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Abstract

clinical evaluation and care.

Background: In children with sensory processing dysfunction (SPD), who do not meet criteria for autism spectrum
disorder (ASD) or intellectual disability, the contribution of de novo pathogenic mutation in neurodevelopmental
genes is unknown and in need of investigation. We hypothesize that children with SPD may have pathogenic
variants in genes that have been identified as causing other neurodevelopmental disorders including ASD. This
genetic information may provide important insight into the etiology of sensory processing dysfunction and guide

Methods: Eleven community-recruited trios (children with isolated SPD and both biological parents) underwent
WES to identify candidate de novo variants and inherited rare single nucleotide variants (rSNV) in genes previously
associated with ASD. Gene enrichment in these children and their parents for transmitted and non-transmitted
mutation burden was calculated. A comparison analysis to assess for enriched rSNV burden was then performed in
2377 children with ASD and their families from the Simons Simplex Collection.

Results: Of the children with SPD, 2/11 (18%), were identified as having a de novo loss of function or missense
mutation in genes previously reported as causative for neurodevelopmental disorders (MBD5 and FMN2). We also
found that the parents of children with SPD have significant enrichment of pathogenic rSNV burden in high-risk ASD
candidate genes that are inherited by their affected children. Using the same approach, we confirmed enrichment of
rSNV burden in a large cohort of children with autism and their parents but not unaffected siblings.

Conclusions: Our findings suggest that SPD, like autism, has a genetic basis that includes both de novo single gene
mutations as well as an accumulated burden of rare inherited variants from their parents.
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Background

Sensory processing dysfunction (SPD) affects 5-16% of
children and can contribute to long-term impairments
in cognition, social development, and family well-being
[1-3]. Additionally, hyper and hypo-sensitivity to sound
and touch has recently been added to the symptom
cluster for Autism Spectrum Disorders (ASD) in the
most recent Diagnostic and Statistical Manual, DSM-5
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[4]. We have recently shown that children with SPD,
who do not meet criteria for ASD, have measurable dif-
ferences in white matter microstructure predominantly
in the posterior brain regions, which are critical to
sensory perception and processing [5]. We have further
demonstrated overlap between these brain findings in
children with SPD and children with ASD, suggesting
that there is not only a phenotypic overlap between SPD
and ASD, but that there may be a mechanistic connection
as well [6]. However, in our study, children with ASD have
broader neural disruption, including key white matter
tracts that subserve language, emotional memory, and
processing. Approaches to address ASD mechanisms have
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included deep genetic analyses, including whole exome
sequencing (WES), demonstrating that loss of function de
novo mutations occur in genes that play important roles
in neurodevelopmental pathophysiology. This type of
rigorous approach to investigate the genetics of SPD
remains to be undertaken, despite the growing recognition
that SPD can present both as an isolated neurodevelop-
mental concern as well as a co-morbid condition for chil-
dren who meet criteria for other behaviorally described
conditions in the DSM-5 such as ASD, attention deficit
disorders, and anxiety [7-10].

There are, however, some suggestions as to the genetic
architecture of SPD. Numerous genetically mediated
neurodevelopmental disorders have been reported to
show increased sensory sensitivity, including triplet
repeat disorders (e.g. Fragile X), chromosomal copy
number variations (e.g. Williams syndrome), and single
gene disorders (e.g. ARHGEF9) [11-13]. In addition,
large population-based twin studies suggest that sensory
over-responsivity (SOR) shows moderate heritability
across sensory domain with 38% of auditory SOR and
52% of tactile SOR attributed to genetic factors [14].

The search for genes that explain the observed herit-
ability in cognitive and behavioral disorders has been
challenging. Despite that, recent WES with large ASD
cohorts have shown that loss of function mutations in
certain genes occur in 10-15% of patients with a
frequency that provides strong statistical evidence for
causality in ASD [15]. There is also evidence that ASD
patients carry an oligogenic or polygenic combination of
variations in “high-risk” neurodevelopment genes, each
variant making either a large or small contribution to
the phenotype [16, 17]. In fact, it is now posited that as
many as 1000 genes can confer risk for ASD [18].

