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Abstract

Background—Viscoelastic measurements of hemostasis indicate that 20% of seriously injured 

patients exhibit systemic hyperfibrinolysis, with increased early mortality. These patients have 

normal clot formation with rapid clot lysis. Targeted proteomics was applied to quantify plasma 

proteins from hyperfibrinolytic (HF) patients to elucidate potential pathophysiology.

Methods—Blood samples were collected in the field or at Emergency Department arrival and 

thrombelastography (TEG) was used to characterize in vitro clot formation under native and tissue 

plasminogen activator (tPA)-stimulated conditions. Ten samples were taken from injured patients 

exhibiting normal lysis time at 30 min (Ly30), “eufibrinolytic” (EF), 10 from HF patients, defined 
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as tPA-stimulated TEG Ly30 >50%, and 10 from healthy controls. Trauma patient samples were 

analyzed by targeted proteomics and ELISA assays for specific coagulation proteins.

Results—HF patients exhibited increased plasminogen activation. Thirty-three proteins from the 

HF patients were significantly decreased compared to healthy controls and EF patients; 17 were 

coagulation proteins with anti-protease consumption (p<0.005). The other 16 decreased proteins 

indicate activation of the alternate complement pathway, depletion of carrier proteins, and 4 

glycoproteins. CXC7 was elevated in all injured patients versus healthy controls (p<0.005), and 35 

proteins were unchanged across all groups (p>0.1 and fold change of concentrations of 0.75–1.3).

Conclusion—HF patients had significant decreases in specific proteins and support mechanisms 

known in trauma-induced hyperfibrinolysis and also unexpected decreases in coagulation factors, 

factors II, X, and XIII, without changes in clot formation (SP, R times or angle). Decreased clot 

stability in HF patients was corroborated with tPA-stimulated TEGs.

Level of Evidence—III prognostic.
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Background

Systemic hyperfibrinolysis following traumatic injury with hemorrhagic shock occurs in up 

to 20% of critically injured patients and is associated with a mortality of >50%.1–6 Previous 

descriptions of trauma-induced coagulopathy (TIC) relied on standard measures of 

coagulation in fresh plasma, e.g. prothrombin times/International normalized ratios (PT/

INR).7–10 A number of coagulation proteins has been assayed to depict this hyperfibrinolytic 

phenotype with high sensitivity but poor specificity, i.e. minimal capacity to discriminate 

across many heterogeneous patient samples.10–14 Although delayed clotting may occur due 

to an apparent decrease in soluble clotting factor levels, this etiology appears to be 

attributable to a dilutive mechanism from major hemorrhage and crystalloid resuscitation, 

rather than consumption.3,8,10 Changes in resuscitation practice over the past two decades 

have significantly ameliorated iatrogenic dilution as a driver of TIC, and attention has 

shifted to hyperfibrinolysis.

Severe trauma distorts physiological clot remodeling, towards one of two extremes: systemic 

hyperfibrinolysis (HF) or fibrinolysis shutdown, both of which are associated with increased 

mortality.5,15–17 The CRASH 2 trial underlines the importance of clinical strategies for 

inhibiting plasmin-mediated fibrinolysis acutely following injury, and this and other studies 

suggest the therapeutic utility of the lysine analog tranexamic acid (TXA) in a subset of 

severely hyperfibrinolytic patients.5,18–20 While the hypothesis that TIC is solely due to 

diminished clotting factors has been displaced and the key role of deregulated fibrinolysis in 

TIC recognized, an unbiased survey of the hyperfibrinolytic plasma proteome is lacking.

