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Abstract

Because in PET imaging cervical tumors are close to the bladder with high capacity for the 

secreted 18FDG tracer, conventional intensity-based segmentation methods often misclassify the 

bladder as a tumor. Based on the observation that tumor position and area do not change 

dramatically from slice to slice, we propose a two-stage scheme that facilitates segmentation. In 

the first stage, we used a graph-cut based algorithm to obtain initial contouring of the tumor based 

on local similarity information between voxels; this was achieved through manual contouring of 

the cervical tumor on one slice. In the second stage, initial tumor contours were fine-tuned to more 

accurate segmentation by incorporating similarity information on tumor shape and position among 

adjacent slices, according to an intensity-spatial-distance map. Experimental results illustrate that 

the proposed two-stage algorithm provides a more effective approach to segmenting cervical 

tumors in 3D 18FDG PET images than the benchmarks used for comparison.
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1 Introduction

In 2015, cervical cancer was the second leading cause of death due to cancer in women aged 

20 to 39 years. Moreover, 13,240 new cases of cervical cancer are predicted for 2018 

resulting in an estimated 4,170 deaths [1]. Positron emission tomography (PET) employing 

radiopharmaceutical 18fludeoxyglucose (18FDG) is one of the most valuable imaging 

modalities for the staging and follow-up of cervical cancer [2], offering accurate 

identification of primary tumors and metastases [3–7] [8] and providing important 

information to delineate treatment targets. In addition, quantitative information extracted 
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from PET also allows health care providers to evaluate treatment response [9]. All these 

potential applications can only be achieved upon accurate segmentation of tumors in 18FDG 

PET images. Although manual segmentation/delineation is routinely used in the clinic, this 

process is time-consuming and observer-dependent, indicating the need for automatic or 

semi-automatic segmentation of tumors from PET.

However, one particular challenge in the automatic segmentation of cervical tumors is their 

proximity to normal organs with high capacity of the secreted 18FDG tracer (e.g., bladder). 

The intensity values of the normal organs may be similar or even higher than those of avid 

tumors (Fig. 1), confounding the definition of simple standardized uptake value (SUV)-

based region-of-interest (ROI) according to a certain threshold value. Over the past few 

years, various methods have been proposed to segment tumors in 18FDG PET. As 18FDG 

PET images are usually characterized by low spatial resolution and high contrast [10], most 

of the developed segmentation methods are based on thresholding techniques [11–15]. 

However, because these techniques define target/ROI volumes from thresholding value(s) 

based on image intensity, any fixed or iterative thresholding method may fail to segment 

cervical tumors if their SUV intensity values are similar to those of normal organs. The same 

situation is expected for region-growing [16, 17], gradient-based [18], and active-contour 

[17] methods because they primarily rely on variations in intensity values. In contrast, 

affinity propagation clustering [19, 20] and graph-based segmentation [21–23] methods have 

also been applied to PET imaging. These methods rely on similarities computed among the 

voxels by comparing their extracted local features that may contain more information 

beyond voxel intensity. However, global and geometrical features of the tumors are not 

included, which may bias the final results, especially in cervical tumor segmentation on PET 

images where local features of tumor and bladder may be close to each other. In addition to 

the unsupervised methods mentioned earlier, deep convolutional neural network-based 

methods [24–27] have also demonstrated to be promising in medical image segmentation. 

However, these learning-based models require a large training dataset, and their performance 

strongly depends on the hyper-parameters used for network construction and training.

We developed a novel segmentation algorithm for cervical tumors on PET by explicitly 

considering the similarity between two adjacent slices. Our study is based on the observation 

that tumor shape and area are relatively “continuous” in adjacent slices. In other words, 

accurate segmentation on one of the slices can help regularize the contours on the rest of the 

slices. We propose a two-stage scheme that combines graph-cut algorithm and a similarity 

based variational model (GCSV). In the first stage, we perform a rough segmentation by 

incorporating local intensity and texture information for the rest of the slices based on 

graph-cut. The segmentation is conducted on a manually contoured tumor on one of the 

slices as reference. In the second stage, a novel similarity-based variational model is 

formulated to propagate the manual contour and adjust the initial segmentation. The 

similarity information is extracted by integrating the total variation among adjacent slices 

with segmentation accuracy probability (SAP). The proposed SAP aims to estimate the 

probability of correct segmentation for each voxel based on its positional similarity to the 

tumor contour on the reference slice, while the total variation among adjacent slices is used 

to regularize the shape similarity. Hence, a larger penalty will be assigned to the variations 

corresponding to the voxels with lower SAP to enforce higher consistency along the 
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different slices. By combining the two stages of the proposed scheme, the problem of 

segmenting the bladder out as a tumor would be resolved as the information of tumor shape 

and position would help exclude the bladder from the segmentation results.