WES technology allows for the investigation of both
de novo mutations and inherited risk polymorphisms
when sequencing is performed for the index patient and
his/her parents. In cohorts of children with intellectual
disability or global developmental delay, the diagnostic
rate using WES for de novo single gene etiologies was
estimated to be 33% [19]. In an initial study of 238
families where only one member has autism, Sanders, et
al. 2012 identified 16 loss of function mutations in pro-
bands, including nonsense, splice site and frame shift
mutations [20]. In a follow up study, integrating both
copy number variations and de novo loss of function
mutations from WES, Sanders, et al. 2015 report 65
high-risk autism genes which show enrichment in
protein-protein interactions and suggest two main sub-
networks: chromatin regulation and synaptic control
[21]. In this preliminary study, we sought to identify de
novo loss of function mutations in children who
presented with SPD to investigate monogenic etiologies.
We further aimed to test whether there is an increased
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burden of inherited (or transmitted) rare Single Nucleo-
tide Variants (rSNV) in high- and moderate- risk ASD
genes when compared to non-transmitted rare variants
in both our preliminary SPD cohort and in the larger
ASD family cohort from the Simons Simplex Collection.
We hypothesize that, as there are phenotypic and brain
structure similarities in children with ASD or SPD, there
may also be an overlap in genetic etiologies.

Methods

This genetic cohort study aims to establish the occur-
rence of de novo missense and loss of function muta-
tions in children with community diagnosed SPD. We
further aimed to determine if there is a higher burden
of transmitted rSNV in children with SPD and their
parents in high and moderate-risk genes associated
with ASD.

Characteristics of participants

SPD cohort

We recruited 11 children (7 boys and 4 girls) with
SPD and their biologic mother and father. Children
were recruited from our existing Sensory Neurodeve-
lopment and Autism Program (SNAP) cohort for
whom we have neuroimaging, cognitive, and sensory
processing characterization (see Table 1 for demo-
graphics). Informed consent was obtained from partic-
ipants and parents, with assent of all participants
from 12 to 18 years of age in accordance with the
UCSF Institutional Review Board protocol. Inclusion
criteria consist of a “Sensory Processing Disorder”
diagnosis made by a community occupational therapist
and a score on the Sensory Profile in the “Definite Differ-
ence” range (<2% probability in a typically developing
cohort) in one or more of the sensory domains (auditory,
visual, oral/olfactory, tactile, vestibular, or multisensory

Table 1 Probands demographics

SPD cohort
+/— Standard deviation [range]
Age 9.8 years +/— 1.3 [8-11]
VCl 121.5 +/— 11.6 [100-138]
PRI 111.5 +/— 16.7 [79-131]
SSP Total 1164 +/— 180 [95-145]
Ethnicity
Caucasian 8
Hispanic 0
Asian 0
Multiracial/Other 2

Unknown/Declined 1

VClI Verbal Comprehension Index of the Wechsler Intelligence Scale for
Children-IV (WISC-IV), PRI Perceptual Reasoning Index WISC-IV, SSP Short
Sensory Profile
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processing). The Sensory Profile (Dunn, 1999) is a
parent-report questionnaire that characterizes sen-
sory experiences, behavior, and their functional im-
pact. The domain scores were collectively used for
differentiation of SPD and typically developing chil-
dren. Higher scores indicate greater dysfunction.
Subjects were excluded if they met research criteria
for ASD which begins with screening using the par-
ent report measure, the Social Communication
Questionnaire (SCQ- ASD cut-off at 15), and
confirmed using the direct assessment measure, the
Autism Diagnostic Observation Schedule (ADOS); if
they had cognitive impairment as defined as a full
scale or performance IQ less than 70; or if they had
a brain malformation on MRI, history of stroke or
encephalitis, head injury with loss of consciousness
>15 min, multiple sclerosis, movement disorders,
psychiatric disorders (e.g. bipolar disorder or schizo-
phrenia), current history of pacemaker, ferromagnetic
matter in body, claustrophobia or significant medical
illness, premature delivery (gestational age < 36 weeks), or
previously diagnosed genetic etiology for their neurodeve-
lopmental condition.

