus 
stomatis, Streptococcus anginosus, Parvimonas micra, 
Slackia exigua and Dialister pneumosintes had significant 
centralities in the GC ecological network (p<0.05) and 
classified GC from SG with an area under the receiver-
operating curve (AUC) of 0.82. Moreover, stronger 
interactions among gastric microbes were observed in 
Helicobacter pylori-negative samples compared with H. 
pylori-positive samples in SG and IM. The fold changes of 
selected bacteria, and strengths of their interactions were 
successfully validated in the Inner Mongolian cohort, in 
which the five bacterial markers distinguished GC from 
SG with an AUC of 0.81.
Conclusions I n addition to microbial compositional 
changes, we identified differences in bacterial 
interactions across stages of gastric carcinogenesis. 
The significant enrichments and network centralities 
suggest potentially important roles of P. stomatis, D. 
pneumosintes, S. exigua, P. micra and S. anginosus in 
GC progression.

Introduction
Gastric cancer (GC) is the fourth most common malig-
nancy and one of the leading causes of cancer-related 
deaths worldwide.1 It commonly develops through 
a multistep process of histological progression from 
atrophic gastritis (AG) through intestinal metaplasia 
(IM) to GC.2 Host-related factors, such as ABO blood 
group, genetic predisposition and environmental 
factors including microbial infections have been 
shown to contribute to gastric tumourigenesis.3

Significance of this study

What is already known on this subject?
►► Chronic inflammation with Helicobacter pylori 
is a major risk factor for gastric cancer (GC). 
However, only about 3% of H. pylori-infected 
people develop GC.

►► Changes in gastric microbial composition are 
associated with GC, but the role of bacteria 
other than H. pylori is yet to be established.

What are the new findings?
►► We identified differences in microbial diversity 
and richness between GC and superficial 
gastritis, atrophic gastritis and intestinal 
metaplasia, indicating the presence of microbial 
dysbiosis in gastric carcinogenesis.

►► Operational taxonomic units (OTUs) whose 
species identification corresponds to 
Parvimonas micra, Dialister pneumosintes, 
Slackia exigua, Peptostreptococcus stomatis, 
Prevotella intermedia, Fusobacterium 
nucleatum, Prevotella oris and Catonella 
morbi were found to be significantly enriched 
in the GC microbiome compared with 
precancerous stages and form an increasingly 
strong co-occurrence network with disease 
progression.

►► We observed significant centralities of OTUs 
corresponding to oral microbes P. stomatis, 
Streptococcus anginosus, P. micra, S. exigua 
and D. pneumosintes in GC microbial ecology 
network, which could be used as biomarkers to 
distinguish GC from superficial gastritis with 
an area under receiver-operating curve (AUC) 
of 0.82.

►► The GC-associated OTUs and their increasingly 
strong interactions with disease progression 
were validated in an independent cohort, in 
which the five taxonomic biomarkers separated 
GC from superficial gastritis with an AUC of 
0.81.

How might it impact on clinical practice in the 
foreseeable future?

►► Our study identified bacterial candidates that 
may be involved in gastric tumourigenesis 
and laid a foundation for future studies using 
bacterial markers for diagnosing GC.

http://www.bsg.org.uk/
http://gut.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/gutjnl-2017-314281&domain=pdf&date_stamp=2018-05-03
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Several studies have provided evidences that bacteria, 
including members of Proteobacteria, Firmicutes, Actinobacteria 
and Fusobacteria phyla, can be regularly detected in gastric biop-
sies4 with gastric microbial dysbiosis associated with GC.5–7 In 
particular, chronic Helicobacter pylori infection, which causes 
mucosal inflammation and induces histological changes, is 
recognised as a major risk factor for GC. Nevertheless, only 3% 
of H. pylori-infected people develop GC,8 implying the impor-
tance of other factors in gastric tumourigenesis. Studies have 
also shown that while normal intestinal microbiota hastened the 
progression of gastric neoplasia, antimicrobial treatment delayed 
its onset both in H. pylori-infected and uninfected insulin-gastrin 
(INS-GAS) mice.9 10 In addition, H. pylori-free INS-GAS mice 
colonised with intestinal microbiota developed GC more quickly 
than germ-free mice.9 Taken together, these findings highlight 
the potential involvement of microbes other than H. pylori in 
gastric carcinogenesis.

To date, the distribution of gastric microbiome in the devel-
opment of GC remains largely unclear. It is therefore imperative 
to unravel the components of gastric microbiome and the signifi-
cance of specific bacteria that play roles in GC pathogenesis, so as 
to develop potential prevention and treatment strategies. In this 
study, we characterised the microbial compositional and ecological 
changes in mucosal tissue of patients with progressive histological 
stages along gastric tumourigenesis—from superficial gastritis (SG) 
through AG and IM to GC. The use of mucosal bacterial taxa as 
markers for histological classification was also explored.