Thrombelastography (TEG) evaluates not only clot formation times with different initiators 

but also the kinetics of clot formation, clot strength, and clot remodeling/lysis in whole 

blood.5,6,21–24 Time course studies establish that many injured patients with systemic 
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hyperfibrinolysis have normal or even rapid clot formation times (R times) and low 

maximum amplitude (MA, an indicator of clot strength).1,17,18,25,26 While HF presents in 

many patients as increased lysis measured at 30 minutes after MA (Ly30), HF can also be 

rapidly detected by observing marked increases in Ly30 following the addition of exogenous 

tissue plasminogen activator (tPA) to the TEG assay.17,18,23,24,27 The tPA-challenged TEG 

assay allows the rapid stratification of trauma patients into HF, eufibrinolytic 

(EF:physiologic), and fibrinolysis shutdown phenotypes and is a better predictor of massive 

transfusion, a hallmark of systemic hyperfibrinolysis.17,24,27,28 We hypothesize that 

examination of the plasma proteome of injured patients reveals differences is specific 

proteins, which further define the fibrinolytic phenotype and provide mechanistic insight 

into the pathogenesis of trauma-induced coagulopathy (TIC). Application of a controlled 

mass spectroscopy approach of 142 specific proteins was completed and allowed for 

quantification of these plasma proteins, which include serpins, coagulation factors, and other 

proteins known to affect hemostasis, either clotting or fibrinolysis.29,30 Such data may 

provide a better scientific basis for individualized, goal-directed resuscitation of the 

critically injured.

Methods

Study Population

Consecutive adult trauma patients (n=130) meeting criteria for the highest level of activation 

at our Level I trauma center (Denver Health Medical Center) from April 2014 to April 2016 

were assigned to the Trauma Activation Protocol approved by the Combined Multi-

Institutional Review Board with a waiver of consent. The criteria are patients >18 years of 

age and traumatic injury with any of the following: (a) blunt trauma with systolic blood 

pressure SBP <90 mmHg (b) mechanically unstable pelvic injury (open or obvious by 

physical exam) (c) penetrating neck/torso injuries with (SBP) <90 mmHg (d) gunshot 

wounds to the neck/torso or stab wounds to the neck/torso that require endotracheal 

intubation. Patients who did not have blood drawn within 60 minutes of ED arrival, received 

blood products, being treated with anticoagulants, or transferred from another facility, were 

excluded. No pre-hospital blood products were administered prior to arrival. Citrated and 

heparinized whole blood and plasma samples were obtained upon arrival, and 5 different 

TEG assays were completed: rapid-TEG (rTEG: re-calcified immediately prior to loading 

into the TEG cup with tissue factor and kaolin), citrated functional fibrinogen (CFF: platelet-

blocked, reptilase-initiated + Factor XIII in heparin), CFF + TXA, citrated native (CNTEG, 

re-calcified native TEG), and CNTEG stimulated with tPA [75 ng/ml]. Fresh plasma samples 

isolated from whole blood by an initial centrifugation at 5,000g for 7 min followed by a 

second spin at 12,500g to remove platelets and acellular debris were immediately frozen at 

−80°C. These samples were used for targeted proteomic analysis and ELISA measurements. 

The groups were stratified by the Ly30 obtained from tPA (75 ng/ml)-stimulated CNTEG 

traces: ten consecutive injured patients with HF, defined as Ly30 ≥50% (10 samples), were 

paired with 10 injured EF patients: injured patients with EF defined as tPA-stimulated 

CNTEG 20%≥Ly30≥5% over the same time frame as the HF patients, and 10 healthy control 

subjects.
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Plasma depletion of albumin and IgG

Albumin and IgG, were removed from the plasma samples using serum protein 

immunodepletion resins (Proteome Purify2, R&D Systems, Inc., Minneapolis, MN) as 

published.29,30 Because of the intentional removal of albumin and immunoglobulins these 

proteins are obviated from further analysis.

Targeted proteomics

Recombinant isotopically labeled QConCAT proteins, containing a chimeric concatamer of 

peptides labeled at the lysine and arginine residues (13C6 isotopologues) were mixed with 

the albumin- and IgG-depleted plasma at 200 or 100 fmol per injection as published.29,30 

The QConCAT palette of targeted proteins includes 142 proteins made up of coagulation 

factors, serpins, carrier proteins, known to affect hemostasis.29,30

Enzyme-linked immunosorbent assays (ELISAs)

ELISA assays were performed in duplicate, with dilutions to ensure proper quantification, 

per the manufacturer’s instructions. ELISA’s were completed for thrombin 

(MyBiosource.com, San Diego, CA), antithrombin (AT), thrombin:antithrombin (TAT) 

complexes, plasminogen (Plg) (AssayPro, St. Charles, MO), α2-antiplasmin, plasmin: α2-

antiplasmin (PAP) complexes, tPA, tPA:PAI-1 complexes and PAI-1 (Molecular Innovations, 

Novi, MI), and thrombin-activated fibrinolysis inhibitor (TAFI) (Sekisui Diagnostics, 

Stamford, CT).

