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Abstract

Increased synchrony within neuroanatomical networks is often observed in neurophysiologic 

studies of human brain disease. Most often, this phenomenon is ascribed to a compensatory 

process in the face of injury, though evidence supporting such accounts is limited. Given the 

known dependence of resting state functional connectivity (rsFC) on underlying structural 

connectivity (SC), we examine an alternative hypothesis: that topographical changes in SC, 

specifically particular patterns of disconnection, contribute to increased network rsFC. We obtain 

measures of rsFC using fMRI and SC using probabilistic tractography in 50 healthy and 28 

multiple sclerosis subjects. Using a computational model of neuronal dynamics we simulate 

BOLD using healthy subject SC to couple regions. We find that altering the model by introducing 

structural disconnection patterns observed in those multiple sclerosis subjects with high network 

rsFC generates simulations with high rsFC as well, suggesting that disconnection itself plays a role 

in producing high network functional connectivity. We then examine SC data in individuals. In 

multiple sclerosis subjects with high network rsFC we find a preferential disconnection between 

the relevant network and wider system. We examine the significance of such network isolation by 

introducing random disconnection into the model. As observed empirically, simulated network 

rsFC increases with removal of connections bridging a community with the remainder of the brain. 

We thus show that structural disconnection known to occur in multiple sclerosis contributes to 

network rsFC changes in multiple sclerosis and further that community isolation is responsible for 

elevated network functional connectivity.
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Introduction

An expanding body of evidence makes clear the importance of interactions between widely 

distributed neuronal populations in the production of cognition and behavior (Bressler and 

Menon 2010; Mesulam 1990). Analyses of temporal coherence in activity between distant 

sites (functional connectivity) reveal neuroanatomical networks corresponding to sets of 

regions activated by experimental tasks (Fox and Raichle 2007). This covariance structure is 

altered in neurologic disease and such alterations are associated with behavioral markers 

(Greicius 2008; Zhang and Raichle 2010). Thus far, this work has been largely descriptive. 

The mechanism underlying functional connectivity alterations and their behavioral 

significance remains a central point of inquiry in systems neuroscience (Park and Friston 

2013).

Several lines of evidence indicate functional connectivity patterns at multiple spatial scales 

are constrained by the underlying structural wiring (Honey et al. 2009; Johnston et al. 2008; 

van den Heuvel et al. 2009). At the same time, functional connectivity measures carry 

information independent of structural connectivity (Deco et al. 2011; Gonzalez-Castillo et 

al. 2015; Handwerker et al. 2012; Hutchison et al. 2013; Misic et al. 2016). Given the 

multitude of factors contributing to network synchronization and the absence of a systematic 

framework accounting for the complexity of their interactions, interpretation of functional 

connectivity alterations in clinical populations has been largely speculative. In particular, 

observations of increased network functional connectivity have been difficult to interpret and 

are most typically cited as evidence of adaptive neuroplasticity (Jones et al. 2016; Simioni et 

al. 2016; Venkatesan et al. 2015; Yoo et al. 2007). A more parsimonious explanation, that 

disease related structural disconnection may itself increase functional connectivity, has not 

been systematically examined.

Here we investigate the effects of large-scale structural disconnection on resting-state 

functional connectivity (rsFC) in multiple sclerosis. As early disease pathology is 

characterized predominantly by focal white matter lesions, multiple sclerosis represents a 

naturally occurring model of heterogeneous structural disconnection. In initial stages, 

increased network synchronization is often observed (Roosendaal et al. 2010; Valsasina et al. 

2011; Zhou et al. 2014) and is associated with behavioral markers (Faivre et al. 2012; 

Hawellek et al. 2011). Most commonly these changes are interpreted as evidence of 

compensatory processes supporting behavioral function in the face of injury. The 

contribution of underlying structural changes to these observations has not been formally 

considered.