Materials and methods
Sample collection and DNA preparation
A total of 205 gastric biopsy tissues of different anatomical 
sites were obtained from 21 SG, 23 AG, 17 IM and 20 GC 
subjects from Institute of Digestive Diseases, Xijing Hospital, 
Fourth Military Medical University, Xi'an, China. Samples were 
obtained from antrum, body and fundus for SG, AG and IM, 
while biopsies were obtained from sites of cancer lesions and 
adjacent non-cancerous tissues of GC patients. Additional 143 
gastric biopsy tissues from 56 SG, 51 AG and 19 GC patients 
were obtained from Department of Gastroenterology and Hepa-
tology, Inner Mongolia People’s Hospital, Hohhot, China, for 
validation. Xi’an is a major city in Western China and is the 
capital of Shaanxi Province in China. It has a population of 
8.55 million consisting of 99.1% Han Chinese. Typical meals in 
Xi'an include noodles made from wheat flour or rice flour and 
meats, such as beef and mutton. People in Xi'an also habitually 
consume spicy foods. Hohhot is the capital of Inner Mongolia 
in Northern China, with a population of 2.87 million consisting 
of 88.4% Han Chinese and 8.56% Mongolian. People in Inner 
Mongolia typically consume meats, especially lamb and food rich 
in dairy produce such as milk, yoghurt and cheese. According to 
previous literature, the prevalence of H. pylori in Xi’an was esti-
mated to be 50.8%–53.9%, whereas the prevalence of H. pylori 
in Inner Mongolia was estimated to be 44.8%–47.5%.11 12

Tissue biopsies from both cohorts were obtained during 
endoscopy and frozen immediately at −80° C. None of the 
patients used antibiotics within 2 months nor received preop-
erative chemotherapy or radiotherapy prior to the collection 
of biopsy samples. Patients did not take proton pump inhibi-
tors for at least 2 weeks before sample collection. All subjects 
provided informed consent for obtaining study specimens, 
and the study was approved by the Clinical Research Ethics 
Committees of Fourth Military Medical University and Inner 
Mongolia People’s Hospital. Details of study subjects are 

provided in online supplementary table S1. Biopsy tissues were 
disrupted by bead-beating after digesting with mutanolysin and 
lysozyme enzyme cocktail (Sigma). DNA extraction and purifi-
cation were performed using QIAamp DNA Mini Kit. Amplicon 
library for bidirectional (2×250 bp) sequencing on Illumina 
MiSeq platform was constructed using universal primers 515f, 
5′-GTGCCAGCMGCCGCGGTAA-3′ and 806r, 5′-​GGAC-
TACHVGGGTWTCTAAT-3′ targeted across 16S rRNA genes 
V4 hypervariable regions. Library clean-up and normalisation 
was performed using the Invitrogen SequelPrep Plate Normal-
ization kit according to the manufacturer’s instructions.

Sequence curation and annotation
Quality filtering and analysis of the 16S rRNA gene sequence 
data were performed with the Mothur software suite as previ-
ously described.13 Paired-end reads were merged into contigs 
using Needleman-Wunsch alignment algorithm with default 
parameters. Demutiplexed contigs were aligned against SILVA 
16S rRNA sequence database (version 123) using NAST algo-
rithm.14 Contigs that mapped outside the alignment coordinates 
of V4 region were discarded: the remaining sequences were 
trimmed to fully overlapping regions, merged with more abun-
dant sequences that had a maximum difference of two nucleotide 
bases and screened for the presence of chimeric sequences using 
de novo Uchime.15 The resulting sequences were assigned to 
Greengenes taxa (version 13.8). Any sequences that were classi-
fied to members of eukarya, archaea, mitochondria, chloroplast 
and unknown kingdoms were removed, and the final sequences 
were clustered into operational taxonomic units (OTUs) using a 
97% identity cut-off with the average neighbour clustering algo-
rithm. Species-level identifications for OTUs of interest were 
determined through blastn searches within the collection of 16S 
rRNA sequences curated by the National Center for Biotech-
nological Information (NCBI: database built on 16 June 2016) 
using default megablast parameters and minimum e-values 
of 1.0×10−5. Putative bacterial species were reported for any 
OTUs with predominant sequences that had greater than 99% 
sequence identities with those found in the NCBI 16S rRNA 
sequences database. An average of 37 411 reads per sample 
were obtained after quality control steps. Sequence count table 
was rarefied to 18 483 sequences per sample to minimise the 
effects of uneven sampling. Samples with <1% H. pylori relative 
abundance were grouped as H. pylori-negative, while samples 
with  >1% H. pylori relative abundance were grouped as H. 
pylori-positive as previously described.16