Statistical analyses

The data are reported as the median ± interquartile ranges for all patient demographics, 

coagulation assays, and targeted proteomics and the mean ± the standard error of the mean 

for the ELISA data. Because the data was not normally distributed, statistical differences 

among the 3 patient groups were compared using a non-parametric Kruskal-Wallis test 

followed by the Dwass, Steel, Critchlow-Fligner multiple comparison procedure with 

statistical differences at p<0.005 for proteins and p<0.05 for other clinical tests. Z means 

testing at 1.25 times the standard deviation was employed to determine the proteins that 

were unchanged among groups. For the normally distributed ELISA data, as determined by 

the Shapiro-Wilk test for normal distribution, statistical differences (p<0.05) were 

determined by an independent analysis of variance (ANOVA) followed by a Bonferroni test 

for multiple comparisons.

Results

Patient Demographics

Patients with HF were the most severely injured cohort and compared to EF patients and had 

higher injury severity scores (ISS, NISS) and Glasgow coma scales (GCS) (Table 1). The HF 

patients showed no difference in age or BMI compared to the EF patients. Moreover, HF 

patients evidenced a lower plasma pH with higher base deficits versus the EF patient group, 

although there was no difference in initial field fluid administration or in time to blood 

sample collection after injury: 19/20 samples were acquired within 1 hour (Table 1). The 
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longest interval to sample collection was 3 hours 25 minutes in a stabbed female, who had 

vital signs in the field and survived without receiving any pre-hospital fluids. Seventy 

percent of the HF patients died within 12 hours of injury, all required massive transfusions, 

and emergency thoracotomy were required in 50% (Table 1). The citrated r-TEGs were 

employed for clinical decisions as published because: 1) tissue factor- and kaolin-activated 

TEGs provide faster results and 2) citrate prevents sample clotting because some of these 

patients are paradoxically hypercoagulable soon after injury.6,28

TEG Measurement of HF Patients

TEG assays were conducted concomitantly in whole blood samples of all injured patients 

upon admission. These data included measurements from A) CNTEGs, B) tPA-CNTEGs 

with 75 ng/ml tPA (tPA-CNTEGs), and C) rTEGs (Table 2), along with CFF-TEGs, which 

assess platelet independent clotting in whole blood initiated with tissue factor, and CFF-TEG 

with tranexamic acid (CFF+TXA), to inhibit plasmin activity (Supplementary Data, Table 

1.). The HF plasma samples selected for QConCAT proteomic analyses all showed high 

Ly30 (≥50%) in routinely obtained tPA-CNTEG assays compared to samples from EF 

patients 5%≥Ly30≤20% and healthy controls (Table 2) (p<0.001). In addition, for all TEG 

experiments the initial clot formation parameters Split Time (SP) and R were not 

significantly different between whole blood samples from HF patients vs. samples from EF 

patients and healthy controls (p>0.05). However, both the angle and the MA, which are 

dependent upon fibrinogen and platelets, from HF patients were significantly decreased 

versus EF patients and healthy controls (p<0.01 for both) (Table 2).6,28

Increases in Ly30 with tPA for HF patients are 40.4±9.4% to 80.0±3.0% from CNTEG to 

tPA-CNTEG (p<0.001), with smaller changes in EF patients (0.9±0.2% to 7.9±3.0%) vs. 

healthy controls (3.0±1.0% to 9.5±1.4%) similar to previous data.17,27,31 Importantly, half 

(5/10) of the HF cohort exhibited lysis at the cutoff of Ly30≥50% in the CNTEG and are 

also close to the line of identity suggesting a minimal response to the tPA challenge 

(Supplementary Fig. 1). The lack of tPA response appears to occur if the Ly30 is already 

>70%. Also, the HF patients had a higher Ly30 in CFF-TEGs (Supplementary Fig. 2, panel 