Biophysical modeling of the dynamics underlying the production of neurophysiologic 

information may advance investigations of disease beyond descriptive work towards 

hypothesis-driven analysis (Stephan et al. 2015). In this pilot study we use an established 

computational model (Goni et al. 2014; Honey et al. 2007; Honey et al. 2009) to show that 

large-scale structural changes increase network rsFC. We then identify structural features 

particular to subjects with high rsFC and show, using the model, that rsFC varies with these 

features. We conclude that simple changes in structural wiring may increase network rsFC.
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Materials and Methods

Study Population

Data from 28 subjects was collected from an ongoing longitudinal analysis of advanced 

imaging markers in relapsing remitting multiple sclerosis (see supplementary appendix). All 

subjects provided written informed consent under institutional board approval. Multiple 

sclerosis subjects had a mean age of 40.2, a median Expanded Disability Status Scale 

(EDSS) of 2.0 and a mean disease duration of 7.2 years. Imaging data from fifty healthy 

subjects was collected from the MGH/UCLA Consortium Human Connectome Project 

(HCP, http://www.humanconnectomeproject.org). Demographic and clinical characteristics 

of each group are presented in the supplementary appendix.

MRI Acquisition and Preprocessing

Multiple sclerosis subject data was acquired on a Siemens 3T Connectom scanner with a 

300 mT/m gradient system and 64-channel brain array coil (Keil et al. 2013). The hardware 

and acquisition protocols were identical to those used to acquire the HCP dataset (http://

www.humanconnectomeproject.org/data/documents-and-sops/; see supplemental appendix).

This analysis used a T1-weighted structural scan, a multishell diffusion sequence with 

acquisition at high b-values, and a resting state blood oxygen level dependent (BOLD) 

acquisition. Diffusion data was corrected for gradient nonlinearity, eddy current artifact, and 

motion. For BOLD analyses, slice timing correction, gradient nonlinearity correction, 

motion correction, smoothing, bandpass filtering, and denoising were performed (see 

supplemental appendix).

Analysis of Connectivity

Cortical surface reconstruction was performed in Freesurfer version 5.3.0 (Dale et al. 1999) 

(http://surfer.nmr.mgh.harvard.edu/). The cortical surface was randomly divided into 292 

parcels of equal size which were projected onto subject reconstructions (Figure 1, Lower 

left). Multishell orientation diffusion functions were reconstructed using FSL’s qboot 

version 5.0.6 (Jenkinson et al. 2012). Probabilistic tractography, using FSL’s probtrackx2, 

detected the number of samples traversing each region pair (see supplemental appendix). 

These connection weights were thresholded at 2,500 samples and recorded in a structural 

connectivity matrix as an index of connection strength. Connection weights followed a 

power distribution and were resampled to a Gaussian distribution as in prior studies (Honey 

et al. 2009). Weights were averaged for connections present in at least 50% of controls and 

included in an aggregate structural connectivity matrix.

For every subject, a functional connectivity matrix was constructed from z-scores of 

pairwise time series correlations between the same parcels. Control subject functional 

connectivity matrices were averaged to produce an aggregate matrix. We compared 

aggregate structural and functional connectivity with correlation analysis.
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Network Definition

The Infomap algorithm (Rosvall and Bergstrom 2008), a commonly used community 

detection method, was used to divide the functional connectivity matrix into networks. 

Clusters visually identified as representing known neuroanatomical networks (Power et al. 

2011; Yeo et al. 2011) were selected for further study. rsFC z-scores from all node pairs 

within a community were averaged to produce a network rsFC index. For each network, this 

index was collected in all subjects. For each multiple sclerosis subject this index was 

compared to the control network rsFC distribution. Multiple sclerosis subjects with rsFC 

index values two standard deviations above the control mean or within one half standard 

deviation of the control mean were classified as having high or normal network rsFC 

respectively.