ASD cohort

We included 2377 families (male, n =2049) with ASD
from the Simons Simplex Collection (SSC) [22]
including 1786 quads and 591 trios. The SSC is over-
seen by SFARI (Simons Foundation Autism Research
Initiative) in collaboration with 12 university-affiliated
research clinics. Parents consented and children
assented as required by each local institutional review
board. Participants were de-identified before data
distribution. This resource includes individuals (con-
firmed to have ASD) and their nuclear family mem-
bers, with recruitment limited to families in which
only a single individual has met research criteria for
ASD, including first cousins. The nuclear family also
includes an unaffected sibling. Families were excluded
if there was intellectual disability or schizophrenia in
a sibling or parent. Each proband was evaluated with
a detailed battery of assessments including the ADOS;
[23])and the Autism Diagnostic Interview-Revised
(ADI-R; [24]).

Description of biologic materials

Sample collection

Upon consent to participate in this study, families
were directed to the UCSF pediatric phlebotomy lab
or a local lab of their choice to obtain ~8 ml of
whole blood in an ACD tube for processing by the
UCSF Genome Core Facility.
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DNA preparation

DNA was isolated using the Qiagen Gentra Puregene
system. DNA quality was confirmed by standard 260/
280 ratios and agarose gel visual inspection. Prior to
library generation and exome sequencing, DNA was
tested for purity and size using the Agilent Bioanalyzer.

WES

The DNA was fragmented using a Covaris E220 ultra
sonicator to a size range of 350-450 bases. After
fragmentation, the DNA was processed using the Agilent
library preparation kit following the manufacturer’s
protocol. Exome sequencing was performed using the
Nimblegen Human SeqCap EZ Exome (v3.0) kit accord-
ing to the manufacturer’s protocol. This kit targets genes
from CCDS.2, Vega, Gencode and Ensembl in addition
to microRNA’s from miRBase and snoRNABase, for a
total of over 20,000 genes and 64 Mb of covered
genomic region. This yields an average of > 60x coverage
overall for the sequenced bases.

Rare single nucleotide variants (rSNV) analytic pipeline

Our variant analysis follows ‘The Broad Institute’s Best
Practices’ guidelines for discovering putative variants and
utilizes the Genome Analysis Toolkit (GATK; software
version 2014.2-3.1.7-10) in combination with BWA-mem,
Picard Tools, and SAM Tools [25-28]. After aligning the
DNA read sequences to the GRCh37 reference build using
BWA-mem, Picard Tools is used to identify and remove
PCR duplicates, add read group information, and sort
alignment files using modules Mark Duplicates, SortSam,
and AddOrReplaceReadGroups respectively. Subsequently,
GATK modules RealignerTarget Creator is used to identify
putative indels and IndelRealigner is used to realign
around those intervals. Base recalibration is performed
using the GATK modules BaseRecalibrator in combination
with PrintReads to produce sample specific BAM files.
Variant calling is performed using GATK HaplotypeCaller
in combination with CombineGVCFs module to produce
sample specific gVCF files. These individual patient/parent
files are combined, annotated, and genotyped over inter-
vals of interest using GenotypeGVCFs to produce a single
project specific VCF file of variants. GATK modules,
VariantRecalibrator and ApplyRecalibration are used to
add a VQSLOD score (confidence score that estimates the
probability that the variant is a true positive) using
HapMap 3.3, the Omni 2.5 SNP BeadChip, 1000 Genome,
and Mills indels as training sets.

The resulting VCF file is then stored in a MySQL data-
base table with separate rows for each variant and col-
umns representing VCF file format required headers. Each
variant in the database is annotated against a reference
transcript. For variants falling within coding regions,
codon affect is assessed with nonsynonymous identified
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variants further analyzed using Polyphen-2 for predictive
damage. All variants are cross-referenced against public
and private datasets to assess population frequency. These
include data from the Exome Sequencing Project and
1000 Genomes. Variants are further annotated against
UCSC genome tracks as well as external location specific
or gene specific datasets. The resulting relational database
permits complex initial filtering of variants by protein
consequence (synonymous, nonsynonymous, stop, and
frameshifts), location (within gene boundaries, exon,
boundaries, and splice sites), and confidence score
(VQSLOD, polyphen, SIFT, RVIS). Once a subset of
variants is identified, sample genotype information can be
processed to assess inheritance pattern.