A, 51.2±11.3%) compared to the EF patients (8.32±8.32%) and the healthy controls 

(0.23±0.1%). Furthermore, the addition of TXA to the CFF-TEGs nullified the Ly30 (the HF 

and EF patients were 0.0±0.0%, and the controls 0.1±0.1%) in these platelet-independent 

clots (Supplementary Fig. 2, panel B), confirming overactive plasminolysis as the likely 

dominant mechanism. Although increased, the rTEG Ly30 did indicate significant increases 

in Ly30 in the HF patients versus either the EF patients or healthy controls, which is most 

likely due to the small sample size, although the Ly30 cutoff was ≥3.0% for all HF patients. 

These patients had Ly30 ≥50% on the tPA-stimulated CN-TEGs further reinforcing the 

likely requirement for tPA-CNTEGs to define the HF group.

Coagulation Assays and Coagulation Proteins

The HF patients had significantly increased PT/INR’s and activated partial thromboplastin 

times (aPTT) versus healthy controls (p=0.001 and p=0.0016) and the lower fibrinogen 

concentration demonstrated significance (p=0.0094) (Table 1). The EF patients had PT/INR 

and aPTT values that were were significantly decreased (p=0.0069 and p=0.0033, 
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respectively) vs. controls (Table 1). In comparison to the EF patients the HF group also had 

significantly lower plasma pH (p=0.0045), increased PT/INR and aPTT (p=0.0022 and 

p=0.0025, respectively). The HF patient group also received increased number of RBC units 

and plasma versus the EF patients (both p=0.0017).

ELISA measurement of coagulation proteins and related serpins revealed that in comparison 

to normal controls the HF patients demonstrated similar thrombin activity with significantly 

decreased anti-thrombin concentrations (p<0.05) and significantly increased TAT complexes 

(p<0.05). As compared to EF patients, the concentrations of anti-thrombin and TAT 

complexes from HF patients were not different (Fig. 1, panel A). Conversely, plasminogen 

concentrations in HF patients was significantly less than either the EF patients or the healthy 

controls with a concomitant increase in PAP complexes with plasminogen concentrations not 

showing statistical differences across the three groups (Fig. 1, panel C). TAFI concentrations 

were also not different across the three groups (Fig. 2). Moreover, previous data from these 

same patient groups indicate that the HF patients had significantly increased tPA activity 

versus healthy controls and EF patients (p<0.005) (Fig. 1 panel Bi). The HF patients also 

had decreased but not statistically significant PAI-1 activity (Fig. 1, panel Bii) vs. both 

healthy controls and EF patients, but there was a significant increase (p<0.005) tPA:PAI-1 

complexes in the EF patients and HF patients compared to healthy controls (Fig. 1, panel 

Biii).

Mass spectroscopy Measurement of Plasma Proteins

Of the 142 proteins analyzed by the targeted mass spectrometry approach with heavy labeled 

internal standards (QConCAT), 11 were measured against two reporter proteotypic peptides 

with excellent agreement between the quantification of both parent ions and transition 

fingerprints: correlation >0.95. The concentrations of 35 plasma proteins did not change 

amongst the three groups as defined by p>0.1 and fold change of (0.75–1.3), which, 

included two distinct polypeptides from von Willebrand factor (Supplementary Table 2). 

These proteins consist of the most abundant soluble plasma proteins including: α2-

macroglobulin (A2M), all fibrinogen chains, haptoglobin, apo-lipoprotein E, etc. Structural 

proteins including fibronectin, vimentin, and filamin were unchanged among groups. 

Coagulation factors: Factors V and VIII, serpins: A1, E1, and G1 and complement Factor C9 

all remained unchanged among all three groups as well as the antiprotease α2-

macroglobulin.