Computational Modeling

Large-scale neuronal dynamics were simulated using an extensively employed neural mass 

model (Breakspear et al. 2003) in which large populations of densely connected neurons are 

modeled as chaotic oscillators and weakly coupled on the basis of their structural 

connectivity (see supplemental appendix). Regional blood volume and deoxyhemoglobin 

content and the corresponding BOLD signal was estimated using the Balloon-Windkessel 

hemodynamic model (Friston et al. 2000). Functional connectivity matrices were 

constructed from simulated time-series as with empirically measured BOLD. Randomized 

initial conditions produced variability between simulations necessitating multiple 

simulations for each condition.

We verified that the computational model simulated empirical BOLD by comparing the 

results of 25 simulations using aggregate control structural data (henceforth referred to as 

baseline simulations) with empirically measured rsFC. We then examined the effects of 

disconnection in multiple sclerosis subjects with high and normal network rsFC. For each 

subject, structural connections absent in that subject were removed from the aggregate 

control data to produce a modified matrix (Figure 2). 25 simulations were generated using 

this modified coupling scheme. Simulated subject data was compared to baseline data using 

a one-way ANOVA with post-hoc one way Dunnett t-tests to account for multiple 

comparisons.

We investigated whether structural connections with greater weight in multiple sclerosis 

subjects compared to the aggregate control, augmented connections, affected rsFC (Figure 

2). For each subject with high rsFC we ran 25 simulations in which the aggregate control 

matrix was modified to incorporate increased connection weights present in that subject 

(Figure 2). Following these analyses, we examined the topography of disconnection in high 

and normal rsFC subjects and ran additional simulations with random disconnections 

introduced on the basis of features discordant between groups.
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Results

Structure-Function Relationships

The previously reported concordance between structure and function was replicated in the 

control population in this analysis. Aggregate structural connection weight was associated 

with aggregate functional connectivity (Pearson r=.4798; all matrix correlations in this study 

have associated p-values <10−50; Figure S1). Simulated functional connectivity was highly 

associated with empirical rsFC across all node pairs (mean Pearson r=.4066; Figure S2).

Network Definition

Three clusters associated with known neuroanatomical networks were identified, specifically 

the visual, somatomotor, and default mode networks. Four and seven multiple sclerosis 

subjects had high and normal range empirical rsFCS respectively (subscripts denote network 

rsFC: somatomotor [rsFCS], visual [rsFCV], default mode [rsFCD]). No multiple sclerosis 

subjects were found to have high rsFCV or rsFCD as defined in this study. High and normal 

rsFCS subjects were similar in age (mean 37.8 vs 39.1), disability (median EDSS 2.25 vs 2), 

and disease duration (mean years 5.5 vs 7.7).

Computational Modeling of Disease

A one-way ANOVA comparing simulated individual subject rsFCS and baseline rsFCS 

showed significant differences (F(11)=3.430, p=.0002). Post-hoc Dunnett t-tests compared 

baseline data to data from each simulated subject. Two of four subjects with high rsFC 

subjects were found to have high simulated rsFCS (p=.0448, p=.0159) after correction for 

multiple comparisons and a third trended towards significance (p=.0621). None of the seven 

subjects with normal empirical rsFCS subjects had high simulated connectivity. When 

structural connection weight was augmented based on weights found in high empirical 

rsFCS subjects, simulated mean rsFCS was similar to empirical rsFCS for each examined 

subject.

Topography of Disconnection

The topographical distribution of affected structural connections involving somatomotor 

nodes was examined in multiple sclerosis subjects with high and normal rsFCS (Figure 3). 

Though connectivity between groups did not differ in terms of total connections involving 

network nodes, intra-network connections, and inter-network connections, high rsFCS 

subjects had a disproportionate ratio of inter-network to total network disconnections (ET-

ratio, p=.0216). In other words, though high rsFCS subjects appeared not to have 

accumulated more pathology than normal rsFCS subjects, connections between the 

somatomotor nodes and other brain regions were disproportionately affected in these 

subjects.