2. Methods and Materials

2.1. Overview

The development of our algorithm was motivated by the fact that tumor shape and position 

are relatively “continuous” in adjacent slices among PET images. The miss-segmented 

voxels on contoured adjacent slices are shown compared with the tumor contour ground 

truth (Fig. 2). The top region (indicated by the arrow in Fig. 2 (b)) segmented out on one 

slice by the conventional thresholding-based method is likely incorrect according to the 

ground truth tumor contour of its adjacent slice (Fig. 2 (a)).

Such observation can be quantified by a probability map of the segmentation accuracy 

computed from the ground truth tumor contour (Fig. 2 (c)), as the intensity of each voxel 

indicates the relative probability of each voxel that is classified correctly. The detailed 

calculation of the probability map will be introduced in Section 2.2.2.1. By propagating the 

shape and position information of the ground truth slice, we may obtain more accurate 

segmentation results by correcting the voxels that have low probability of being segmented 

correctly.

We propose a two-stage method for segmenting cervical tumors on PET images. In stage 

one, we roughly segment the initial contours in all the slices using a graph-cut method. In 

stage two, we fine-tune the segmentation results under the guidance of the ground truth 

tumor contour on a given slice by employing the proposed similarity-based variational 

model. The pipeline of the proposed two-stage segmentation method is shown in Fig. 3.

2.2. Detailed Methods

A summary of the operator notations used throughout the paper is provided in Table 1.

2.2.1. Stage One: Initial contours obtained by the graph-cut method—Graph-cut 

based methods have shown to be robust and reliable [10, 28] as they complete global PET 

segmentation by measuring local similarities. For the first stage of our proposed scheme, we 

developed a graph-cut based algorithm that generates the initial contours of all the slices 

under the guidance of the reference slice. As the construction of the similarity graph is the 

most time-consuming procedure for graph cut-based algorithms, we only chose voxels with 

relatively high intensity values as graph nodes to boost computational efficiency. Since the 

voxels in cervical tumors always contain high uptakes of the image tracer, excluding low 

intensity voxels does not affect the tumor segmentation results.

Unlike the conventional generation of the graph Laplacian matrix [10, 28] in which the 

similarity graphs are computed based on node intensities only, we built similarity graph S by 

incorporating the extended structure tensor (EST) features [29]. This similarity graph 

incorporates intensities and structural tensors to represent local features. The nodes in the 

graph are connected by measuring the Gaussian similarity between their corresponding EST 
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features. Since the k-nearest neighbor graph is more sensitive to the local structure, we set 

the similarity scores in S to 0 except for nodes within the k-nearest neighbor. Finally, the 

corresponding Laplacian matrix L was calculated based on the similarity graph:

L = D − S, (1)

where D is a diagonal matrix with Di, i = ∑ j = 1
n Si, j = degree(i).

Then, the proposed graph-cut method can be formulated as a convex optimization problem:

minu
λ
2 |uΩ − z |2 + uTLu, (2)

where L indicates the graph Laplacian matrix. Ω is a subset of nodes selected from the slice 

contoured manually, and z is their corresponding label. u indicates the desired clustering 

result.

The proposed model requires the reference label to remain true in the resulting u, while 

broadcasting the clustering label via local similarity information embedded in the graph 

Laplacian matrix. The solution of the model in Eq. (2) can be explicitly written as:

u = LTL + λdiag(1Ω) −1(λz . × 1Ω), (3)

where

1Ω(i) = 1 if  the ith node belongs to Ω
0 otherwise

. (4)

Then, the k-means algorithm is applied to the resulting u to obtain the initial segmentation 

for all the selected voxels. The implementation of the k-means algorithm is introduced in the 

Appendix.

