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Abstract

Background—Anti-androgenic phthalates are reproductive toxicants that may have additive 

effects on male development. Diet is the primary exposure source for most phthalates, which 

contaminate the food supply through food contact materials and industrialized production.

Objective—To compare dietary sources of cumulative phthalates exposure between “food at 

home” (e.g. food consumed from a grocery store) and “food away from home” (e.g. food 

consumed from fast food/restaurants and cafeterias) in the U.S. general population.

Methods—We estimated cumulative phthalates exposure by calculating daily intake from 

metabolite concentrations in urinary spot samples for 10,253 participants (≥ 6 years old) using 

National Health and Nutrition Examination Survey (NHANES, 2005–2014) data. We constructed 

a biologically relevant metric of phthalates daily intake (Σandrogen-disruptor, μg/kg/day) by 

converting phthalates into anti-androgen equivalent terms prior to their summation. Particular 

foods and the percent of total energy intake (TEI) consumed from multiple dining out sources 

were ascertained from 24-hour recall surveys. Associations with Σandrogen-disruptor levels were 

estimated for children, adolescents, and adults using multivariable linear regression.

Results—We observed a consistent positive association between dining out and Σandrogen-

disruptor levels across the study population (p-trend < 0.0001). Among adolescents, high 
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consumers of foods outside the home had 55% (95% CI: 35%, 78%) higher Σandrogen-disruptor 

levels compared to those who only consumed food at home. The contribution of specific dining 

out sources to Σandrogen-disruptor levels varied by age group. For example, cafeteria food was 

associated with 15% (95% CI: 4.0%, 28%) and 64% (95% CI: 40%, 92%) higher Σandrogen-

disruptor levels in children and adults, respectively. Particular foods, especially sandwiches (i.e. 

cheeseburgers), were associated with increased Σandrogen-disruptor levels only if they were 

purchased away from home (p < 0.01).

Conclusion—Dining out may be an important source of biologically relevant cumulative 

phthalates exposure among the U.S. population. Future studies should evaluate modifiable 

production practices that remove phthalates from the food supply in addition to the efficacy of 

interventions that promote eating fresh foods prepared at home.

Keywords

chemical mixtures; endocrine disruption; fast food; cumulative assessment; food contact materials; 
consumer product chemicals

1. Introduction

Endocrine disrupting chemicals (EDCs) are associated with hormone-mediated health 

outcomes, such as reproductive issues, metabolic disease, and neurodevelopmental 

problems.1,2 In the United States alone, researchers recently estimated the disease cost of 

EDCs at $340 billion, for which phthalates were the second-leading driver.3 Anti-androgenic 

phthalates may have additive adverse effects on fetal sex differentiation that are associated 

with testosterone inhibition during critical stages of pregnancy (i.e. reproductive organ 

development).4 Cumulative phthalate assessments are therefore more biologically relevant 

for human reproductive health than chemical-by-chemical approaches.5,6 Although 

pregnancy is one critical stage of toxicity, phthalates may also contribute to health impacts 

across the life course, including reduced semen quality, obesity, diabetes, and cancer.7–10 

Low testosterone may influence adverse adult metabolic outcomes, suggesting a possible 

mode of action for androgen-disrupting phthalates along this disease pathway.11 Thus, 

efforts to identify opportunities for phthalates exposure reduction may have significant 

implications for preventing metabolic and other hormone-mediated illnesses and decreasing 

the economic burden of EDCs.

Phthalates have many uses in commerce, including food contact materials (e.g. plastic and 

recycled cardboard food packaging), personal care products, medical tubing, and/or any 

material containing polyvinyl chloride (PVC).12–14 Consequently, human exposure is 

ubiquitous, with multiple phthalates simultaneously detected in the vast majority of the U.S. 

population.12,15 Diet is the dominant exposure pathway for most anti-androgenic phthalates, 

especially for high molecular weight compounds such as di(2-ethylhexyl) phthalate (DEHP) 

and di-isononyl phthalate (DiNP).16–19 These phthalates are predominantly found in fatty 

foods such as meat and dairy,14,20 although they have also been linked to grains and spices,
18,21 and likely enter the food supply through packaging, processing, and handling.22–27 

Thus, it is plausible that a significant source of phthalates exposure may come from foods 

prepared outside the home which undergo substantial industrialized production practices, 
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such as in the fast food and restaurant industries, school cafeterias, street food vendors, and 

sports and entertainment facilities.

Consumption of food prepared away from home, rather than food purchased in a store and 

prepared at home, has grown steadily over the last few decades in the United States. 

Between 1970 and 2014, household food expenditures devoted to dining out increased from 

25.9% to 43. 7%, respectively, and over half of total U.S. food dollars are currently spent on 

foods purchased outside the home.28,29 Like adults, children 2-17 years old are dining out 

more, with 35% of their total calories sourced from food prepared away from home in 2003–

6 compared to 20% in 1977–8.30 Among children, younger kids are more likely to eat meals 

offered by their school cafeterias, while adolescents are more likely to eat from competing 

vendors, such as fast food chains.30 Although research has primarily focused on nutrition 

and diet quality with regard to dining out,29–32 chemical exposures introduced through 

increased food packaging, handling, and processing are also important public health 

considerations.

Several studies have investigated the connection between food prepared outside the home 

and phthalate exposures. Zota et al. (2016) recently reported a consistent, positive 

association between fast food consumption and measured urinary metabolites of DEHP and 

DiNP in the U.S. general population,33 and fast food intake has been associated with urinary 

DiNP and butyl benzyl phthalate (BBzP) metabolites in a cohort of young children.34 In 

several smaller studies outside the United States, phthalates have been detected in takeout/

delivery food containers as well as pre-cooked and immediately packaged cafeteria-style 

meals.23,27,35,36 However, a broader analysis across age groups in the U.S. population which 

evaluates multiple sources of food prepared away from and at home is warranted to assess 

the extent to which these and other dietary intake sources are associated with biologically 

relevant phthalate exposures.

Accordingly, this study compares cumulative phthalates exposure between consumers of 

“food away from home” (such as fast food and food from full-service restaurants and/or 

cafeterias) with consumers of “food at home” (such as food purchased from a grocery store) 

among children, adolescents, and adults in the United States.