Importantly, intracellular biomarker proteins from circulating blood cells were not increased 

compared to normal plasma. Specifically, myeloperoxidase (MPO), matrix 

metalloprotease-2 (MMP2), MMP8, MMP9, and neutrophil elastase (ELANE) from 

neutrophils (PMNs) and other leukocytes, and platelet factor 4 (PLF4) and platelet 

glycoprotein 5 (GP5) from platelets were not changed vs. the healthy controls, despite severe 

injuries. Surprisingly, CXCL7, a platelet granule chemokine, was elevated in all injured 

patients (HF and EF) versus healthy controls (p<0.001) and there were no other statistically 

different proteins between the EF patients and the healthy controls (p>0.005).32 Seventy-one 

proteins were not statistically different amongst the three groups and did not make the 
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statistical cutoff of p<0.005 nor the cutoffs for “no change”: p>0.1 and fold change 0.75–1.3 

<2 (Supplementary Table 2).

There were a few rare, dramatic increases in plasma proteins. Thus, dramatic changes >two-

fold of the mean were documented for fatty acid binding protein-1 (FABP1) and 

glyceraldehyde 3-phopsphate dehydrogenase (GAPDH) in a few patients; however, most of 

the injured subjects evidenced similar levels as compared to the healthy controls (p≥0.01). 

Isolated increases in intracellular proteins may reflect the mechanism of injury because the 

patient who was crushed in an escalator had a 10-fold increase in muscle myoglobin vs. all 

other groups.

Coagulation proteins

Thirty-three of the 142 measured proteins were significantly decreased as compared to EF 

patients with physiologic fibrinolysis and the healthy controls (p<0.005) (Table 3). Fourteen 

of these 33 plasma proteins were coagulation-related enzymes, including: prothrombin 

(factor II), thrombin, a serine-protease, and factor XIIIB. The depletion of prothrombin 

structural fragments (F2a, F2b) in hyperfibrinolytic patients does not appear to affect clot 

formation (ACT or R, in any TEG experiment, Table 2) or in the ELISA measure of active 

thrombin, which may be expected in a decrease of only 50%. Three distinct protein epitopes 

implicate the contact pathway: factor XII, plasma kallikrein (both serine-proteases), together 

with their co-factor Kinninogen-1 (KNG1), a cystatin, decreased by 50%.33 The probe 

sequence for KNG1 (starting at aa 67) is within the first cystatin domain of the KNG1 heavy 

chain and unaffected by possible cleavage by factor XII or kallikrein (aa 379 and 389).34 

The plasma ‘anticoagulants’, proteins C and S, were also significantly decreased as was 

fibrinogen in the HF group which was significantly decreased compared to the healthy 

controls (Table 1).

Three fragments characterized the plasminolytic aspect of hyperfibrinolysis. One fragment 

of plasminogen (another short-lived serine-protease, aa 181–191), along with 2 epitopes of 

its dedicated serpinF2 (α2-antiplasmin) were all concomitantly reduced (p<0.005). These 

data coincide with both decreased plasminogen and increased PAP complexes in the HF 

group by ELISA (Fig. 1, Panel B i & iii). However, fibrinogen was depleted, and the TAFI 

concentrations were unchanged across groups. In addition specific serpins were decreased, 

including: serpin F2 (α2-antiplasmin), serpin A4 (kallistatin), serpin D1 (Heparin Cofactor 

II), and the broadly acting inter α-trypsin inhibitor component, ITIH2 compared to EF 

patients and healthy controls.

Complement

QConCAT probes of 3 proteins confirm the activation of the complement pathway after 

severe trauma. These include, depletion of the complement zymogens, C3 (53%, p=0.0015) 

and C5 (56%, p<0.0006). Notably the suicide inhibitor of C5 activation CFH, is also 

decreased (61% compared to EF samples, p= 0.0043). These results imply that acute injury 

activates the alternate pathway since neither C2, C4, or C9 reached significance.35
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Proteins involved with stress-induced oligomerization

Serum amyloid-P (component APCS) is an oligomerizing protein that was significantly 

decreased in HF patients. However, the better known inducible pentraxin, C-reactive protein, 

which was assessed at two sites (CRPa, CRPb), was unchanged, except dramatically in one 

patient with a documented infection prior to injury, in whom both fragments were elevated 

>10-fold higher along with significant increases in both lipopolysaccharide binding protein 

(LBP) and all three fibrinogen chains in comparison to the other injured patients and healthy 

controls (p<0.001). Supporting traumatic stress denaturation, clusterin (CLU) and 

hemopexin were also depleted. Lastly, of the apo-lipoproteins constituting HDL, only APOA 

2,4, was depleted.