2.2.2. Stage Two: Fine-tuning on initial segmentation—Motivated by the fact that 

tumor shape and position do not dramatically change from slice to slice, we propose to fine-

tune the initial segmentation by constraining the weighted total variation [30, 31] along 

different slices, enforcing the similarity across neighboring slices. The weight of total 

variation is derived based on the probability of correct segmentation guided by the reference 

contoured slice. Specifically, a large penalty is assigned to the slice variation of the voxel 

with a low probability of being correct, so that the final label of this voxel is forced to be 

similar to the adjacent slices. In addition, if we require the segmentation results to be smooth 

within each slice, the fine tuning strategy in the second stage can be formulated into the 

following model,
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minw ∈ Ω0, M
1
2‖w − u‖F

2 +
λ1
2 ‖D1, 2w‖

F
2 +

λ2
2 < M · (wD3), wD3 > , (5)

where w indicates the desired segmentation, and λ1 and λ2 are regularization parameters. 

The first term in the optimization problem of Eq. (5) prevents solution w from being too 

different from the initial contour. The second term imposes the smoothness within each slice 

to complete the tumor shape. The third term restricts the similar tumor position and shape in 

the adjacent slices. M is a weighting matrix derived from a SAP map of the segmentation 

results. M aims to further penalize the discrepancy among adjacent slices based on the SAP 

map.

We denoted w = (w1, …, wn) and M = (M1, …, Mn), where wj and Mj indicate the 

segmentation result and corresponding weighting factor for the j slice. Assuming that slice k 
is the one with the manual contour, we obtain wk =z, which is already known. We can 

rewrite equation (5) as a sum of a series of sub-problems as follows:

minw, M∑ j = 1
k − 1 1

2‖w j − u j‖2
2 +

λ1
2 ‖D1, 2w j‖2

2 +
λ2
2 < M j · (w j − w j + 1), w j − w j + 1 > +

∑ j = k + 1
n 1

2‖w j − u j‖2
2 +

λ1
2 ‖D1, 2w j‖2

2 +
λ2
2 < M j · (w j − w j − 1), w j − w j − 1 > + F(wk)

.

(6)

This optimization problem can be solved by iteratively updating w and M, in a column- wise 

fashion: we start calculating the k−1-th column until the first column is solved; then, we start 

from the k+1-th column until completing the last column.

2.2.2.1 Step 1: Updating Mj: In the proposed iterative algorithm, Mj would be updated 

according to the latest segmentation result wj. More specifically, at each iteration l, M j
l  is 

computed by

M j
l =

1 + exp − SAP(w j
l − 1, w j − 1

l ) j > k

1 + exp − SAP(w j
l − 1, w j + 1

l ) j < k
. (7)

The formulation of SAP is essential to the success of the second stage of the scheme. SAP is 

derived from each updated segmentation result w under the guidance of the manual contour 

in the reference slice. Most incorrect segmentations in cervical cancer are caused by 

mislabeling the voxels in the bladder as those of tumors. Therefore, the desired SAP should 
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be able to evaluate the position similarity compared to the baseline of ground truth 

segmentation in the reference slice. The proposed SAP for each voxel of wj is formulated as

SAP(w j, w j ∓ 1)[p] =
dint

2 (p, p0) + a

b + dpos
2 (p, p0)

, (8)

with a maximum value equal to 1. p is the voxel in wj, and p0 is the central voxel of the 

segmented tumor in its adjacent slice (wj∓1); dint
2 (p, p0) is the squared intensity difference 

between p and p0, and dpos
2 (p, p0) is the squared Euclidean distance between p and p0, 

divided by slice area (e.g. slice size is m × m, then the slice area is m2); a, b are parameters 

that balance the effect of the intensity difference and spatial distance. Such formulated SAP 

considers both positioning and intensity information. In principle, a voxel receiving low SAP 

value implies a low probability of correct segmentation. Hence, large smoothness 

regularization penalty M should be assigned to encourage the similarity across the 

neighboring slices so that the mislabeled voxels can be corrected according to the correct 

labels on their neighboring slices.

2.2.2..2 Step 2: Updating wj: For each iteration l, with M j
l  fixed, we can update w j

l  as 

follows:

w j
l = π1 arg minw j

1
2‖w j − u j‖2

2 +
λ1
2 ‖D1, 2w j‖2

2 +
λ2
2 < M j

l · (w j − w j ± 1
l ), w j − w j ± 1

l >

+
λ2
2 < M j ∓ 1

l − 1 · (w j ∓ 1
l − 1 − w j), w j ∓ 1

l − 1 − w j > ,

(9)

where π1 is a binary projector defined as π1(p) = 1{p>threshold}. The threshold is set through 

the k-means algorithm [32, 33] (its implementation is introduced in the Appendix). The 