2. Materials and Methods

2.1 Study population

The U.S. Centers for Disease Control and Prevention (CDC) administers the National Health 

and Nutrition Examination Survey (NHANES) as a nationally representative interview and 

physical examination of the civilian, non-institutionalized general population. We combined 

five cycles of laboratory, questionnaire, and dietary NHANES data between 2005 and 2014 

for this study (http://www.cdc.gov/nchs/nhanes.htm). Our original study population included 

all participants ≥ 6 years old for which phthalate data, urinary creatinine measurements, 

kilocalorie and dietary intake source information were available (N = 12,134). Participants 

with missing information on household income and educational attainment (n = 920) were 

excluded from the study population because we wanted to evaluate these demographic 

characteristics in relation to phthalates exposure. We also excluded participants who did not 
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self-identify as Hispanic, Mexican American, non-Hispanic white, or non-Hispanic black (n 
= 961) due to racial/ethnic ambiguity of other or multi-racial classifications. The final 

sample size included 10,253 study participants.

2.2 Cumulative phthalates exposure assessment

The NHANES survey provides phthalate metabolite measurements for one-third of study 

participants in each survey cycle. Spot urine samples are collected as part of the medical 

examination and analyzed at the CDC in Atlanta, GA., with analytical methods detailed 

elsewhere.37,38 In summary, phthalate metabolites are quantified using high performance 

liquid chromatography coupled with tandem mass spectrometry. Laboratory files for 

2005-12 survey cycles were downloaded from the NHANES website in March 2015 and 

included impurity corrections for certain previously used analytical standards.39 NHANES 

2013-14 data were downloaded in January 2017. The maximum limit of detection (LODmax) 

was used to standardize variable detection limits across survey cycles and concentrations 

below LODmax were substituted with LODmax divided by √2 (Supplementary Table S1).12 

We used data for nine urinary metabolites to estimate exposure for six parent phthalates: di-

n-butyl phthalate (DnBP), di-isobutyl phthalate (DiBP), BBzP, DEHP, DiNP, and diethyl 

phthalate (DEP). Because DiNP’s primary metabolite, mono-isononyl phthalate (MiNP), 

was below the detection limit for most NHANES samples, the secondary metabolite, 

mono(carboxy-isooctyl) phthalate (MCOP), was the only metabolite used to assess DiNP 

exposure.

We constructed a biologically relevant metric of cumulative phthalates exposure by 

summing phthalates based on their relative anti-androgenic potencies, according to our 

previously published method.40 In summary, phthalates were converted into anti-androgen 

equivalent terms by applying unitless relative potency factors (RPF) to daily intake estimates 

of individual parent compounds prior to their summation. A potency-weighted sum of 

estimated daily intake (Σandrogen-disruptor, μg/kg/day) for di-n-butyl phthalate (DnBP), di-

isobutyl phthalate (DiBP), BBzP, DEHP, DiNP, and diethyl phthalate (DEP) was then 

calculated as follows (where i = individual phthalate): Σandrogen-disruptor (μg/kg/day) = 
Σ(Daily Intakei × RPFi) = (DnBP × 1.0) + (DiBP × 0.24) + (BBzP × 0.26) + (DEHP × 0.61) 

+ (DiNP × 0.26) + (DEP × 0.024) (Eq. 1).40 RPFs were constructed previously by scaling 

each phthalate to a reference anti-androgen (DnBP).40 The RPF calculation involved 

comparing benchmark doses (BMDs) associated with fetal testosterone inhibition that were 

published in a 2008 National Academy of Sciences (NAS) report (although DiNP’s RPF 

relied on more recent toxicology data and DEP was assumed to be less potent by one order 

of magnitude).5,40 While the NAS BMDs were based on a singular endpoint, their 

underlying dose response data have since been shown to predict phthalate mixture effects on 

a broader range of postnatal male endpoints,4,6,41 suggesting these RPFs may be appropriate 

for other androgen-mediated outcomes. However, their applicability to neurodevelopment 

and metabolic disease have yet to be determined.

We back-calculated oral daily intake of parent phthalates in μg/kg/day using biomarkers 

(metabolites) in urine because our potency comparisons were based on atomic mass doses of 

parent phthalate compounds administered to rats. Consistent with prior studies and 
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biomonitoring guidance from the NAS, we used the following pharmacokinetic equation to 

estimate daily intake, or “exposure dose”, from urinary metabolite concentrations: Daily 
Intakei = [(MEi × CE)/(FUE,i × 1000)] × [(MWp)/(MWm)]; i = individual phthalate (Eq. 2).
42–44 The equation converts creatinine-adjusted urinary metabolite concentrations (ME) 

(μg/g) into molar equivalents from which molar daily intakes are estimated first by 

multiplying with body weight-adjusted creatinine excretion rate (CE) (mg/kg/day) and 

subsequently dividing by the metabolite’s molecular weight (MWm) (g/mol). The fractional 

molar ratio of excreted metabolite to ingested parent phthalate (FUE), determined in human 

kinetic and metabolism studies by measuring urinary metabolite concentrations in relation to 

known intake of labeled parent compound over a 24-hour period,16,45,46 is then used to 

calculate molar daily intake of the parent phthalate. The parent phthalate’s molecular weight 

(MWp) (g/mol) facilitates final conversion to μg/kg/day, units that are comparable to 

toxicology doses and human population reference values. Phthalate-specific RPF, BMD, 

FUE, and MW values are listed in Supplementary Table S1.

Urinary creatinine is often used as a surrogate for urine dilution, although its use is 

controversial because creatinine excretion rates vary across racial/ethnic groups, sex, age, 

and body mass index (BMI).47 We used average creatinine excretion rates of 23 mg/kg/day 

and 18 mg/kg/day for men and women, respectively. For boys and girls < 20 years old, we 

calculated average creatinine excretion rates of 21 mg/kg/day and 19 mg/kg/day, 

respectively, from the literature.48,49 Alternatively, urine flow rate can be used as a more 

direct volume-based measure of urine dilution if the data are available, although urine flow 

rate has also been shown to vary across demographic groups.50 To use the volume-based 

approach, one would simply replace (MEi × CE) with (UMEi × UE) in the numerator of the 

daily intake equation, where UME is the unadjusted measured urinary metabolite 

concentration (ug/L) and UE is the daily urine flow rate normalized by body weight (mL/kg/

day). Sample calculations for both approaches are provided in supplementary materials of 

our original method publication.40

2.3 Dietary intake exposure assessment

As part of NHANES, the CDC also collects 24-hour dietary recall data from study 

participants that includes extensive information about what foods were eaten, time of eating 

occasion, and food source (where obtained or purchased).51 Energy and nutrient intake are 

later quantified for each food recorded during participant surveys,51–53 and cup-equivalent 

data are also made available by the U.S. Department of Agriculture (USDA).54 We used 

dietary data from the day prior to urine sample collection because phthalates have short 

metabolic half-lives (12-24 hours), and it is reasonable to assume that urinary metabolite 

concentrations measured within ~ 24 hours of parent compound exposure would 

appropriately reflect dietary intake the previous day.46,55 Participants 12 years and older 

completed the survey independently unless they chose otherwise, while proxy-assisted 

interviews were automatically provided for children 6-11 years old.