Determination of variant significance

For de novo analysis, variants were required to be
missense, indel, or within 3 base pairs of a splice site,
have a VQSLOD score greater than 0, and be below a
population frequency of 1% (as determined by 1000
Genomes and the Exome Variant Server). In addition,
affected genotype quality (GQ) should be greater than
85 and have a minimum of 10 reads with at least 3
showing the alternate variant. Both parents are required
to have a GQ greater than 50 and no more than 3 reads
showing the alternate variant. For inheritance analysis
given computational limitations, we limited our scope to
missense variants within ASD or the Coronary Artery
Disease (CAD) comparision genes which had a VQSLOD
greater than 2 and a population frequency below 1%
[29]. Gene lists are included in Additional files 1 and 2.
For each gene group, variants were separated into sub-
groups of transmitted (passed from parent to child) or
non-transmitted (not passed from parent to child).

Variant confirmation

De novo variants were first directly examined by inspec-
tion of the aligned reads in the proband and both par-
ents using the integrated genomics viewer (IGV). Sanger
sequencing using well-established approaches confirmed
candidates that remained after this inspection.

Statistical analysis

De novo analysis

All variants were compared to parental samples to
determine if they were de novo or inherited from the
biological mother or father. We investigated the
biological relevance of the affected genes based on
human and animal literature reported in the Online
Mendelian Inheritance in Man database.

Enrichment analysis
Statistical analysis of enrichment for transmitted and
non-transmitted rSNV was conducted using a set of 76
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high probability candidate genes linked to ASD from
SFARI Gene 2.0 (AutDB) [30]. These high-risk genes
were determined using the SFARI Gene database. This
database utilizes a human curated biological approach,
linking information on autism candidate genes within its
original Human Gene Module to corresponding data
within diverse modules such as Animal Model, Protein
Interaction, Gene Scoring, and Copy Number Variant.
Each ASD risk gene is classified in a specific category
using a set of annotation rules developed by an advisory
board. Seventy-six genes from AutDB (date pull 05.21.15)
were determined to be “probably damaging” and were
included in the high-risk ASD gene set whereas 292 were
categorized as possibly damaging and included as
moderate-risk ASD gene set (see Additional files 1 and 2.)

Assuming random draws from the genome, the prob-
ability of drawing a mutation from the gene set can be
calculated as the sum of transcript lengths in the gene
set divided by the total length of the assayed transcrip-
tome. To determine the probability that each individual
exhibits a mutation enrichment in a designated gene set
(e.g., high-risk autism gene set or moderate-risk autism
gene set), the number of gene set-specific mutations was
compared to the expected distribution as modeled by
the binomial distribution and parameterized by the
length-corrected draw probability described above. The
resulting probability describes the gene set enrichment
score for that individual. To obtain a population level
probability, each individual probability was converted
into a z-score equivalent, and a Chi Square test was per-
formed with a number of degrees of freedom equal to
the number of individuals in the cohort - 1. This overall
Chi Square probability describes the population enrich-
ment of mutations in the relevant set of genes. For the
ASD/CAD analysis of SSC samples, the analysis was per-
formed as described above, except for computational
reasons related to processing data for 8917 samples, a
list of 580 CAD genes were used as the background
instead of the entire genome.

Results

De novo mutation analysis

We conducted WES in 11 SPD trios. Given the limita-
tion of power with this sample size, we have chosen to
conduct this initial analysis by focusing on de novo loss
of function and missense mutations. We identified 12
candidate genes with de novo loss of function and/or
missense variants in our 11 SPD probands. Among these
genes, there were two (18%) de novo mutations (one
each, nonsense and missense) in neurodevelopment can-
didate genes: MBD5 and FMN2. The nonsense mutation
in MBD5 leads to a premature termination of the pro-
tein at serine 318 (S318X). The missense in FMN2 leads
to a proline to leucine amino acid substitution (P927L),
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which is predicted to have a damaging effect. Based on
standards and guidelines for interpretation of sequence
variants, the MBD5 de novo loss of function mutation
would be considered pathogenic with a very strong
evidence of pathogenicity [31]. The FMN2 is also
predicted to be pathogenic- however given that it is re-
ported in the ExAC database, the formal clinical inter-
pretation would be a “variant of unclear significance.”
Nine additional mutations were identified (Table 2). The
changes in MBD5, FMN2, DNAH9, KLHL33, MCM2,
PFDN6, and SLCO2B1 were confirmed by Sanger
sequencing.