Selection of differentially abundant OTUs
Before selecting the OTUs that are differentially abundant across 
stages of GC, we considered adjusting for potential confounding 
factors including age, gender, H. pylori status and tissue positions 
(see online supplementary methods). The OTUs were divided into 
confounder-sensitive and confounder-insensitive groups using 
linear regression with adjusted R2. Auxiliary variables were simu-
lated to help determine the threshold for classifying the OTUs. 
For confounder-sensitive OTUs, we used logistic regression model 
with confounding factors included to determine p values of the 
OTUs’ abundance difference between stages. For confounder-in-
sensitive OTUs, preliminary variable selection was performed with 
model-free feature screening for ultra-high dimensional data as 
previously described.17–20 We calculated the significance of selected 
OTUs through logistic regression with confounding factors 
included. The abundances of some OTUs are closely correlated 
with the confounding factors considered, we thus adjusted 

https://dx.doi.org/10.1136/gutjnl-2017-314281
https://dx.doi.org/10.1136/gutjnl-2017-314281
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the OTU’s abundance with respect to the confounding factors 
(see online supplementary methods). To compare the abundance 
of oral bacteria across disease stages, we profiled the sequences 
of all samples against oral bacteria from the Human Oral Micro-
biome (HOM) database (HOMD 16S rRNA RefSeq version 14.5, 
Taxonomy File for mothur).21 The abundances of OTUs with 
100% sequence identities with those found in the HOM database 
were compared among disease stages.

Microbial association network analysis
SparCC algorithm,22 a network inference tool designed for 
compositional data was used to estimate microbial associations 
across GC stages. Cytoscape V.3.0.4 was used for visualisation of 
significant co-occurrence and co-excluding interactions (correla-
tion coefficients >0.2 or <−0.2, q<0.05). Weighted node 
connectivity scores23 were used to measure the centralities of 
OTU nodes in GC microbial ecology network. In a further step, 
the significance of the nodes in the network was calculated with 
permutation test (see online supplementary methods).

Prediction of metagenomic functions
Functional capabilities of mucosal-associated microbiome for 
each disease stage was predicted using PICRUSt,24 an algorithm 
that estimates the functional potential of microbial communities 
given a marker gene survey and a set of sequenced reference 
genomes. Differentially abundant functional compositions across 
disease stages were analysed using Lefse algorithm.25 Differences 
with linear discriminant analysis scores >2.0 and p value <0.05 
were considered significant.

Data analysis
Mann-Whitney U test was performed to compare the variables 
of two sample groups. Multiple group comparisons were made 
using Kruskal-Wallis test. Fisher’s exact test was performed on 
categorical variables. p<0.05 was taken as statistical signifi-
cance. Model-free feature screening for ultra-high dimensional 
data17–20 and logistic regression were used to screen for differ-
entially abundant OTUs. The p values obtained were adjusted 
for multiple comparisons by false discovery rate (FDR) method. 
The corresponding q<0.05 was taken as statistical significance. 
Tests were performed using R Project for Statistical Computing 
V.3.3.1. Pathway enrichment analysis was performed using 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

Results
Mucosal microbiome dysbiosis in GC
To determine the dysbiosis associated with stages of GC, we 
assessed microbial diversity and richness of mucosal biopsy 
samples via the analysis of 16S ribosomal RNA gene hypervari-
able V4 regions. Analysis of molecular variance (AMOVA), based 
on the detection of population differentiation using molecular 
markers, showed that the genetic diversities of samples from 
different anatomical positions of all GC stages were not signifi-
cantly different (see online supplementary table S2). Compared 
with SG, microbiomes of IM and GC had significantly reduced 
Chao1-estimated microbial richness (Mann  Whitney U test, 
p=0.045 and 0.041, respectively) (figure  1A). To evaluate the 
overall differences in beta-diversity, we assessed dissimilarities 
among all stages using Bray-Curtis and Jaccard distance matrices. 

Figure 1  Mucosal microbiome dysbiosis across stages of gastric carcinogenesis. Decreased microbial richness, estimated by Chao1, in IM and 
GC compared with SG (A). Model-free feature screening and logistic regression were used to select differentially abundant bacteria adjusted for 
age, gender and Helicobacter pylori status. Log2 fold change relative abundances of GC-enriched and GC-depleted bacteria compared with SG, q 
values <0.05 (B). Significantly increased percentage of oral bacteria were observed in GC compared with SG, AG and IM. AG, atrophic gastritis; GC, 
gastric cancer; IM, intestinal metaplasia; SG, superficial gastritis (C). (Statistical significance was determined by Mann-Whitney U test, *p<0.05).