Based on the methods in Zota et al. (2016), we calculated total energy intake (TEI) in 

kilocalories (kcals) the prior day for each participant by summing NHANES-provided kcals 

for all foods recorded during each participant’s dietary interview.33 We determined total fat 
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in grams by summing NHANES-provided grams of fat for all recorded food items, since 

dining out is positively associated with total caloric and fat intake among the U.S. general 

population,30,31 and high-fat foods have been linked to phthalates exposure.14,20 Total fat in 

kcals was calculated using nine fat grams per calorie as the conversion factor, and the 

percent of TEI from fat was then determined by dividing fat kcals by TEI.56,57 Calculating 

“nutrient density” (i.e. % kcals from fat) is an energy adjustment method commonly used by 

nutritional epidemiologists to reduce the influence of exposure misclassification from 

dietary recall surveys and isolate diet composition from body size, metabolism, and physical 

activity.56,58,59

We categorized all foods reported by each participant as either food away from home 

(prepared at a restaurant, cafeteria, etc.) or food at home (purchased or obtained at a grocery 

store and potentially prepared at home), ascertained from the NHANES survey question 

regarding where the food item (or the majority of its ingredients) was obtained or purchased. 

Seventeen mutually exclusive responses were provided by NHANES. We defined food away 

from home as follows: 1) Fast food, defined by NHANES as food purchased/obtained from 

restaurants without table service, pizza restaurants regardless of waiter/waitress service, and 

all carryout and delivery food; 2) Full-service restaurants, or restaurants with table service, 

including bars, taverns, and lounges; 3) Cafeterias, including K-12 school cafeterias and 

other types; and 4) All other marginal away-from-home sources that each contributed < 2% 

to TEI (and together contributed < 5% to TEI), which included child/family care centers, 

soup kitchen/shelter/food pantry, Meals on Wheels, community food programs, vending 

machines, sport/recreation/entertainment facilities, street vendor/vending trucks, residential 

dining facilities, and fundraiser sales. We defined food at home as items purchased at a store, 

anything home grown or caught, and “from someone else/gift”, which the USDA has 

characterized as dinner cooked by a friend.30 We summed the total NHANES-provided kcals 

consumed for each participant from sources of either food away from home or food at home. 

The contribution of each source to total dietary intake, or the “energy density” of food away 

from home and food at home were determined by dividing total kcals (and total fat kcals) 

from each source by TEI.

2.4 Statistical analysis

All statistical analyses were performed in SAS version 9.4 (SAS Institute Inc., Cary, NC) 

with new sample weights calculated according to analytical guidelines for combining 

multiple cycles of data.37 We used survey-weighted SAS procedures (i.e. PROC 

SURVEYMEANS, PROC SURVEYFREQ, and PROC SURVEYREG) to adjust models for 

population weights as well as the stratified multi-stage sample design. Statistical 

significance was defined at p < 0.05 for two-sided tests. Degrees of freedom for variance 

estimation were determined by subtracting the number of strata by the number of unique 

clusters. Phthalate exposure estimates were log-transformed prior to statistical testing to 

normalize their skewed distributions.

We used linear regression to examine cumulative phthalates daily intake (Σandrogen-

disruptor), our primary outcome of interest, across the following study population 

characteristics: Age (children 6-11, adolescents 12-19, adults 20-59, and older adults ≥ 60 
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years old); sex (male or female); race/ethnicity [non-Hispanic white, non-Hispanic black, or 

Hispanic]; body mass index (BMI) [underweight (< 18.5 kg/m2), normal weight (18.5–25 

kg/m2), overweight (25–30 kg/m2), or obese (≥ 30 kg/m2)]; poverty-to-income ratio, or PIR 

[ratio of household income to poverty threshold adjusted to family size and inflation: < 1 

(beneath poverty threshold), 1–2.99, or ≥ 3]; educational attainment (less than high school, 

high school graduate, or any post high school education) in adults only; NHANES survey 

cycle (2005–6, 2007–8, 2009–10, 2011–12, or 2013–14); time of sampling session 

(morning, afternoon, or evening); and dietary intake of food prepared away from home [any 

(participants who reported dining out the prior day) or none (participants who reported 

consuming only food at home the prior day)]. Univariate statistics for Σandrogen-disruptor 

levels were calculated from these models. We also added NHANES survey cycle and a 

statistical interaction term to the dining out model to observe whether the association with 

Σandrogen-disruptor levels varied over time.

We then compared dietary intake of food away from home (our primary exposure of interest) 

across several population characteristics. Specifically, we used the Rao Scott chi-square test 

of independence, first across age (children, adolescents, adults, and older adults), then by 

sex, and finally, across NHANES survey cycle. The remainder of statistical analyses focus 

on age-specific subgroups, since differences in Σandrogen-disruptor levels and dietary 

behavior across age were more pronounced than between men and women or across time.

For our primary multivariable analysis, we followed the approach of Zota et al. (2016)33 and 

modeled dining out as both the dietary intake of food away from home (% TEI), or the 

percent of TEI consumed outside the home, and away from home-derived fat intake (% 

TEI), or the percent of TEI consumed as fat kcals from dining out sources. Because many 

participants did not consume any calories outside the home (resulting in highly left-

truncated distributions for these variables), we categorized these dietary intake source 

variables into three groups: none (participants who consumed 100% of their calories, or fat 

calories, from food at home the prior day), low (participants who consumed < weighted 

median of those who had some dietary intake of food away from home > 0), and high 

(participants who consumed ≥ the weighted median of those who had a dietary intake of 

food away from home > 0). Covariates included all population characteristics evaluated in 

unadjusted regression analyses (with age modeled continuously) except for BMI, which 

could potentially be on the causal pathway between our exposure and outcome of interest. 