Enrichment of rare single nucleotide variants in ASD
associated genes

Experiment 1: Burden of rSNV in children with SPD and
their parents

Given the literature suggesting strong heritability of sen-
sory over-responsivity and the co-occurrence of sensory
processing dysfunction in autism, we sought to determine
whether there was a greater than chance inheritance of
rSNV from amongst the high and moderate risk ASD can-
didate genes. We found that the children with SPD show
trend level enrichment of inherited high risk ASD rSNV
(p <0.068, approximately 1/14 chance of false positive)
with all individual children showing the same direction of
rSNV burden (i.e. each child inherited greater than 50% of
the available deleterious rare alleles in the high probability
ASD genes) for this gene set. By contrast, these 11
children did not show an increase burden of variants in
the moderate-risk ASD gene set (p = 0.966).

Based on the increased burden of inherited rSNV in
high risk ASD genes in children with SPD, we sought to
explore the burden of variants from amongst the high-
and moderate- risk ASD genes in their parents—including
variants that were passed to their affected children
(transmitted) and those that were not (non-transmitted).
The data suggests that parents of children with SPD have
a significant enrichment of transmitted variants in the

Table 2 De novo variance in children with SPD
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high-risk ASD genes (p = < 2.4e-10) which exceeds the
association for non-transmitted high probability ASD
genes (p=<0.058) or transmitted moderate-risk ASD
genes (p <0.942; Fig. 1.)

Experiment 2: Burden of rSNV in children with ASD, their
parents and unaffected siblings

Based on finding an enriched burden of inherited rare
genetic variants, specifically in the high- but not
moderate-risk ASD genes in our small SPD cohort,
we aimed to determine if this finding was also
evident in a large simplex cohort of children with
ASD and their parents. In a group of children with
ASD, with parents and siblings who do not meet
criteria for ASD, we found that the parents and the
affected child with ASD show an enhanced burden of
inherited/transmitted variants in high-risk candidate
ASD genes relative to genes from an unrelated
condition, coronary artery disease. By contrast, the
unaffected siblings do not show this increase in high-
risk candidate ASD genes variants that were transmit-
ted to the proband. Additionally, unaffected parents
and siblings do not show an increase in the number
of variants in non-transmitted high-risk candidate
ASD genes (Fig. 2a). In comparison with the small
SPD cohort, the large SSC ASD cohort shows a
greater range of variant burden than the SPD cohort.
Finally, the SPD cohort has equivalent or greater
burden of genetic variants in high-risk ASD genes
relative to the ASD group (Fig. 2b).

Discussion

There is growing interest in the etiology of sensory pro-
cessing dysfunction for individuals with social communi-
cation challenges meeting DSM-5 criteria for ASD. This
stems in part from the fact that in the current version of
the DSM, “hyper- or hyporeactivity to sensory input or
unusual interests in sensory aspects of the environment”
is now included in the ASD phenotypic criteria. There

PolyPhen2 HVAR score Mutation type AA position AA change Chromosome position Base change
MBD5 - Stop 318 S-> Stop 149,226,465 TCA ->TAA
FMN2 86 Missense 947 P->L 240,370,952 CCT->CT
DNAH9 88 Missense 2716 R->W 11,696,904 CGG ->TGG
KLHL33 96 Missense 263 R->W 20,898,048 CGG ->TGG
PFDN6 99 Missense 62 P->L 33,258,152 CCG->CTG
SLCO2BT 1.0 Missense 651 L->P 74,915,513 CTG - > CCG
MCM2 0 Missense 636 P->L 127,337,968 CCG->(CTG
TULP4 06 Missense 1456 G->R 158,925,061 GGG - > AGG
SPTYD1 003 Missense 135 N->S 18,637,417 AAT -> AGT

AA Amino acid, S Serine, P Proline, L Leucine, R Arginine, W Tryptophan, G Glycine, N Asparagine
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Fig. 1 Enhanced burden of rSNV in children with SPD and their parents