https://dx.doi.org/10.1136/gutjnl-2017-314281
https://dx.doi.org/10.1136/gutjnl-2017-314281
https://dx.doi.org/10.1136/gutjnl-2017-314281
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While there was no significant difference among SG, AG and 
IM, AMOVA analysis showed significant differences between 
the microbiomes in GC and other stages (SG: p=0.018; AG: 
p=0.031; IM: p=0.0023) (online  supplementary table S3). At 
the phylum level, Fusobacteria was observed to be significantly 
enriched in GC compared with other disease stages (Kruskal 
Wallis test, p=0.017). Genera Peptostreptococcus, Dialister and 
Mogibacterium were also more abundant in GC than in SG, AG 
and IM (Kruskal-Wallis test, q=0.0021, 0.0068, 0.031, respec-
tively). Taken together, these results indicate a state of dysbiosis 
in the mucosal microbiome of patients with GC.

Taxonomic alterations in GC microbiome
We used model-free feature screening for ultra-high dimen-
sional data17–20 and logistic regression to screen for differentially 
abundant bacteria across the disease stages. We adjusted their 
abundances for potential confounding factors, including age, 
gender, tissue position and H. pylori status (see section ‘Mate-
rials and methods’ and online  supplementary methods). The 
abundances of 31 bacterial taxa were found to be significantly 
different between GC and SG after multiple-testing FDR correc-
tion. Compared with SG, 21 bacterial taxa were enriched in GC, 
while 10 bacterial taxa were depleted in GC (figure 1B). The 
GC-enriched bacterial taxa include Peptostreptococcus_OTU16 
(q=0.03), Streptococcus anginosus_OTU68 (q=0.033), Slackia_
OTU174 (q=0.033), Gemella_OTU17 (q=0.033), Fusobacte-
rium_OTU33 (q=0.04),  etc. (figure  1B, online  supplementary 
table S4). Bacterial taxa that were depleted in GC include 
Vogesella_OTU661 (q=0.03), Candidatus_Portiera_OTU1596 
(q=0.041), Comamonadaceae_OTU85 (q=0.033), Acineto-
bacter_OTU369 (q=0.045), etc. (figure 1B, online supplemen-
tary table S4). Among the GC-enriched bacterial taxa, 19 were 
significantly more abundant in GC than AG, while seven taxa 
were significantly more abundant in GC than IM. The differ-
entially abundant OTUs and their representative sequences are 
provided in online supplementary tables S4–7, while their rela-
tive abundances across all stages are shown in online supplemen-
tary figure S1.

Next, we investigated the mucosal microbiome changes in 
GC lesions compared with the adjacent noncancerous mucosae. 
Only one bacterial taxa overlapped with the  result obtained 
from GC vs SG, namely Comamonadaceae_OTU85, which was 
depleted in GC lesions compared with adjacent non-cancerous 
mucosae (q=0.024). We further determined the taxa that may 
potentially play role in the early stages of gastric tumourigen-
esis. Seven bacterial taxa were significantly over-represented in 
IM compared with SG. These include Pseudomonas_OTU58 
(q=0.037) and Dyella_OTU1056 (q=0.034) (online  supple-
mentary table S5).

Enrichment of oral microbes in GC
Studies have linked oral bacteria with diseases including 
colorectal and pancreatic cancers.26 27 To assess the association 
of oral bacteria with GC, we determined the overall distribution 
of oral microbes across stages of GC by profiling sequences of 
all samples against HOM database.21 Indeed, significantly higher 
abundance of oral bacteria were observed in GC than in all the 
other stages. Oral bacteria were more abundant in GC compared 
with IM (Mann-Whitney U test, p=0.0102), AG (Mann-Whitney 
U test, p=0.024) and SG (Mann-Whitney U test, p=0.015) 
(figure 1C). Our observation agreed with previous reports that 
show the over-representation of oral microbes in inflammatory 
bowel diseases, pancreatic cancer and colorectal cancer.26–28