We did not adjust for creatinine as an independent covariate since it was included in the 

calculation of phthalates daily intake (Eq. 2).

We additionally assessed the influence of total dietary intake on phthalates exposure by 

replacing the away-from-home dietary intake variables in our main analysis with TEI and 

total fat intake (% TEI), which were each categorized into low, middle, and high tertiles 

from age-specific weighted distributions. These “baseline” dietary intake variables were not 

added as independent covariates in core regression models because our primary dietary 

exposures of interest were normalized by TEI, which reduces bias from dietary recall 

surveys.56,58,59
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Third, we constructed separate multivariable models for specific sources of food away from 

home, including fast food, full-service restaurants, and cafeterias (for children, adolescents, 

and adults). Specific away-from-home food sources were modeled as categorical 

independent variables because the high proportion of away-from-home “non-consumers” 

results in truncated distributions that pose statistical challenges in survey-weighted data 

analysis. Instead, we compared each “consumer” group to the same referent population in 

separate models to reduce the impact of potential confounding and correlation among 

dietary variables. Specifically, we compared consumers of “any” fast food (followed by any 

restaurant food and any cafeteria food) to a standard “none” referent category consisting of 

participants who did not consume any food away from home the prior day (e.g. all of their 

calories came from foods purchased at a store), with 31% of children and 43% of 

adolescents and adults meeting this criteria.

We also examined the influence of food type on phthalates exposure by performing 

multivariable regression to estimate associations between particular foods (fruits/vegetables, 

sandwiches, fried potatoes, and pizza, each modeled separately as binary or categorical 

independent variables) and Σandrogen-disruptor levels. First, we summed USDA-converted 

cup-equivalents for fruit (including 100% fruit juice) and vegetables (including legumes but 

excluding fried potatoes) from each participant’s 24-hour food record.54 We grouped 

participants into yes/no categories based on whether or not their daily dietary 

recommendations were met for either fruit or vegetable intake.60 Next we constructed a 

common referent group restricted to non-consumers of sandwiches, fried potatoes, and 

pizza, and we compared consumers of each food to the common referent group in separate 

at-home and away-from home models (since a small number of participants consumed foods 

from both sources). For example, away-from-home sandwich consumers (who may have 

also consumed at-home sandwiches but not fried potatoes or pizza) were compared to 

participants who did not eat any sandwiches, fried potatoes, or pizza (whether purchased at 

or away from home) the prior day. We selected energy-dense foods as potential sources of 

phthalates exposure regardless of source, restricting to sandwiches containing animal protein 

(meat/poultry/fish, dairy, and/or egg). Similar to Sebastian et al. (2015),66 we counted 

sandwiches recorded as single items (e.g. one food record described as “cheeseburger”) and 

those recorded as combinations of individual ingredients (e.g. multiple food records for 

cheese, beef patty, bun, and tomato consumed in the same meal). We added total fat and 

energy intake to these models to evaluate them as potential confounders or mediators.

From log-level regression models, the percent difference in cumulative phthalates exposure 

95% confidence interval (95% CI) were estimated as (e(β) −1) * 100 and 

(e(β ± critical value × SE) −1) * 100, respectively, where β is the beta coefficient and SE is the 

standard error. We tested for linear trends in our association of interest by modeling 

categorical dietary intake variables as ordinal terms in multivariable models. Finally, 

adjusted associations with dining out were evaluated for each phthalate separately. We also 

calculated the percent geometric mean (GM) contribution to Σandrogen-disruptor from 

individual phthalate daily intake estimates (μg/kg/day).
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2.5 Sensitivity analysis

We performed a sensitivity analysis to evaluate alternate approaches to urine dilution 

correction and daily intake estimation, since these factors may introduce uncertainty and 

variability into regression models.47,50,62 We specifically assessed whether alternate 

measures of urine dilution (i.e. urine flow rate rather than creatinine) and/or the application 

of potency-weights directly to metabolites impacted our results. Adjusted associations were 

compared between Σandrogen-disruptor (μg/kg/day) and four other potency-weighted 

cumulative metrics (with more details provided in the method publication)40: 1) Phthalate 

daily intake metric calculated with individual urine flow rate rather than average creatinine 

excretion rate (Σurine-flow, μg/kg/day); 2) Metabolite-based analyte excretion rate (mass/

time) calculated using urine flow rate (Σexrate-rpf, μg/day); 3) Metabolite concentration-

based metric without urine dilution correction (Σmetab-rpf, μg/L); and 4) Metabolite 

concentration-based metric correcting for creatinine as an independent variable in regression 

models (Σmetab-rpf + creat, μg/L).40 We also re-calculated these cumulative metrics using 

molar mass to compare adjusted associations with atomic mass-based metrics. These models 

were restricted to 2009-14 data because NHANES did not report urine flow rate data prior to 

2009. We selected the largest age-specific subgroup evaluated in core regression models for 

this analysis (adults 20-59 years old, N = 2695).

In additional sensitivity analyses, we performed multivariable regression to evaluate the 

continuous association between total energy intake (TEI) and cumulative phthalates 

exposure, stratified between consumers of food away from home and non-consumers 

(participants who consumed all of their calories from food at home). Finally, we added BMI 

to core multivariable regression models to evaluate its potential influence on the association 

between dietary intake of food away from home (% TEI) and cumulative phthalates daily 

intake (Σandrogen-disruptor).

3. Results

The majority of study participants were adults with at least some post-high school education, 

non-Hispanic white, above normal weight, and in the middle income category (Table 1). 

More participants reported dining out than eating only at home the prior day (61 vs 39%). 

Unadjusted cumulative phthalates daily intake (Σandrogen-disruptor) was 35% (95% CI: 

29%, 41%) higher among consumers of food away from home compared to those who ate 

only at home (p < 0.0001). Higher Σandrogen-disruptor levels were observed in earlier 

NHANES cycles, with a 50% total decrease in exposure between 2005 and 2014 (p < 

0.0001). Cumulative phthalates were also elevated in males; Hispanic and white compared to 

black participants; underweight compared to normal weight participants; those in the highest 

(≥ 3) compared the middle (1 – 3) PIR; adults with the least (< high school) compared to the 

most (> high school) education; and in evening rather than morning sample collection times. 