SPD Proband

[ Transmitted mutations in high-probability genes
[7] Non-transmitted mutations in high-probability genes

[ ] Transmitted mutations in medium-probability genes

are, however, many individuals who are over-responsive
to sensory input but do not have the degree of social or
communication challenges that meet an ASD label.
These individuals are currently being lumped under the
category of Sensory Processing Disorder or SPD. With
an estimated 10-15% of children with an ASD label
currently being reported to have disease associated
variants identified via WES, we sought to investigate the
occurrence of de novo missense/nonsense mutations in
ASD candidate genes in children with SPD. Further-
more, we sought to investigate whether children with
SPD and their parents would show an increased burden
of deleterious rSNV in high and moderate-risk ASD can-
didate genes. Herein, we report that 18% of our sample
has a pathogenic de novo missense/nonsense mutation
in genes previously associated with neurodevelopmental
disorders. We further show that there is an enhanced
rate of rare inherited variants in high-risk ASD genes
transmitted from parent to affected child in SPD and
ASD patients, but not in unaffected ASD siblings.

In this report, WES has identified a stop codon
mutation in MBD5 that likely causes premature
truncation and nonsense mediated decay of the
protein from one of the two alleles leading to
haploinsufficiency. Methyl-CpG-binding domain 5 (MBD5)
is a gene located at 2q23.1. This gene, reviewed by

Mullegama, et al. 2016, is believed to contribute to DNA
methylation and through that to potentially be involved in
cell division, growth, and differentiation however further
research is indicated to better understand the role of this
protein [32]. Haploinsufficiency is believed to impact the
expression of downstream genes such as upregulation of
CF4 and UBE3A, and down regulation of MEF2C,
EHMTI, RAIl in a dose sensitive fashion [33]. Loss of
function mutations in MBD5 are highly likely to be patho-
genic given that the probability of loss of function intoler-
ance is 1.00 [34].

MBDS5, also referred to as mental retardation autosomal
dominant 1 and now given the name MBD5-Associated
Neurodevelopmental Disorder (MAND), was originally
described in the context of the 2¢q23.1 microdeletion syn-
drome thought to be an Angelman Syndrome mimic.
Clinically, affected individuals are variably affected by
intellectual disability, motor delay, and severe speech
impairment. The language deficits, social challenges and
stereotypies seen in affected individuals can result in the
affected child meeting criteria for autism [35, 36].
Additionally, children may have seizures, sleep disorders,
and attentional challenge and some individuals will show
mild craniofacial and skeletal anomalies [33, 37]. In the
review article by Hodge et al. 2014, they summarize the
phenotype for individuals in the literature with either
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enrichment in SPD cohort to the ASD population
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Fig. 2 a. Enrichment of transmitted and non-transmitted rSNV in ASD simplex families. Population significance testing (ASD mutations / Coronary
Artery Disease (CAD) mutations) assessing burden of inherited/transmitted variants in high-risk candidate ASD genes relative to coronary artery
disease genes. Parents and siblings do are non-ASD. b Enrichment of rSNV in SPD and ASD cohorts. Probability analysis comparing rSNV

point mutations in the MBD5 gene or microdeletions
containing MBD5. In their summary table, they include
reports of sensory integration disorder (SID) which is a
label frequently used in the occupational therapy commu-
nity. In children with MBD5 point mutations, there is no
comment on SID, however SID is reported in 2/3 (66%)
children with 2q23.1 microdeletions [33]. So while, sen-
sory over-responsivity to either sound or touch was a key
clinical inclusion phenotype in our cohort, it is not always
considered in the current genetic literature and thus diffi-
cult to know the extent to which it affects children with
single gene disorders.