Fourier transform was used to solve the minimization problem in Eq. (9) and the solution is

w j
∧ =

u j
∧ + λ2 M j

l · w j ± 1
l ∧ + λ2 M j ∓ 1

l · w j ∓ 1
l − 1 ∧

1 − λ1Δ∧ + λ2(M j
l + M j ∓ 1

l )
. (10)

Overall, the algorithm that iteratively solves the optimization problem in Eq. (6) is 

summarized as follows:

Algorithm 1

for solving the optimization problem in Eq. (6)

1. Fix the regularization parameters λ1 > 0 and λ2 > 0 and choose the initial estimate w ∈ ℝm2×n, M ∈ ℝm2×n;

2. Update each column of weighting matrix M by Eq. (7) and desired solution w by Eq. (10)
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3. Stop; or go to step 2 until converge

*
The initial estimate of the w used in Algorithm 1 was generated by one direction propagation algorithm.

2.3. Comparison methods

We compared our proposed two-stage GCSV method with three commonly used 

segmentation techniques in 18FDG PET: automatic thresholding (AT), 3D region-growing 

(RG), and affinity propagation (AP). In addition, we evaluated the performance of the 

proposed graph-cut (GC) method in the first stage to demonstrate the effect of fine-tuning in 

the second stage. The AT method used in this study was based on the work by Ridler and 

Calvard [34], in which an iterative technique was used to select a threshold based on the 

image histogram. As described [35], the RG method is a robust and efficient algorithm for 

tumor segmentation in 18FDG PET [16]. The AP method used in this study was proposed 

previously [19, 20] and was shown to be effective to segment non-convex tumors [36].

In principle, the proposed fine-tuning strategy in the second stage can be applied to the 

initial segmentation obtained by any segmentation algorithm. As such, the fine-tuning 

scheme has also been adopted for the contours generated by the AT, RG, and AP algorithms. 

We denote these three combined approaches in the following sections as ATSV, RGSV, and 

APSV to indicate AT, RG, and AP, respectively.

2.4. Datasets and evaluation criteria

We used 18FDG PET images from 86 cervical cancer patients and divided them into two 

categories to further illustrate the algorithm performance under different situations: (1) 

tumor intensities similar to or higher than those of the bladder (57 patients); (2) bladder 

intensities higher than those of tumors (29 patients). While both categories are challenging 

for conventional segmentation methods, the second category can be even more difficult than 

the first. The ground truth tumor contours used for quantitative evaluation were delineated 

by a radiation oncologist with four years of experience and reviewed by another radiation 

oncologist with 19 years of experience.

We considered four commonly used criteria including Matthews correlation coefficient 

(MCC) [37], Dice similarity coefficient (DSC) (which is equivalent to the F1 score) [38], 

classification error (CE) [39], and volume error (VE) [39, 40] to quantitatively evaluate the 

segmentation accuracy of different algorithms. The formulation of each criterion is 

summarized in Table 2. Based on their definitions, higher MCC and DSC as well as lower 

VE and CE scores imply better segmentation.

2.5. Implementation details

All experiments were executed on an ACPI×64-based PC with 2.27GHz and 2.26 GHz CPU 

and Matlab R2016a. For each comparison method, we tuned the parameters to achieve the 

best average Dice similarity coefficient. In particular, size N of the nearest neighbor was set 

to 20. In the RG algorithm, we located the central point of the tumor in the given slice as the 

initial seed position. For the AP method, the histogram with 256 bins was considered in our 

implementation.
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3. Results

To illustrate the performance of different algorithms in segmenting cervical tumors on PET 

images, first we depicted the segmentation results on four slices taken from four different 

patients (Fig. 4). Rows one and two depict segmentation results from category one patients 

where the tumor exhibits the same intensity level as the bladder. Rows three and four display 

another two cases from category two where the bladder presents higher uptake than that of 

the tumor (Fig. 4). In all four slices, the tumor and bladder are connected to each other. The 

GC method performs similarly to AT, RG, and AP when intensities of the tumor and bladder 

are on the same level, but its advantage can be easily observed when bladder intensities are 

much higher than those of the tumor. More importantly, the proposed GCSV method fine-

tunes the contours obtained by GC and yields the most accurate segmentations in terms of 

shape, location, and tumor area. The GCSV method clearly eliminates miss-segmented 

voxels especially in the first two cases where large bladder regions segmented by GC are 

excluded in the final results. Furthermore, the fine-tune effect of the second stage is 

demonstrated in both S3 and S4, in which tumor shape and position are regularized toward 

the ground truth.