Unadjusted Σandrogen-disruptor levels were fairly similar for adolescents, adults, and older 

adults (GM range: 3.9 to 4.3 μg/kg/day), while the GM for children (GM = 6.6 μg/kg/day; 

95% CI: 6.2, 6.9) was 50–70% higher (p < 0.0001) (Table 1 and Figure 1).

Dietary consumption patterns varied significantly by age and sex (p < 0.0001), with 52% of 

older adults (compared to ~ 30-35% of younger participants) eating only food at home the 
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prior day (Table 2). A higher percentage of children ate cafeteria food compared to 

adolescents, but a higher proportion of adolescents than children consumed calories from 

fast food and full-service restaurants. Among all age groups, adults (20-39 years) obtained 

the highest percentage of their total calories from fast food and full-service restaurants. Men 

were more likely to consume food outside the home than women, but the differences were 

less pronounced than those observed across age (Table 2). Dining out differences remained 

fairly consistent over time, ranging from 58% in 2009–10 to just under 65% in other years 

(data not shown). Differences in Σandrogen-disruptor levels between consumers of food 

away from home ranged from 29% (95% CI: 16%, 44%) in 2005–6 to 44% (95% CI: 32%, 

58%) in 2011–12; however, we did not observe evidence of effect modification by survey 

cycle year (pinteraction = 0.48) for the association between eating out and Σandrogen-

disruptor levels.

In our main analysis, we found a positive association between dining out and cumulative 

phthalates daily intake (Σandrogen-disruptor), with evidence of a linear trend across 

exposure categories, among all age-specific subgroups (p for trend < 0.0001) (Figure 2 and 

Table 3). While associations were significant in all age groups, the magnitude of association 

was largest for adolescents, with high consumers of food away from home having 55% (95% 

CI: 35%, 78%) higher Σandrogen-disruptor levels than adolescents who ate only food at 

home the prior day. The weakest associations were observed among children, with high 

consumers of food away from home having 30% (95% CI: 16%, 45%) higher Σandrogen-

disruptor levels than children who consumed all their calories from food at home. Similar 

positive associations were observed across age-specific subgroups between food away from 

home-derived fat intake and Σandrogen-disruptor levels, including evidence of a linear trend 

between exposure categories (p for trend < 0.0001). The measures of total dietary intake, 

TEI and total fat intake (% TEI), were positively associated with Σandrogen-disruptor levels 

among adults, with 14% (95% CI: 6.6%, 22%) higher levels in high compared to low fat 

consumers (p for trend = 0.0002) and 9.5% (95% CI: 1.0%, 19%) increased Σandrogen-

disruptor levels in high relative to low TEI consumers (p for trend = 0.03); however, these 

baseline associations were substantially smaller than those observed for dining out (Table 3).

Each specific source of food away from home was significantly associated with cumulative 

phthalates daily intake (Σandrogen-disruptor) across our study population (Table 4). 

However, contributions from specific dining out sources to Σandrogen-disruptor levels 

varied by age group. For example, when compared to a common referent group (restricted to 

children who consumed only food at home the prior day), children who ate cafeteria food 

had 15% (95% CI: 4.0%, 28%) higher Σandrogen-disruptor levels while children who ate 

restaurant food had 46% (95% CI: 22%, 73%) higher levels. We observed stronger 

associations between cafeteria food intake and Σandrogen-disruptor levels among 

adolescents and adults (compared to their respective referent groups), with adult cafeteria 

consumers having 64% (95% CI: 40%, 92%) higher Σandrogen-disruptor levels in 

comparison to adult non-consumers. (Table 4).

Across age-specific subgroups, consuming sandwiches, fried potatoes, and pizza at home 

was not associated with cumulative phthalates daily intake (Σandrogen-disruptor), with the 

exception of fried potatoes, which were associated with reduced Σandrogen-disruptor levels 
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among adolescents only (Table 5). On the other hand, consuming sandwiches outside the 

home was consistently associated with increased Σandrogen-disruptor levels across the study 

population. For example, away-from-home sandwich consumption was associated with > 

30% higher Σandrogen-disruptor levels in all age groups (p < 0.005). Results were less 

consistent for other foods purchased away from home, although pizza and fried potatoes 

were positively associated with Σandrogen-disruptor levels in children and adults, 

respectively (p < 0.01). Meeting daily guidelines for fruit or vegetable intake was associated 

with reduced Σandrogen-disruptor levels in adolescents (p = 0.03), but the difference was no 

longer significant when models adjusted for TEI, indicating that total caloric intake may 

attenuate the association between fruit or vegetable intake and phthalates exposure 

(Supplementary Table S2).

When evaluated separately, daily intake of DEHP and DiNP were both positively associated 

with dining and we observed a linear trend between exposure categories (p < 0.0001), with 

high consumers of food away from home having 74% increased DiNP exposure compared to 

participants who consumed all of their calories from food at home, such as food purchased 

from the grocery store (Table 6). These high molecular weight phthalates were the top 

contributors to Σandrogen-disruptor (45% and 30%, respectively), while DnBP ranked third 

(16%). However, DnBP was negatively associated with dining out (p = 0.056), and all other 

phthalates were not individually associated with dietary intake of food away from home. 

Thus, dining out associations were largely driven by DEHP and DiNP (Table 6).

Consumption of food away from home was positively associated with cumulative phthalates 

exposure across all supplementary metrics that evaluated alternate approaches to urine 

dilution correction and daily intake estimation (Supplementary Table S3). However, the 

magnitude of associations varied across models. Adjusted associations for daily intake 

metrics, including the main outcome variable (Σandrogen-disruptor) and the metric that uses 

urine flow rate rather than creatinine to estimate phthalate daily intakes (Σurine-flow), were 

more similar to each other and larger than those observed for metabolite-based metrics. Of 

the three metabolite-based metrics, the metric that applied RPF weights directly to non-

creatinine-corrected urinary metabolite concentrations (Σmetab-rpf) generally produced the 

strongest associations, followed by the metric combining RPF-weighted metabolite 

excretion rates (Σexrate-rpf). The metric that applied RPF weights directly to urinary 

metabolite concentrations and adjusted for creatinine as an independent covariate in the 

multivariable model (Σmetab-rpf + creat) generally produced the weakest associations. 