Using the computational model, we then systematically examined whether this property was 

relevant to observed high rsFCS. Random disconnections involving somatomotor nodes were 

introduced into the control structural connectivity matrix. Holding the total number of 

disconnections constant, we ran simulations at varying ET-ratios. For every ratio examined, 

we ran 25 simulations each with a random set of disconnections. We then repeated the 
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entirety of this process twice varying the total number of disconnections (Figure 4, Left). We 

found a positive relationship between the ratio and rsFCS (11 total disconnections r=.4398, 

p=1.2782×10−15; 22 disconnections r=.7234, p=7.3371×10−50; 33 disconnections r=.8391, 

p=8.7871×10−81). At high ET-ratios, rsFCS was increased above that of baseline 

simulations. This exercise was repeated for the default mode and visual networks with 

similar results (Figure 4, Right).

Discussion

We examined the effects of large-scale structural changes on network functional connectivity 

in MS. Structural disconnection patterns in subjects with high empirical network rsFC 

simulated high rsFC in the computational model, demonstrating that structural disconnection 

contributes to the observed increase in functional connectivity. Further reinforcing this point, 

the model did not simulate high rsFC from disconnection patterns seen in normal empirical 

rsFC subjects or from augmentation patterns in high rsFC subjects.

Despite considerable interest in functional connectivity alterations in disease, a 

comprehensive account of the salient factors influencing neuronal dynamics has yet to 

emerge. A sophisticated interpretation of the mechanism underlying such observations is 

critical in discerning their relevance and advancing the technology towards clinical 

application. Observations of increased network rsFC in disease are commonly suspected to 

reflect adaptive neuroplasticity (Hawellek et al. 2011; Schoonheim et al. 2010; Zhou et al. 

2014) though evidence substantiating these interpretations is limited. While future work may 

validate these accounts, our results suggest simple alterations in wiring account for some of 

the variance in network rsFC. A more cautious approach to interpretation is clearly needed.

Structure-Function Relationships

Our results demonstrate that the organization of the wider system in which a network is 

embedded affects its internal dynamics. A particular topographical alteration, an uncoupling 

of network nodes from outside nodes, increases network functional connectivity. High 

empirical rsFCS occurred when the network was disproportionately isolated (Figure 3). 

Further, when random disconnections perturbed the system, a strong relationship emerged 

between inter-network disconnection and rsFC (Figure 4).

Structural changes promoting community isolation have been shown to increase 

synchronization in other contexts. This is typical of systems of coupled phase oscillators 

operating in modular networks; local synchrony in these contexts varies inversely with inter-

network coupling (Skardal and Restrepo 2012). Neuroimaging work anticipates this finding 

as well. A recent graph theoretical analysis showed node-to-node rsFC associates inversely 

with nodal degree along elements of their shortest path (Goni et al. 2014). As nodes along 

the shortest path are stripped of external connection, rsFC between endpoints increases. In 

these contexts, external signal contaminates synchronization between the nodes of interest; 

removing outside influence increases internal coherence. The present analysis shows that 

this same principle affects brain network dynamics.
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Disconnection in Multiple Sclerosis

Current work characterizing rsFC in multiple sclerosis suggests early increased network 

rsFC (Faivre et al. 2012; Hawellek et al. 2011; Roosendaal et al. 2010; Zhou et al. 2014) 

with subsequent pseudonormalization and eventual reduction (Rocca et al. 2010; Rocca et al. 

2012). Considering our findings, this progression may reflect the accumulation of 

subcortical pathology. Specifically, an early predilection for inter-network connection may 

produce increased network rsFC with subsequent reduction resulting from accrual of further 

lesion burden. Graph theoretical work on structural network characteristics in early multiple 

sclerosis show increased modularity, local efficiency and clustering (Fleischer et al. 2016; 

Muthuraman et al. 2016), findings consistent with selective culling of inter-network 

connection. Interestingly, our results suggest that the effect of network isolation on rsFC 

reaches a ceiling with little disconnection burden. At all but the highest ET-ratios, increased 

burden lowered rsFC (Figure 4). In other words, a small amount of inter-network 

disconnection is necessary to produce maximum network rsFC attributable to network 

isolation with additional burden resulting in reduction. This effect may contribute to the 

initial rise and subsequent fall in rsFC.