Correlation strengths of GC-enriched and GC-depleted 
bacteria increased with disease progression
After correcting for spurious correlations and FDR adjustments, 
we observed that both co-occurrence and co-excluding interactions 
among GC-enriched and GC-depleted OTUs were significantly 
different across the stages—progressively stronger towards carcino-
genesis. The interactions were significantly stronger in AG than in 
SG (Mann-Whitney U test, p=0.0001), despite no significant differ-
ence in the abundance of these bacteria between the two stages. In 
addition, the interactions were stronger in IM than in SG (Mann-
Whitney U test, p<0.0001) and in GC than all precancerous stages 
(IM (Mann-Whitney U test, p<0.0001), AG (Mann-Whitney U 
test, p<0.0001), SG (Mann-Whitney U test, p<0.0001) (figure 2). 
In particular, a GC-enriched OTU, Lactobacillus_OTU12, with 
species level identification as a known probiotic Lactobacillus sali-
varius (supplementary table 4),29 was found to exhibit co-excluding 
interactions with Slackia_OTU174,Hydrogenophaga_OTU246 and 
Moryella_OTU294 in SG (q=0.0427,  <0.0001 and 0.02 respec-
tively) and AG (q=0.0139,<0.0001 and 0.025 respectively), while 
it had co-occurrence interaction with Lactobacillus_OTU45, with 
species level identification as another probiotic bacterium Lacto-
bacillus fermentums30 in SG (q<0.0001), AG (q<0.0001) and 
GC (q<0.0001). We observed that some co-excluding interactions 
occurred only at GC and other precancerous stages (AG and IM) 
but absent in SG. These include co-excluding interactions of: Coma-
monadaceae_OTU85 with Slackia_OTU174, Prevotella_OTU148, 
Moryella_OTU294 and Streptococcus_OTU5; Acinetobacter_
OTU369 with Alloprevotella_OTU115, Veillonellaceae_OTU586 
and Gemella_OTU17; and Lactobacillus_OTU12 with Pepto-
coccus_OTU256 (figure 2).

Significant centralities of oral bacteria in GC ecological 
network
To identify biomarkers that could have more general applica-
bility, we sought to determine bacteria with significant roles in 
GC microbial ecological network. Interestingly, only five GC-en-
riched OTUs had significant WNC scores, indicating significant 
centralities and showing that they are the most significant in the 
GC interaction network. These are Peptostreptococcus_OTU16 
(p<0.0001), Streptococcus_OTU68 (p=0.012), Parvimonas_
OTU35 (p=0.029), Slackia_OTU174 (p=0.0046) and Dial-
ister_OTU151 (p=0.038). Their centralities suggested that they 
can form a backbone of niche-specific relationships and might 
exhibit significant influence on GC microbial ecology. Species 
level identification of these OTUs showed that they putatively 
correspond to Peptostreptococcus stomatis, Streptococcus angi-
nosus, Parvimonas micra, Slackia exigua and Dialister pneu-
mosintes (online  supplementary table S4), which interestingly, 
are members of the HOM. Their distributions across GC stages 
after confounding factor adjustments are shown in figure 3A. As 
a further step to confirm that these OTUs can confidently differ-
entiate between SG and GC, we performed receiver-operating 
characteristic analyses. These markers distinguished GC from 
SG with an area under the receiver-operating curve (AUC) of 
0.82 (figure 3B).

Alteration of microbial interactions is associated with H. 
pylori infection in SG, AG and IM
H. pylori has been reported to alter gastric microbiome structure.31 
However, its influence on microbial interactions has not been inves-
tigated. Several studies have shown that biopsy samples identified 
as H. pylori-negative by conventional methods were discovered to 
contain H. pylori sequences.16 32 In fact, about 60% of samples that 
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were H. pylori negative by combination of conventional methods 
were found to be  positive by pyrosequencing method.16 These 
highlight the use of pyrosequencing as a more sensitive method 
for the detection of H. pylori infection. Thus, to evaluate the effect 

of H. pylori on microbial interactions, we assigned samples to 
two groups; samples with <1% H. pylori relative abundance were 
grouped as H. pylori-negative, while samples with >1% H. pylori 
relative abundance were grouped as H. pylori-positive as proposed 

Figure 2  Correlation strengths of gastric cancer (GC)-enriched and GC-depleted bacteria increased with disease progression. Correlation networks 
of GC-enriched and GC-depleted operational taxonomic units (OTUs) in: superficial gastritis, atrophic gastritis, intestinal metaplasia and GC. SparCC 
algorithm was used to estimate correlation coefficients and adjust for compositional effects. Cytoscape V.3.4.0 was used for network construction. 
A subset of significant correlations with strengths of at least 0.2 were selected for visualisation. The size and colour of the nodes correspond to 
weighted node connectivity (WNC) scores). Peptostreptococcus_OTU16 (3), Parvinomonas_OTU35 (6) and Streptococcus_OTU68 (8), Dialister_
OTU151 (13), Slackia_OTU174 (14) have significant WNC scores (p<0.05).