Associations were slightly attenuated when RPFs were applied directly to molar mass-based 

metrics (i.e. molar urinary concentrations, molar excretion rates, and molar intake rates) 

(Supplementary Table S3).

Results from the sensitivity analysis evaluating the continuous association between TEI and 

cumulative phthalates daily intake (Σandrogen-disruptor), stratified by consumption of food 

at home and food away from home, were reasonably consistent with our main analysis 

among children, adolescents, and adults 20-59 years old (Supplementary Table S4). Results 

were less consistent for older adults. Among older adults, an increase of 100 kcals was 

associated with 1.6% (95% CI: −2.6%, −0.58%) lower Σandrogen-disruptor levels among 
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consumers (p = 0.002) and 0.83% (95% CI: 0.13%, 1.5%) higher Σandrogen-disruptor levels 

among non-consumers (p = 0.02) (Supplementary Table S4).

Finally, including BMI in core regression models did not substantially influence associations 

between dietary intake of food away from home and Σandrogen-disruptor levels (data not 

shown).

4. Discussion

In this cross-sectional study of NHANES participants sampled between 2005 and 2014, 

dining out was positively associated with potency-adjusted exposure to multiple phthalates 

across age groups in the U.S. general population. Among adolescents, consuming food away 

from home the prior day was associated with as much as 55% higher cumulative phthalates 

exposure compared to eating food at home only (such as food purchased from the grocery 

store).

To our knowledge this is the first study to compare biologically relevant cumulative 

phthalates exposure between individuals eating foods from multiple sources away from 

home to those eating predominantly store-bought foods. While prior work has shown that 

phthalate exposures are associated with fast food intake among the U.S. general population,
33 this study demonstrates that other sources of food away from home, such as full-service 

restaurants and cafeterias, are also important sources of phthalates exposure. It also shows, 

for the first time, that the contribution of specific food sources varies by age group. For 

example, cafeteria food intake was associated with a smaller percent difference in phthalates 

exposure among children than teenagers and adults, even though the proportion of children 

who consumed cafeteria food was seven times higher than adults and double that of 

adolescents. This suggests that food choices in the cafeteria setting may vary with age. 

Indeed, adolescents have greater autonomy than younger children in their cafeteria food 

choices, and high-school meals are generally richer in fat and lower in nutritional quality 

than those prepared for younger kids.30

Children in our study had substantially higher cumulative phthalates exposure than other age 

groups (70% higher than older adults), despite the fact that adolescents and adults consumed 

more overall calories from restaurants and/or fast food establishments the prior day. This 

finding is consistent with previous research on phthalates in children, which has suggested 

that several age-dependent biological and behavioral differences may explain the disparity.
63,64 For example, children consume a higher proportion of food to body size, and phthalate 

metabolism varies with age.63–65 Also, younger kids may ingest more phthalates from 

consumer and personal care products that settle in house dust by playing on the floor and 

engaging in hand-to-mouth activity.66–68 Children also eat more snack foods than older 

groups69 and may be consuming additional phthalates from processed or packaged foods 

eaten at home. For example, a recent analysis by the Coalition for Safer Food Processing and 

Packaging detected higher phthalate levels in processed macaroni and cheese powder than in 

other U.S. cheese products.70
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Older adults consumed fewer calories than younger groups in this study (with the highest 

TEI reported at ~ 6300 kcals compared to > 9000 kcals in adolescents and younger adults), 

yet unlike other groups their TEI was negatively associated with phthalates exposure among 

dining out consumers in the stratified sensitivity analysis. Possible reasons for this result 

could be that differential food preferences and/or use of meal services influence the types of 

food consumed by older adults (e.g. ordering a salad instead of a sandwich at a restaurant, 

eating nutrition-oriented meals provided by Meals on Wheels, etc.),71,72 and older adults 

who dine out appear to consume more calories overall compared to those who do not dine 

out (~130 more kcals on average in this study). Eating more calories away from home would 

reduce the estimate of association among dining out consumers if TEI is negatively 

associated with phthalates, as we observed in our main analysis. Moreover, a linear model 

with TEI and phthalates exposure may not be appropriate for this age group; we did not find 

a linear trend across TEI groups in our main analysis (with TEI modeled categorically), and 

we observed minimal linearity when we modeled TEI continuously in the sensitivity 

analysis. Finally, adults are more likely to use medications or require outpatient services and 

hospitalizations as they age,73 which may be important non-dietary sources of phthalate 

exposures that we were unable to account for in this study.74,75 Future investigation of 

phthalate exposures among older adults should assess the role of unique dietary patterns in 

conjunction with non-dietary exposure sources in this subgroup.

Interestingly, we found that particular foods, especially sandwiches (i.e. cheeseburgers), 

were associated with increased cumulative phthalates exposure only if consumed from fast 

food/restaurant, cafeteria, or other dining out establishments. While previous studies have 

identified important at-home sources of dietary phthalates exposure, including store-bought 

meats, dairy products, olive oil, cooking spices, and bread,21,25,76–78 our findings suggest 

that consuming foods from the grocery store may reduce exposures relative to dining out. 

However, few studies have evaluated phthalates in restaurant and cafeteria food. Research on 

pre-cooked and immediately packaged school and hospital meals in Europe and Japan23,26,79 

may be relevant for U.S. schools, which are increasingly outsourcing their food preparations 

off-site.80,81 The influence of cooking methods (i.e. phthalate levels after boiling compared 

to frying foods)82 may also be pertinent for restaurants or cafeterias that cook foods on-site. 

However, many data gaps regarding specific contamination pathways in U.S. food industries 

have yet to be addressed.

Food contamination sources are difficult to distinguish between industries because 

phthalates may enter the food supply from many different food contact materials both 

upstream (e.g. processing equipment such as conveyer belts and industrial tubing) and 

downstream (e.g. food preparation products such as plastic wrap and food handling gloves).
14,22,26,83 Focusing on key differences between industries may help guide research directions 

going forward. For example, compared to large-scale supermarkets, which may have 

company-owned processing plants and distribution centers, restaurants and cafeterias 

typically rely on local distributors that potentially receive products from a variety of sources.
81 Less in-house control may be one factor that contributes to increased phthalates 

contamination along dining out supply channels, though more research is required to make 

this determination. High fat meals and large portion sizes typically offered by the U.S. food 
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service industry may further compound dietary exposures along this pathway,29,30 which 

should also be evaluated in future work.