The female patient in this study first presented to
our SNAP clinic at age 11 years due to prominent
sensory dysfunction affecting her auditory, vestibular,
visual, tactile, and oral systems (classified as 2 standard
deviations below average on the Sensory Profile [38]). On
evaluation by a pediatric geneticist, no dysmorphic fea-
tures were noted and she is normocephalic with a head

circumference at the 44th percentile. On evaluation by a
licensed community pediatric neuropsychologist (L.D.)
using the Wechsler Intelligence Scale for Children-4th
edition (WISC IV), she had a verbal comprehension index
of 121, Perceptual Reasoning Index of 86, and a working
memory index of 99. These scores are all in the average to
above average range but highlight a relative challenge in
the perceptual measures. While verbal conceptual skills
are a strength, multiple aspects of motor control are a sig-
nificant concern with poor articulation and dysgraphia
leading to severe school based challenges. In addition,
while socially alert, interested and driven, she has chal-
lenges with interpretation of non-verbal social cues as well
as heightened distractibility affecting sustained focus and
selective attention. Specifically, she meets cut-off criteria
for combined Inattentive/Hyperactive subtype on the
Vanderbilt ADHD Diagnostic Parent Rating Scale [39].
These challenges contribute to a lack of social finesse that
has led to difficulty with maintaining age appropriate
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friendships. However on evaluation in the lab, in the com-
munity, and at school, she did not meet the social com-
munication criteria for an autism spectrum disorder.

Of the nine genes with missense mutation leading to
amino acid substitution, six were considered potentially
damaging to the protein structure: FMN2, DNAH9,
KLHL33, MCM2, PFDN6, SLCO2B1. Of these genes,
only Formin 2 (FMN2) has been previously reported to
be associated with neurodevelopmental impairment.
FMN2, located at chromosome 1q43, is one of 15 mem-
bers of the formin homology protein family and is
thought to play a role in actin cytoskeleton organization
and cellular polarity. FMN2 has received the designation:
mental retardation, autosomal recessive 47. In addition
to the literature implicating mutations of FMN2 with
autosomal recessive inheritance, there are reports of
heterozygous deletion involving FMN2 in two additional
reports in patients with neurodevelopmental impairment
[40, 41]. Law, et al. 2014 reports that FMN2 localizes to
the dendrites and likely alters synaptic density in a
mouse model that has demonstrated challenges with
fear-learning [42]. Affected patients were reported to
have challenges with cognition and speech out of
proportion to their motor difficulties. In the existing
literature, there is no report of associated dysmorphic
features and in one family there were rare complex par-
tial seizures. There is no mention of sensory processing
ability or challenges in the extant literature.

The male patient in this study with the FMN2
missense mutation first presented to SNAP research at
9 years of age. The patient had sensory dysfunction af-
fecting his auditory, vestibular, tactile, multisensory and
oral systems (classified as 2 standard deviations below
average on the Sensory Profile [38]). The patient had a
verbal comprehension index of 116, Perceptual Reason-
ing Index of 115, and a working memory index of 94 as
assed using the WISC IV. He did not meet ASD cut-off
scoring using the ADOS Assessment. Finding these two,
highly penetrant de novo mutations in SPD patients who
do not meet criteria for ASD suggests that de novo mu-
tations may be found as the primary etiology in a signifi-
cant percentage (up to 18%) of children with a sensory-
first presentation.

While it has long been recognized that triplet repeat
and single gene disorders, such as Fragile X or SHANK?2,
and more recently copy number variation disorders,
such as 16p11.2 deletion, are associated with neurodeve-
lopmental conditions; there has also been substantial
interest in whether a cumulative burden of rare single
nucleotide variants, either inherited or de novo, can re-
sult in a clinical condition such as ASD or SPD. In this
study, we looked first at our SPD pediatric cohort with
the hypothesis that these affected children would have a
higher burden of inherited rSNV in high- or moderate-
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risk ASD genes relative to the expected mutation rate.
We found that, despite the small number of individuals
in this pilot SPD cohort, there was indeed a trend level
increase in transmitted rSNV in high-risk ASD candi-
date genes but not moderate-risk ASD genes. This result
has two main implications. This finding suggests, first,
that the SPD phenotype and the ASD phenotype may
have shared genetic underpinnings in a “high value” gene
set, as of now only 76 genes. Second, the phenotype may
also result from an accumulation of multiple changes
each with a smaller effect size, hence polygenic (and
thus inherited from parents). Given that in the ASD
literature, parents have been reported to show an in-
crease in sensory processing behavioral differences, we
investigated the burden of rSNV in the parents of our
probands with SPD [43, 44].