Figure 3  Gastric cancer enriched markers with significant centralities. Fold change analyses of gastric cancer-enriched markers with significant 
weighted node connectivity scores in microbial association network, figure 1. p values were adjusted by FDR method, *q<0.05 (A). The diagnostic 
performance of Peptostreptococcus_OTU16 Parvinomonas_OTU35, Streptococcus_OTU68, Dialister_OTU151 and Slackia_OTU174 indicated by 
receiver operating characteristic curve analysis in discovery cohort, area under the receiver-operating curve of 0.82 (B). AG, atrophic gastritis; GC, 
gastric cancer; IM, intestinal metaplasia; SG, superficial gastritis. 
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recently.16 Equal number of samples, matched for age and gender 
were assigned to each group (online  supplementary table S8). 
OTUs with average relative abundance >0.01% and present in all 
samples were included in interaction analysis. Significantly more 
interactions were seen among gastric microbes in H. pylori-neg-
ative than H. pylori-positive samples in SG, AG and IM (Fisher’s 
exact test, p<0.0001) (figure 4, online supplementary table S9). 
However, no difference was observed in taxonomic diversity or 
richness in the gastric microbes between H. pylori-positive and 
H. pylori-negative samples within each disease stage. We further 
investigated gastric microbes that could interact with H. pylori 
across stages of gastric tumourigenesis. We observed that H. pylori 
had co-excluding and co-occurring interactions, respectively, with 
Methylobacillus_OTU44 (q=0.027) and Arthrobacter_OTU108 
(q=0.023) in SG. In IM, it had co-excluding interactions with 
members of the Firmicutes phylum, including Ruminococcus_
OTU142. (q=0.016), Bacillales_OTU80 (q=0.0093), SMB53_
OTU39 (q=0.038) and Lactobacillus_OTU23 (q=0.016), while it 
exhibited co-occurrence with Prevotella_OTU29 (q=0.029), Mory-
ella_OTU294 (q=0.038) and another helicobacter, H. ganmani_
OTU87 (q=0.0047). No significant interaction was found with H. 
pylori in AG and GC. Among the 31 GC-enriched and GC-de-
pleted OTUs, significantly weaker interactions were observed in 

H. pylori-positive compared with H. pylori-negative samples in SG 
(Mann-Whitney U test, p=0.013) and IM (Mann-Whitney U test, 
p<0.0001), but not in AG. The representative sequences of these 
OTUs are provided in online supplementary table S10.

Identification of microbiome functional capacity changes in 
GC
The functional capacity of the mucosal-associated microbiome 
for each disease stage was predicted using PICRUSt.24 The func-
tional changes in the GC microbiomes included significantly 
increased representation of predicted KEGG pathways involved 
in nucleotide metabolism, carbohydrate digestion and absorp-
tion and bacterial ion channels compared with other disease 
stages (p=0.035, 0.048, 0.045, respectively). We observed a 
switch towards purine metabolism, D-alanine metabolism, drug 
metabolism, RNA polymerase, peptidoglycan biosynthesis, 
gluconeogenesis, phosphotransferase system, fructose and 
mannose metabolism, peptidases and DNA recombination and 
repair proteins in GC compared with SG (p<0.05). Bacterial 
proteins involved in motility, two component system and chemo-
taxis, were enriched in SG (p=0.049, 0.032, 0.023 respectively) 
compared with AG, IM and GC. Differential predicted functions 

Figure 4  Helicobacter pylori infection reduces the number of gastric microbiome interactions. Correlation strengths of gastric cancer-enriched and 
gastric cancer-depleted bacteria in Helicobacter pylori negative (HPN) and Helicobacter pylori positive (HPP) samples: superficial gastritis (HPN: n=12; 
HPP: n=12), atrophic gastritis (HPN: n=22; HPP: n=21), intestinal metaplasia (HPN: n=18; HPP: n=18), gastric cancer (HPN: n=7; HPP: n=7). SparCC 
algorithm was used to estimate correlation coefficients and adjust for compositional effects. (Statistical significance was determined by Fisher’s exact 
test).
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across all stages and the nearest sequence taxon index (NSTI) 
scores are shown in online supplementary tables S11–17. The 
low NSTI scores (0.02–0.13) indicate a reasonable accuracy of 
prediction.24

Validation of GC-associated microbial compositional changes 
and interactions in an independent cohort
To validate the GC-enriched and GC-depleted OTUs, their rela-
tive abundances were determined in an independent Chinese Inner 
Mongolian cohort of 143 samples from 126 patients, namely 56 
SG, 51 AG and 19 GC subjects. We demonstrated a statistically 
significant positive correlation of fold changes for the 31 OTUs 
with discovery cohort (Pearson correlation coefficient r=0.506, 
p=0.0044) (figure 5A). Additionally, the increasing strengths of 
interaction among the GC-associated OTUs towards carcino-
genesis were replicated. Correlation strengths were stronger in 
GC than SG (p<0.0001) and AG (p<0.0001) in the validation 
cohort. Consistent with the discovery cohort, the five biomark-
ers—Peptostreptococcus_OTU16, Streptococcus_OTU68, 
Parvimonas_OTU35, Slackia_OTU174 and Dialister_OTU151 
distinguished GC from AG with AUC of 0.81 (figure 5B). The 
enrichment of proteins involved in nucleotide/purine metabo-
lism, carbohydrate digestion and absorption and peptidoglycan 
biosynthesis were also observed in GC compared with SG 
(p=0.0143, <0.0001, <0.0001 respectively) as observed in the 
discovery cohort. Signal transduction, chemotaxis and motility 
proteins were also validated as enriched ontology categories in 
SG compared with AG and GC (p=0.021, 0.0031 and 0.0029 
respectively). The differential predicted functions across GC 
stages in Inner Mongolian cohort and the NSTI scores (0.016–
0.13) are shown in online supplementary tables S18–24.