Carrier proteins

Both retinol-binding protein-4 (RBP4) and vitamin D binding protein (GC) were decreased 

in HF patients vs. EF patients and the healthy controls (p=0.0008). Both the Fe-binding 

proteins serotransferrin (TF) and hemopexin (HPX) were also significantly decreased in HF 

patients as was ceruloplasmin (CP).

Glycoproteins

The abundant cystatin domain protein α2-Heremans Schmid (HS)-glycoprotein, fetuin A, 

was significantly decreased in the HF group compared to the EF patients and the healthy 

controls, while another minor cystatin, histidine-rich glycoprotein was not. Moreover, 

glycosylphosphatidyl-inositol specific phospholipase D, a plasma phospholipase D, cleaving 

inositol anchored proteoglycans was also decreased in the HF group.36 Zinc α2-

glycoprotein-1 is an incompletely understood protein that may be an adipokine, which 

contains the major histocompatibility complex and immunoglobulin domains was also 

decreased as was glycosylphosphatidyl-inositol specific phospholipase D.37

Discussion

The reported data from this pilot study has demonstrated that injured HF patients were more 

seriously injured, had a decreased pH, and increased mortality, NISS, PT/INR and PTT, and 

required more transfusion support in the first 6 hours with both RBCs and plasma. The HF 

patients also had increased plasmin activity as documented by significantly increased Ly30 

on CNTEG, the further augmentation of Ly30 in the tPA-stimulated lysis, and the 

concomitant increases in tPA and PAP complexes (600-fold) with decreases in plasminogen, 

PAI-1, and fibrinogen. Importantly, all patients were bleeding when the samples were 

obtained and were stratified only by the Ly30 on the tPA-CNTEGs: Ly30≥50% for the HF 

group and 5%≤Ly30≤20% for the EF group. These patients’ presentation and treatment were 

over a similar time frame with supportive care and surgical interventions completed by the 

identical teams. The angle, MA, a measure of clot strength, and fibrinogen were 

significantly decreased in the HF patients, particularly in those TEG assays that involve 

thrombin activation (rTEG, CNTEG,) but less likely to be significant in platelet-independent 

assays, CFF-TEG. Thirty-three proteins were significantly decreased in the HF patient 

group, versus both the EF patients and the normal controls, while 106 did not demonstrate a 

statistical difference (p>0.005) with 35 of these demonstrating no change (p>0.1, fold 
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change 0.75–1.3). Other TEG parameters are supportive of this hyperfibrinolytic phenotype, 

especially the CFF-TEG and tranexamic acid reversed the lysis on TEGs from the HF 

patients. This HF patient group experienced significantly increased mortality of 70% and 

consisted of patients with high ISS, hemorrhagic shock, and required massive transfusions. 

These data are supported by a retrospective study of fibrinolytic phenotype in 2,540 trauma 

patients with 18% of severely injured patients (ISS>15) who appeared hyperfibrinolytic 

(Ly30≥3%) and suffered a death rate of 44%, which was exacerbated by shock, irrespective 

of the mechanism of injury.3–5,31,38

Previous work has detailed that the overwhelming increases in tPA, not degradation of 

PAI-1, is responsible for the observed hyperfibrinolysis in injured patients.4,17 The reported 

data are similar with significantly increased tPA activity and tPA:PAI-1 complexes with 

decreased, but not significantly, levels of PAI-1 in HF patients versus healthy controls and 

EF patients. Moreover, the HF patients had significant amounts of plasmin activity, 

documented by both the increased amounts of plasmin:α2-antiplasmin complexes with the 

significantly decreased amounts of plasminogen versus both control and EF patients. Thus, 

plasmin has been directly implicated, which is downstream of tPA and is directly responsible 

for the hyperfibrinolytic phenotype described.