The average performance (mean ± std) on two categories of patient data is reported in Table 

3 and Table 4. Overall, results from the GC method are better than those from AT, RG, and 

AP for most of evaluation metrics. By further incorporating the fine-tuning stage, the 

proposed GCSV method substantially outperforms all the other methods for both data 

categories. In addition, the proposed GCSV is more stable, with a standard deviation at least 

2 times smaller than that of the other methods.

As the proposed second stage can be applied to the first stage segmentation results obtained 

by any algorithm, we further compared the performance of AT, RG, and AP before and after 

incorporating the fine-tuning scheme. The average DSC and VE values are shown in Figure 

5 and Figure 6, respectively. Segmentation accuracy consistently improved for all methods. 

On average, the DSC value was increased by 20.25% while the VE value was reduced by 

37%. The GCSV algorithm performed better than the other methods, demonstrating the 

effectiveness of the proposed two-stage scheme.

4. Discussion and Conclusion

We developed a two-stage segmentation method for cervical tumors that cannot be 

segmented automatically on 18FDG PET because they exhibit a signal contiguous with 

nearby normal tissues. Based on the assumption that tumor area and position do not change 

dramatically between two adjacent slices, an accurate segmentation result of one slice can be 

applied to assisting the segmentation of adjacent slices. In the proposed method, based on 

the known tumor contour in this given slice, a rough estimate on segmentation can be 

obtained from the GC approach, which provides better local information by incorporating 

EST features and reduces processing time substantially by selecting only those voxels with 

large intensities as graph nodes of interest. In addition, a novel similarity-based variational 

model is adopted in the second stage to fine-tune the initial tumor contour based on shape 
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and position similarity between adjacent slices guided by the known contour in the given 

slice.

As observed in the experimental results reported in Section 6, the proposed GCSV approach 

outperformed the other conventional segmentation methods (e.g. automatic thresholding and 

3D region-growing methods) in resolving a tumor’s partial connection to normal organs and 

tissues. In general, any existing segmentation method could be used to obtain the initial 

segmentation. The proposed GC-based method was shown to be more effective than the 

other methods.

Despite the promising performance of the two-stage scheme in cervical tumor segmentation, 

our study presents several limitations. First, the construction of a similarity graph is still 

time-consuming although computational effort was reduced significantly by selecting the 

nodes of interest. This limitation could be overcome by employing parallel computing 

techniques, such as GPU programming, as the calculation of the similarities among different 

nodes can be carried out independently on multiple threads. Second, a few parameters need 

to be tuned into both stages of the proposed method. For optimal performance, the 

parameters should either be determined empirically or selected from candidate sets. To 

handle more practical situations, the proposed method should be tested further on a wide 

range of patient cases so that a robust parameter setup can be implemented to achieve 

consistently acceptable performance in routine clinical practice. Finally, we considered the 

slice nearest to the tumor center as reference, with a known tumor contour. Although this 

setup is beneficial to fully exploit the shape and position information for segmentation, it is 

not required since the principal manual tumor contour of any slice can be employed as 

reference. In future studies we plan on evaluating the effect of different reference slices on 

final segmentation results.
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Appendix

K-means clustering

Given image I (such as: the resulting u of Eq. (3) or optimal solution wj to the minimization 

problem of Eq. (9)), we first vectorize I and denote it as Iv = (Iv1,…, Ivn), where n is the 

number of pixels in I. K indicates the number of phases of I. Then, the k-means algorithm 

minimizes the following objective function:

W(S) = ∑k = 1
K Nk∑S(i) = k ‖Ivi − mk‖2, (11)

where S(i) indicates the label of the ith pixel, mk indicates the mean value of the kth cluster, 

and Nk indicates the number of pixels in the kth cluster.
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The k-means++ algorithm proposed by Arthur et al. [32] was used to find the minimal 

solution S to Eq. (11). Hence, when I is assigned with the resulting u of Eq. (3), the S is the 

initial segmentation result obtained from the first stage; when I is assigned with the optimal 

solution wj to the minimization problem of Eq. (9), the threshold needed in the binary 

projector is defined as the average value of m1 and m2.
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Highlights

• Proximity between cervix and bladder makes PET segmentation challenging

• Similarity among adjacent slices in tumor shape and position improves 

segmentation

• Proposed two-stage method improves dice coefficient from one-stage 

methods

• Proposed two-stage method outperforms other commonly used segmentation 

methods
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Fig. 1. 
Representative 18FDG PET image slices from a patient with cervical cancer: red outline 

indicates tumor contour; the 18FDG signal is contiguous with nearby normal organs 

(bladder), and is indicated by the arrow.