Limitations and Conclusions

This pilot analysis paves the way for work in larger samples. Limited study size is related to 

sampling from a cross-sectional cohort with varying disease durations. Replication in an 

early multiple sclerosis population, the stage at which high network rsFC is typically 

reported, may raise confidence in our findings.

This analysis shows that structural disconnection patterns in disease produce increased 

network functional connectivity, a significant departure from prevailing accounts. Our 

results contribute to a growing literature on brain structure-function relationships and 

interpretation of neurophysiologic markers. Finally, this work adds to an emerging literature 

leveraging computational modeling towards hypothesis-driven analysis, an important step in 

advancing connectivity imaging towards clinical application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Parcellation and Community Detection
Left bottom: The cortical surface was divided into two hundred ninety-two parcels of equal 

size and projected onto individual subject surface reconstructions. Center: A spring 

embedded network diagram. Node color reflects Infomap classification (blue: somatomotor 

network, yellow: visual network, red: default-mode network, grey nodes are unclassified). 

For each identified network, its elements are displayed over an average surface.
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Figure 2. Modeling Disconnection and Augmented Connections
Schematic representations of simple networks illustrate the procedure used to identify salient 

subject features and investigate their effect.

Top: A sample aggregate control matrix and a sample subject matrix. Examples of 

disconnections and augmented connections are highlighted.

Middle: Corresponding diagrams for the aggregate control and subject diagrams are 

displayed. An example each of a disconnection and an augmented connection corresponding 

to those highlighted in the matrices above are shown.
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Bottom: Matrices from control data incorporating either disconnection or augmented 

connections from the subject. The networks represented differ from the aggregate control 

matrix only in terms of the relevant features from the individual.

These matrices are then used to couple regions in the computational model to explore the 

effect of empirically observed structural changes on neuronal dynamics.
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Figure 3. Topographical Differences
Left: Connection matrices from representative subjects with high rsFCS (left) and normal 

rsFCS (right) highlight alterations in connection patterns of somatomotor nodes. Rows 

correspond to somatomotor nodes. The initial forty-six columns of each matrix represent 

these same nodes while the remainder represent extra-network nodes. Muted red elements 

indicate connections present in the aggregate control matrix and are identical in both 

matrices. Bright red elements indicate disconnected edges in the individual. The subjects had 

similar numbers of total disconnected edges, though the high empirical rsFCS subject has a 

higher proportion of extra-network disconnections to total disconnections than the normal 

rsFCS subject. This pattern was seen across the sample and is reflected in the ET-ratio.
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Right: ET-ratios. Subjects with high empirical rsFCS have higher ET-ratios than subjects 

with normal rsFCS indicating that in high rsFCS subjects, edges bridging the network to the 

wider system are preferentially implicated.
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Figure 4. The Effects of Extra-Network Disconnection
Left: rsFCS measurements from simulations incorporating random disconnections are 

plotted against ET-ratio. An ET-ratio of zero represents the condition in which all 

disconnections are between network nodes; when disconnections are distributed exclusively 

amongst extra-network edges, the ET-ratio is 1. Panels show varying absolute disconnection 

numbers (11 - left, 22 - middle, 33 - right) with regression lines superimposed.

Right: The left panel demonstrates rsFCS means with 68% and 95% confidence intervals of 

simulation data represented in (B). The dark grey line represents rsFCS from control 
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simulations (essentially the no disconnection condition). Note that at ET-ratios of one, rsFCS 

does not vary substantially with number of disconnections suggesting that a small number of 

disconnections is sufficient to produce the maximum effect. The analogous data for 

simulations involving the visual (top right), and default mode (bottom right) networks show 

a similar relationship.
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