The reported data is focused on HF patients, which differs from other reports on trauma-

induced coagulopathy (TIC).8,9,21,25,26 TIC has been postulated to represent a sub-type of 

disseminated intravascular coagulation (DIC), which should result in decreased platelet 

count, which did not occur.15,21 The reported data are consistent with the clinical series from 

Copenhagen, which indicated that TIC was not similar to DIC.14,39 In addition, TIC has 

been described as a dilutional coagulopathy secondary to overzealous administration of 

crystalloid without proper reconstitution of hemostatic potential.3,8,10 Importantly, 19/20 

samples analyzed were collected within 1 hour of injury with comparable saline volumes 

infused, and 35 proteins were not different between the injured patient groups would argue 

against crystalloid dilution as a mechanism for the observed systemic hyperfibrinolysis 

subset of TIC.

Decreases in specific coagulation proteins, Factors II, X, and XIII, as well as TAFI point 

towards appropriate intervention by slowing/stopping systemic hyperfibrinolysis with an 

antifibrinolytic, tranexamic acid, followed by plasma, which is the best source of factors II 

and X and TAFI.40,41 Factor XIII has an in vivo half-life of ~12 days and thus, there are 

significant amounts of it in plasma, although cryoprecipitate is the best source.40,41 One 

must be cautious for intervention with tranexamic acid after the first three hours post-injury 

correlates with increased adverse events and even mortality.42–45

Systemic increases in activated protein C (APC) have also been postulated to be a 

mechanism for TIC. If this is the case, then one would expect that the SP- and R-times on 

CNTEG would be increased with concomitant decreases in fibrinogen, factor V, and factor 

VIII levels/activities.19 In contrast, the reported data does not demonstrate increased SP-/R-

times. The thrombin activity is not different in HF patients vs. EF patients and healthy 

controls, and the fibrinogen concentrations are unchanged (all three chains), although both 

factor V and factor VIII remain in the normal range. In addition, APC-induced systemic 
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hyperfibrinolysis has been reported to be due to thrombin binding to thrombomodulin via 

activation of protein C and consumption of PAI-1 with TAFI inhibition being an important 

mechanism for “fibrinolysis derepression” with TAFI-induced activation of protein C 

resulting in APC binding to thrombin-thrombomodulin.2,19 The reported data demonstrate a 

modest increase in TAFI in HF patients, which was not significantly different from the EF 

patients or the healthy controls, and such maintenance of normal TAFI concentrations in the 

HF patients requires more data to better define role of APC in injury-induced 

hyperfibrinolysis.2,19

HF patients, as defined by TEG measurements, had the highest plasma levels of tPA with a 

concomitant diminished anti-protease defense, or alternatively, near complete conversion of 

plasminogen to active plasmin. However, EF patients and healthy controls also showed 

modest response to tPA in the tPA-stimulated TEGs (vertical increase <20%), which may 

reflect lower levels of tPA or may be due to insufficient anti-protease tPA “buffering”. The 

HF patients also had significantly prolonged PT/INR and aPTT, which may be due to 

multiple factor diminutions and/or interference with the clotting cascade.

The proteomic signature of the HF group is dominated by decreases in 1) coagulation 

proteins, 2) the complement system, specifically anaphylatoxins, 3) proteins involved in 

stress-induced oligomerization, 4) carrier proteins, and 5) glycoproteins. The decrease in 

coagulation proteins: factors II, V, XIII and fibrinogen, attests that both anti-protease 

regulated clot formation and plasminolysis are ongoing. The clearance of serpins, and 

activation of the contact pathway: factor XII, Kallikrein B1, and Kininogen-1 (F12, KLKB1 

KNG) with and significant decrease of both protein S (ProS1) fragments are notable.

HF patients also have decreased plasma concentrations of proteins involved with stress-

induced oligimerization. The depletion of such self-associating soluble zymogens that form 

large oligomers, may lead to unexpected consequences including immunodeficiency.46–48 In 

this regard serum amyloid P is a pentraxin, self-associates in 5 and 10 units, provides a 

mechanism for recognizing DAMPs and PAMPs and accompanies amyloid deposits.49 

Clusterin (CLU), hemopexin (HPX), and α2-macroglobulin (A2M), also form a class of 

chaperones oligomerizing with mis-folded proteins in plasma, which often arise during 

stress.50 However, CLU can stabilize up to 10 equivalents of certain mis-folded plasma 

proteins, especially at pH ≤7.1.51,52

Traumatic injuries have not been previously linked to decreased plasma concentration of 

carrier proteins, and the significantly decreased concentrations of retinol binding protein-4 