Chen et al. Page 14

Comput Biol Med. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
(a) Tumor delineated in one slice; (b) Tumor roughly segmented in the adjacent slice of (a); 

(c) SAP map of (b) using equation (8).
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Fig. 3. 
Pipeline of the proposed two-stage segmentation method (GCSV).
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Fig. 4. 
Segmentation results of four slices from four different patients obtained by different 

segmentation methods.
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Fig. 5. 
Comparison of average DSC value between AT, RG, AP, GC and ATSV, RGSV, APSV, 

GCSV for a) Category 1 patients and b) Category 2 patients, respectively.
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Fig. 6. 
Comparison of average VE value between AT, RG, AP, GC and ATSV, RGSV, APSV, GCSV 

for a) Category 1 patients and b) Category 2 patients respectively.
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Table 1

Main mathematical operator notations

Variable Meaning

Dl,2 = [Dl;D2] Discrete gradient operator on 2D image

D3 Gradient operator along slice number direction

‖ ‖F Frobenius norm of matrix

<,> Inner product

· Pointwise multiplication operator

∧ Fourier transform
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Table 2

Four criteria for quantitatively evaluating the segmentation accuracy

Formula

MCC
MCC = TP × TN − FP × FN

(TP + FP)(TP + FN)(TN + FP)(TN + N)
DSC(F1)

F1 = 2TP
2TP + FP + FN

VE

VE =
|F0 | − |FT |

|F0|

CE

CE =
|F0 ∩ BT | + |B0 ∩ FT |

|F0|

Abbreviations: TP (true positive) indicates the number of correctly classified tumor voxels; FN (false negative) indicates the number of tumor 
voxels labeled as normal voxels; TN (true negative) indicates the number of correctly classified normal voxels; FP (false positive) indicates the 
number of normal voxels labeled as tumor voxels; F0 represents the ground truth tumor; FT represents the segmented tumor; B0 represents the 

ground truth normal part; BT represents the segmented normal part.
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Table 3

DSC, MCC, CE and VE values obtained by different methods for Category 1 patients.

Category 1 DSC MCC CE VE

AT 0.59 ± 0.26 0.63 ± 0.17 0.70 ± 0.29 0.34 ± 0.27

RG 0.52 ± 0.21 0.57 ± 0.21 1.18 ± 1.12 1.09 ± 1.27

AP 0.57 ± 0.14 0.59 ± 0.14 0.73 ± 0.27 0.31 ± 0.23

GC 0.64 ± 0.16 0.67 ± 0.13 0.52 ± 0.17 0.47 ± 0.20

GCSV 0.83 ± 0.04 0.84 ± 0.04 0.30 ± 0.09 0.14 ± 0.09

*
Abbreviations: AT: automatic-thresholding; RG: region-growing; AP: affinity propagation clustering; GC: graph-cut; ATSV, RGSV, APSV and 

GCSV represent AT, RG, AP and GC method combined with similarity based variational model, respectively. Here, GCSV is the proposed two-
stage segmentation method.
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Table 4

DSC, MCC, CE and VE values obtained by different methods for Category 2 patients.

Category 2 DSC MCC CE VE

AT 0.35 ± 0.30 0.37 ± 0.30 1.45 ± 1.44 0.75 ± 1.00

RG 0.48 ± 0.24 0.54 ± 0.22 3.08 ± 6.99 3.09 ± 7.52

AP 0.42 ± 0.24 0.43 ± 0.25 1.10 ± 0.89 0.46 ± 0.61

GC 0.56 ± 0.11 0.59 ± 0.10 0.62 ± 0.13 0.56 ± 0.16

GCSV 0.76 ± 0.09 0.77 ± 0.09 0.45 ± 0.26 0.24 ± 0.25

*
Abbreviations: AT: automatic-thresholding; RG: region-growing; AP: affinity propagation clustering; GC: graph-cut; ATSV, RGSV, APSV and 

GCSV represent AT, RG, AP and GC method combined with similarity based variational model, respectively. Here, GCSV is the proposed two-
stage segmentation method.
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