Despite our findings, highly processed store-bought foods may also contribute to phthalates 

exposure. For example, higher phthalate levels in frozen compared to home-made French 

fries were recently attributed to increased transport activity and contact with factory 

equipment.82 Prepared foods are also rising in popularity among U.S. supermarkets,81,84,85 

and NHANES recently acknowledged that foods purchased from the store are now 

considered a suboptimal proxy for home preparation due to the proliferation of prepared or 

ready-to-eat foods among U.S. grocery stores (https://wwwn.cdc.gov/nchs/nhanes/

2011-2012/DR1IFF_G.htm). However, we evaluated NHANES survey data from earlier 

years in which store-bought foods were classified as “prepared away from home” rather than 

“away from home” and did not observe changes in the association between dining out and 

cumulative phthalates exposure across time. Moreover, our findings suggest there may be 

true differences in phthalate exposures between food purchased away from home and food 

purchased from the store (regardless of where prepared). Future efforts to characterize food 

production practices that increase dietary phthalates exposure should target prepared, 

processed, and/or packaged foods across multiple food industries, with particular emphasis 

placed on fast food/restaurants and cafeterias.

Together, DEHP and DiNP comprised 75% of our cumulative phthalates exposure metric. 

Although DEHP contributed more to the metric than DiNP (45% compared to 30%, 

respectively), DiNP was more strongly associated with dining out (74% compared to 30%, 

respectively). This is consistent with previous research suggesting that fast food 

consumption may be a unique source of DiNP exposure.34 Although fewer studies have 

assessed DiNP sources, especially in the United States, evidence suggests that DiNP is 

replacing DEHP in the global plasticizers market and in food contact materials specifically.
18,33,86 Additionally, U.S. biomonitoring trends have reported DiNP increases (coupled with 

steady DEHP declines) in recent years.12,40 In this study, we observed decreased cumulative 

phthalates exposure over time, likely due to DiNP’s lower relative potency (though it is a 

recognized anti-androgen of concern),16,86 while the association between dining out and 

cumulative phthalates exposure remained relatively constant. Thus, if dining out trends 

remain constant or increase over time, food service products may continue to be important 

sources of anti-androgenic exposure going forward. Moreover, while DnBP, DiBP, BBzP, 

and DEP were not individually associated with dining out in our study, diet is suspected to 

be the dominant exposure pathway for most phthalates.16,19 Thus, future studies should 

assess food contamination pathways more broadly for all phthalates, with a focus on 

emerging anti-androgens such as DiNP. Forthcoming work should also examine sources of 

phthalates in combination, which may inform strategies to reduce biologically relevant 

cumulative exposures.5,6

Although our cumulative metric is biologically meaningful, several limitations should be 

addressed in future research. First, the method assumes that relative potencies are accurately 

predicted from toxicology studies and are appropriate for multiple endpoints. While fetal 

testosterone inhibition predicts additive effects on other male developmental endpoints in 

laboratory studies, reproductive organ malformations,4,6 more work is needed to examine 
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the method’s applicability to other hormone-mediated outcomes. For example, phthalates 

may influence risk of obesity and diabetes by disrupting androgen (or even thyroid hormone) 

activity in adult men and women,87–89 and their affinity for binding the peroxisome 

proliferator-activated receptor (PPAR-γ) has gained more recent attention, particularly since 

PPAR-γ effects may contribute to fetal programming of metabolic disease.90–93 However, 

current data gaps preclude our ability to compare anti-androgenic and PPAR-γ potencies, 

since metabolic toxicology studies vary in terms of whether experiments were performed 

with phthalate metabolites or parent compounds, mouse or human cells, and so forth.94–98 

Mixture studies on PPAR-γ could resolve these issues and inform whether the metric is 

appropriate for metabolic disease. Relative potency data for phthalates and thyroid function 

during pregnancy may also help discern the method’s applicability to neurological outcomes 

in children, since thyroid hormones are critical for fetal brain development.99 Moreover, 

while our results were robust across alternate cumulative exposure metrics, future efforts to 

identify optimal approaches for urine dilution correction and daily intake estimation that 

reduce potential bias in regression models47,50,62 would provide useful guidance for 

exposure scientists, risk assessors, and epidemiologists who seek to evaluate phthalate 

exposures in combination.

Other study limitations include the cross-sectional design of NHANES, which makes 

causality difficult to determine and can lead to misclassification of phthalate exposures (i.e. 

through use of spot samples that may not capture within-person variation over time).100,101 

However, we assessed dietary intake specifically for the day prior to urine sample collection, 

providing temporal support for a causal association between dining out and phthalates 

exposure. The NHANES sampling strategy also minimizes the effect of this 

misclassification at the population-level by collecting urine from study participants at 

varying points throughout the day (morning, afternoon, and evening). The 24-hour dietary 

recall survey is also prone to misclassification from inaccurate self-reporting of foods and/or 

portion sizes,56,59,102 but this form of bias would likely under-estimate associations in this 

study. For example, the weaker associations we observed in children might be partially 

attributable to proxy-assisted interviews in which kids with high phthalates intake may not 

be honest about what foods they consumed away from home when interviewed in front of 

their parents. Converting self-reported foods into kcals may introduce additional uncertainty 

due to assumptions about accurate recording and interpretation of the amount, size, and 

mass-to-energy conversion of reported foods.102 While our nutrient density approach to 

energy adjustment (converting to kcals and dividing by TEI) has been shown to reduce this 

bias,56–59 a longitudinal dietary intervention or elimination study may be more appropriate 

for future identification of dietary sources. Finally, although we examined foods that are 

likely to contain phthalates regardless of their source (i.e. sandwiches containing meat and 

cheese), our results may be influenced by residual confounding, since meal type is often 

correlated with source. For example, ~60% of cheeseburgers and 50% of poultry sandwiches 

consumed by the U.S. population are from fast food restaurants whereas ~75% of cold cut 

sandwiches are from the store.103 Future research should assess whether different sandwich 

types, which may be more or less likely to be prepared away from rather than at home (with 

store-bought ingredients), may confound associations between dining out and cumulative 