(RBP4), ceruloplasmin (CP), vitamin D binding protein (GC), serotransferrin (TF), and 

hemopexin (HPX) were unexpected. In plasma, the RBP-retinol complex interacts with 

transthyretin (TTR), which prevents its loss by filtration through the kidney glomeruli.53 

TTR mis-folding leading to amyloids is well known.54 The deficiency of GC has not been 

linked to trauma before, and may be involved in coagulation.55,56 Similar to RBP4 and TTR, 

both TF and CP contain beta sheets amenable to common amyloid formation.57 In contrast 

HPX (like CLU), could stabilize certain mis-folded plasma proteins.
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The presented data have a number of limitations. First, viscoelastic measurements of 

hemostasis and the fibrinolytic system are low shear assays and the effects of factor XIII 

depletion and other proteins, including fibrinogen, may not be as “functionally represented” 

as coagulation in vivo. Second, the employed targeted mass spectrometry-based proteomics 

approach relies heavily on the presence of unique prototypic peptides derived from the 

concomitant tryptic digestion of the proteins in the sample and the spiked QConCAT 

standards. Therefore, the approach is limited to the measurement of such peptides and 

cannot measure the activity of serine-proteases and other enzymes that cut at different 

residues than arginine or lysine. Future generations of QConCAT peptides could be designed 

to address this issue by including sequences that can be targeted by proteases in the 

coagulation and other cascades. Differential clearance of pro-domains and other cleaved 

domains and the presence of endopeptidases could also confound the results by changing the 

peptide sequences from those monitored in the QConCAT. With the present set of internal 

standards, the levels and activation status of tPA and PAI-1 could not be accurately 

determined. Lastly, plasma samples are filtered prior to mass spectroscopy analysis via 

QConCAT and there may be some proteins that are non-specifically retained by these 

columns. This non-specific retention of proteins by these columns is currently being 

investigated.

In conclusion, HF patients exhibited significant decreases in specific proteins and buffering 

mechanisms, which were expected in TIC, as well as unexpected decreases in Factors II, X, 

XII and XIII. Notably, these changes are well correlated to both hyperfibrinolysis with 

decreased clot strength (MA) with little impact on clot initiation, both the SP and R-times. 

Thus, the hyperfibrinolytic component of TIC appears mechanistically distinct from 

derangements of clot formation related to soluble factor dilution/consumption. The unique 

set of proteome alterations in this subset of severely HF patients may better explain the 

mechanistic underpinnings of the onset of systemic hyperfibrinolysis after severe injury.
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Figure 1. 
Quantification of coagulation factors, serpins, and serine protease:inhibitor complexes in 

injured patietns with HF and EF vs. healthy controls. The figure illustrates the measured 

protein activity or concentrations by ELISA. Panel A, from left to right, consists of thrombin 

activity (i), anti-thrombin (ii), thrombin:anti-thrombin complexes (TAT) (iii). Panel B depicts 

from left to right the concentration of tissue plasminogen activator (tPA) (i), plasminogen 

activator inhibitor (PAI-1) (ii) and tPA:PAI-1 complexes (iii). Panel C shows from left to 

right: plasminogen (i), α2-antiplasmin (ii), and the plasmin:α2-antiplasmin (PAP) complexes 

(iii). All data are expressed as the means ± the standard error of the means. *=p<0.05 versus 

the healthy controls and †=p<0.05 versus both EF patients and the healthy controls. 

Significance was measured by an independent analysis of variance followed by Bonferroni’s 

test for multiple comparisons.
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Figure 2. 
Thrombin-activated fibrinolysis inhibitor (TAFI) in injured patients with HF, EF and healthy 

controls. TAFI (% concentration) is illustrated for healthy controls (control) and injured 

patients with hyperfibrinolysis and eufibrinolysis. All data are expressed as the means ± the 

standard error of the means. *=p<0.05 versus the healthy controls and †=p<0.05 versus both 

EF patients and the healthy controls. Significance was measured by an independent analysis 

of variance followed by Bonferroni’s test for multiple comparisons.
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