Despite the small number of individuals in the cohort,
there was a robust increase in the transmitted high risk
ASD gene rSNV for parents of children with SPD. There
was no increase in rSNV for either transmitted or non-
transmitted moderate-risk ASD genes. This finding sup-
ports the importance of investigating the role of variant
burden in SPD with a large effect in a small sample, and
also highlights a potential difference in causality between
the high and moderate-risk candidate genes. This robust
increase in burden of variants in the parents is inte-
resting given that the ASD literature suggests increased
sensory differences in parents of affected individuals. In
this SPD cohort, there are a couple of explanations that
merit further exploration. First, it is possible that SPD
parents themselves are affected by sensory processing
dysfunction that is similar to their children’s. Second,
one must consider that the probands have additional
variants contributing to their clinical symptomatology
that we are not measuring in the exonic DNA meriting a
whole genome approach. Finally, it may not be simply
the additive burden of the variants but rather a particu-
lar combination of variants in specific genes that may
work in an epistatic fashion to contribute to sensory
processing dysfunction.

We chose to further investigate the relationship
between rSNV burden in affected children with SPD and
their parents by applying this analysis to a cohort of
children also known to have an increased prevalence of
sensory difference, those with ASD. In the SSC ASD
family cohort, we were also able to increase our statis-
tical power both by the sheer number of ASD families
and by the inclusion of an unaffected sibling in the fam-
ily cluster. We thus investigated whether children with
ASD from the SSC and their unaffected siblings and
parents have a higher burden of rSNV that were trans-
mitted to the identified proband with ASD. As predicted,
the affected child when compared to his or her parents,
but not the unaffected sibling, shows an increase in
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transmitted rSNV from the high-risk ASD gene set.
After stringent Bonferroni correction, neither the un-
affected siblings nor the parents showed a significant
burden of non-transmitted rSNV. These findings under-
score the importance of inherited variants in ASD, even
in families recruited for an increased likelihood of de
novo variants. In one recent genome-wide ASD study,
children with ASD show a “nominal difference” in rare
inherited nonsense/splice site mutations when compared
to their unaffected siblings [45]. Similarly, a study in-
cluding 3871 ASD cases investigating the interplay of
common and rare variants, reports that 5% of the ASD
cohort has de novo loss of function mutation in a set of
107 autosomal genes involved in synaptic formation,
transcriptional regulation, and chromatin remodeling
pathways. However, this study did not show an associ-
ation for inherited missense variants, so these variants
were not included in their Transmission And De novo
Associated (TADA) analysis [46]. De Rubeis et al., 2014
suggest that while the de novo loss of function (LOF)
mutations confer the largest effect on risk, by including
de novo missense SNV and transmitted LOF variants,
they were able to double their gene discovery rate and
suggest that ASD genes show “a strong constraint
against variation.” Future genetic investigation to deter-
mine whether there are genes specific to sensory chal-
lenges, specifically SOR, and genes more specific to
language and social differences would greatly contribute
to our understanding of neurodevelopment and neuro-
developmental disorders.

There are limitations to this work, which bear men-
tioning. This work needs to be replicated in a much
larger independent sample, despite the provocative
findings in this initial cohort. In future investigations,
direct assessment of auditory and tactile SOR pheno-
type in parents and children with isolated SPD and
ASD/SPD is warranted. Finally, bringing direct sen-
sory phenotyping in a broader cohort of children with
neurodevelopmental concerns with their parents and
siblings in conjunction with genetic investigation will
deepen our understanding of the contributing genetic
variations, both monogenic and polygenic.

Conclusions

In this study, we find a rough estimate of 18% de novo,
disease-associated, single gene mutations in a cohort of
children identified on the basis of a sensory processing
dysfunction. Furthermore, we find that this pediatric
sensory cohort and their parents, similar to an autism
cohort, show an enrichment of rare single nucleotide
variants in genes previously reported to be associated
with autism and neurodevelopmental delay. This small-
scale study suggests that SPD results from genetically
coded, brain based differences, with monogenic and
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polygenic contributions. It highlights the need for
additional genetic research in SPD and the importance
of a thorough genetic evaluation in children presenting
with sensory processing dysfunctions, regardless of the
additional neurodevelopmental concerns.
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