phthalates exposure.
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Despite these limitations, our study provides important information about dietary sources of 

cumulative phthalates exposure across age groups in the U.S. general population. We found 

that relative to food consumed from a grocery store (and potentially prepared at home), food 

consumed from full-service restaurants, fast food establishments, and cafeterias (prepared 

away from home) was associated with increased potency-adjusted exposure to multiple anti-

androgenic phthalates. Efforts should be made to identify modifiable production practices 

that mitigate food product contamination and ultimately remove phthalates from the food 

supply. The effectiveness of eating and preparing food more frequently at home as a way to 

reduce biologically relevant phthalate exposures should also be examined in future studies, 

with continued emphasis placed on less processed and packaged store-bought foods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. Dining out (restaurants and cafeterias) may increase cumulative phthalates 

exposure

2. Sandwiches purchased away from home are associated with higher phthalate 

levels

3. Two thirds of the U.S. population eat at least some food outside the home 

daily

4. In general, children have higher phthalate levels than adolescents or adults
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Figure 1. 
Univariate distribution of cumulative phthalates daily intake (Σandrogen-disruptor, μg/kg/
day) among age-specific subgroups in NHANES 2005-14 (N = 10,253). Boxes represent 

interquartile range (IQR: 25th to 75th percentiles). Dark lines represent medians. Dashed 

lines represent geometric means. Red dot-dashed lines represent arithmetic means. Whiskers 

extend to min and max (Max = Most extreme values within 1.5 • IQR of the median). 

Outliers were defined as values below the min or max and are represented by dark points, 

and hollow points denote outliers off the y-axis scale. A total of 127 (8.3%), 205 (11%), 469 

(10%), and 200 (8.9%) outliers were observed among children, adolescents, adults, and 

older adults, respectively. P < 0.0001 from statistical test of difference between age-specific 

subgroups.

Varshavsky et al. Page 24

Environ Int. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Adjusted percent difference and 95% CI of cumulative phthalates daily intake (Σandrogen-

disruptor, μg/kg/day) among age-specific subgroups in NHANES 2005-14 (N = 10,253). 

Covariates: Sex, age, race/ethnicity, poverty-to-income (PIR), education (adults only), 

NHANES survey cycle, and time of sampling session. P for trend was < 0.0001 for all age 

subgroups. Low and high intake divided at weighted median of participants who consumed 

any food away from home the prior day. Referent groups include participants who did not 

consume any food away from home the prior day (i.e. 100% of their calories came from 

food at home, such as from a grocery store). TEI = Total energy intake (kcals).
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Table 1

Unadjusted association between cumulative phthalates daily intake (Σandrogen-disruptor) and study 

population characteristicsa in NHANES 2005–14 (N = 10,253)

Σandrogen-disruptor (μg/kg/day)

Population Characteristics n (%) Percent diff (95% CI) GM (95% CI)

Age (years)

 ≥ 60 2244 (22) Referent 3.9 (3.7, 4.2)

 20-59 4601 (45) 9.2 (2.4, 17)* 4.3 (4.1, 4.5)

 12-19 1887 (18) 9.2 (1.3, 18)* 4.3 (4.0, 4.6)

 6-11 1521 (15) 70 (56, 81)* 6.6 (6.2, 6.9)

Sex

 Male 5089 (50) Referent 4.5 (4.3, 4.6)

 Female 5164 (50) −4.4 (−8.2, −0.4)* 4.3 (4.1, 4.5)

Race/ethnicity

 Black 2633 (26) Referent 3.9 (3.7, 4.1)

 White 4592 (45) 15 (7.1, 26)* 4.4 (4.2, 4.8)

 Mexican American/Hispanic 3028 (30) 16 (7.1, 26)* 4.5 (4.2, 4.8)

Body mass index (BMI)b

 Normal (18.5-25 kg/m2) 3211 (32) Referent 4.3 (4.1, 4.5)

 Underweight (< 18.5 kg/m2) 1230 (12) 39 (29, 49)* 6.0 (5.6, 6.3)

 Overweight (25-30 kg/m2) 2751 (27) −0.8 (−6.2, 4.8) 4.3 (4.0, 4.5)

 Obese (≥ 30 kg/m2) 2985 (29) −2.6 (−8.1, 3.2) 4.3 (4.1, 4.5)

Poverty:income ratio (PIR)

 ≥ 3 (Highest income) 3389 (33) Referent 4.5 (4.3, 4.8)

 1-3 (Moderate income) 4260 (42) −7.4 (−13, −1.8)* 4.2 (4.0, 4.4)

 < Poverty line 2604 (25) −5.2 (−12, 1.8) 4.3 (4.1, 4.5)

Educationc

 > High School 3420 (50) Referent 4.3 (4.1, 4.5)

 = High School 1652 (24) −4.0 (−10, 2.3) 4.1 (3.9, 4.4)

 < High School 1773 (26) −9.3 (−15, −2.8)* 3.9 (3.7, 4.1)

Survey cycle

 2013-14 1873 (18) Referent 3.5 (3.3, 3.7)

 2011-12 1735 (17) 16 (3.4, 30)* 4.1 (3.7, 4.5)

 2009-10 2241 (22) 21 (10, 33)* 4.3 (4.0, 4.6)

 2007-8 2193 (21) 39 (25, 55)* 4.9 (4.5, 5.3)

 2005-6 2211 (22) 49 (34, 66)* 5.2 (4.8, 5.7)

Sampling session

 Morning 4833 (47) Referent 4.2 (4.0, 4.4)

 Afternoon 3629 (35) −2.0 (−7.0, 3.2) 4.1 (4.0, 4.4)
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Σandrogen-disruptor (μg/kg/day)

Population Characteristics n (%) Percent diff (95% CI) GM (95% CI)

 Evening 1791 (18) 22 (15, 30)* 5.2 (4.9, 5.4)

Self-reported dietary intake of food away from home (prior day)

 None 4024 (39) Referent 3.6 (3.5, 3.8)

 Any 6229 (61) 35 (29, 41)* 4.9 (4.7, 5.1)

GM = Geometric mean.

a
From linear regression models where null hypothesis assumes no difference from referent category.

b
Sample size restricted to 10,177 due to missing BMI data.

c
Educational attainment restricted to adults only (N = 6845).

*
p<0.05
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