Discussion
Microbiome imbalances have been linked to many gastroin-
testinal and systemic diseases including cancers.33 The overall 
knowledge on the roles of gastric microbes apart from H. pylori 
in GC is still limited, despite evidences of potential roles of 
non-H. pylori bacteria in GC. In this study, we observed signif-
icant microbiome dysbiosis along different stages of gastric 
tumourigenesis, with significant enrichments of oral bacterial 
taxa forming niche-specific interactions that became increasingly 

stronger towards carcinogenesis. There are inconsistent reports 
about changes in gastric microbiome compositions across stages 
of gastric carcinogenesis in terms of microbial diversity and rich-
ness.5–7 The discrepancy may be due in part to different vari-
ables affecting gut microbiome composition, such as gender, 
age, ethnicity and H. pylori infection.4 34 35 To overcome some 
of these factors, we adjusted OTU abundances for potential 
confounders, including age, gender and H. pylori status. Also, 
for a detailed gastric microbial structure, we collected samples 
from three anatomical gastric positions and demonstrated their 
similarities in terms of microbial diversity and richness.

Interestingly, from our species level classifications, we 
observed that 14 of the 21 GC-enriched bacterial taxa are puta-
tive known members of the oral microbiome, including P. micra, 
P. stomatis, Fusobacterium nucleatum and Gemella and are 
reportedly associated with CRC.27 The over-representation of 
these bacteria in GC expands the current knowledge about their 
association with gastrointestinal cancers. In addition, we found 
that S. anginosus_OTU68 was enriched in GC. This is supported 
by a previous finding that identified the increased abundance of 
S. anginosus DNA in gastric mucosa samples of GC patients36 
and another study that showed the association of S. anginosus 
with oesophageal cancers.37S. anginosus is a sulfate-reducing 
bacterium involved in colonic sulphur metabolism and have 
been shown to induce inflammatory cytokines in oesophageal 
epithelial cells.38 These reports, in addition to the observation 
in this study highlight the probable role of this oral bacterium 
in various forms of cancer and warrant further investigations to 
delineate its role as either a driver or passenger in carcinogenesis. 
Importantly, we identified some previously unreported GC-asso-
ciated bacteria. Although S. infantis and P. oris corresponding to 
S. infantis_OTU5 and Prevotella_OTU148 (online  supplemen-
tary table S4), respectively, were previously identified in multi-
focal AG with IM,39 we show their enrichments in GC for the 
first time in this study.

Oral bacteria are associated with several diseases, including 
inflammatory bowel diseases, CRC and pancreatic cancer, which 
has attracted much attention.26–28 We observed significantly 
higher abundance of oral bacteria in GC than in all other benign 
stages. Additional epidemiological studies and biofunctional 
assays are required to reveal the cause and effect relationship 

Figure 5  Validations of GC associated bacteria in independent cohort. Correlations of the fold changes of gastric cancer (GC)-enriched and GC-
depleted bacteria compared with superficial gastritis (SG) between Xi’an (discovery) and Inner Mongolia (validation) cohorts. Spearman correlation 
coefficient r=0.506, p=0.00437 (A). The diagnostic performance of Peptostreptococcus_OTU16, Parvinomonas_OTU35, Streptococcus_OTU68, 
Dialister_OTU151 and Slackia_OTU174 indicated by receiver operating characteristic curve analysis in validation cohort, area under the receiver-
operating curve of 0.81 (B).
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between oral bacterial and GC. While no study has directly anal-
ysed changes in oral microbiome in GC patients, some studies 
have associated periodontal diseases, an indicator of oral micro-
bial dysbiosis,40 with GC.41 Oral microbial dysbiosis has also 
been reported in pancreatic cancer and indicated as a potential 
diagnostic tool.42 The potential use of oral microbes for non-in-
vasive diagnosis of GC awaits further studies.

Community-wide virulence properties should be taken into 
account when considering the involvements of microbiome in 
gastrointestinal diseases. Association of biofilm-forming bacteria 
communities have been described with capacities to promote 
cancer by metabolism modulation.43 44 As such, niche-specific 
microbial networks may also reflect disease-specific microen-
vironment.28 We observed increasing strengths of co-occurring 
and co-excluding interactions among GC-enriched and GC-de-
pleted bacteria with disease progression. In particular, the 
observed significant centralities of Peptostreptococcus_OTU16 
(P. stomatis), Slackia_OTU174 (S. exigua), Parvimonas_OTU35 
(P. micra), S. anginosus_OTU68 and Dialister_OTU151 (D. 
pneumosintes) highlight the potential roles of members of oral 
pathogenic taxa in GC and add to previous observations in other 
forms of cancer. It also shows that disease-associated bacteria 
can form a synergistic network that may result in additional 
contribution towards disease. The five bacterial markers may 
serve as potential diagnostic tissue markers for GC as demon-
strated by AUCs of 0.82 and 0.81 in the discovery and valida-
tion cohorts respectively. Additional comparative analysis of 
gastric microbiome and saliva samples will be a step forward in 
the probable use of these bacteria for diagnostic purposes. Only 
one bacterium was found to agree in abundance when SG versus 
GC and GC versus cancer-adjacent non-cancerous mucosae 
were compared. This may be an indication that certain degree of 
dysbiosis might have occurred in the greater environment of GC 
lesions. Furthermore, we showed that the gastric microbiome in 
cardia and non-cardia GC samples are similar. The role of H. 
pylori as a primary aetiology of type-3 oesophagogastric junc-
tion adenocarcinoma was reported to be of equal importance as 
for distal gastric cancer, suggesting similar microbiome profile 
between cardia and distal parts of the stomach.45 This agrees 
with the observation in this study.

The effects of H. pylori on the diversity, richness and interac-
tions of microbes at different disease stages were investigated. 
While decreases in phylotype richness, diversity and evenness 
in gastric biopsies of H. pylori-positive compared with H. pylo-
ri-negative samples from chronic gastritis patients have been 
reported, no difference in taxonomic diversity and evenness 
was observed.46 These agree with observations in this study. Our 
analysis extended previous works by including progressive stages 
of gastric cancer—AG, IM and GC—and suggests no effect of H. 
pylori on diversity and richness of gastric microbiome. However, 
we observed significantly reduced number of interactions among 
gastric microbes at all stages. In addition, weaker interactions 
between GC-enriched and GC-depleted OTUs were observed 
in the presence of H. pylori in SG and IM. These indicate the 
potential of H. pylori in altering microbial interactions.

The metabolic potential of gut microbes has been shown to 
modulate host metabolism in health and disease. We observed 
some predicted functional shifts that may reflect compositional 
differences between SG and GC. Studies have shown that purines 
are intracellular  and abundant biochemical components in the 
tumour microenvironment, modulating immune cell responses 
and cytokine release.47 Our observation of purine-metabolising 
proteins enrichment in GC suggests the metabolism of released 
purines in tumour microenvironment by GC microbiome. 

Interestingly, we observed the enrichments of bacterial carbo-
hydrate digestion and absorption in both discovery and valida-
tion cohorts. Increase in this pathway is predictive of bacterial 
production of short chain fatty acids by gut microbiome,48 which 
have been linked to hyperproliferation of cells in both CRC and 
oesophageal cancer.49 50 The enrichment of this pathway in GC 
thus highlights its potential contribution to gastric tumouri-
genesis. Furthermore, pathways involved in peptidoglycan 
biosynthesis have been reported to modulate inflammation in 
neoplasms by enhancing cell permeability in the intestines.51 The 
association of peptidoglycan biosynthesis with GC in this study 
supports the role that this pathway may play in tumour develop-
ment and supports previous observation in CRC.28 Several path-
ways that may contribute to recognition by host cells were seen 
depleted in GC. Such pathways include bacterial signal trans-
duction, chemotaxis and cell motility. Further investigations into 
the implications of microbiome functional dysbiosis in GC are 
needed for deeper understanding of gastric tumourigenesis.

The relatively high pH of the gastric lumen due to chronic 
inflammation, microbial metabolic products and other factors 
can contribute to increased growth of extragastric microbes. 
Thus, this study could not directly conclude whether the GC-en-
riched bacteria are passengers or drivers of gastric carcinogen-
esis. Nonetheless, they represent candidates of interests for 
targeted studies. Importantly, our findings were further validated 
in an independent cohort.

In conclusion, our study identified previously unreported 
GC-associated bacteria. We showed that members of oral patho-
genic taxa were over-represented and formed strong co-occur-
rence network in GC compared with other precancerous stages. 
Network analysis suggests that oral microbes P. stomatis, S. 
exigua, P. micra, S. anginosus and D. pneumosintes might play 
key roles in gastric carcinogenesis. Additional analysis inves-
tigating potential oral microbial dysbiosis in GC patients are 
warranted to delineate the use of these microbes as non-invasive 
biomarkers in GC diagnosis.
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