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Abstract

A hybrid neuroprosthesis that combines human muscle power, elicited through functional 

electrical stimulation (FES), with a powered orthosis may be advantageous over a sole FES or a 

powered exoskeleton-based rehabilitation system. The hybrid system can conceivably overcome 

torque reduction due to FES-induced muscle fatigue by complementarily using torque from the 

powered exoskeleton. The second advantage of the hybrid system is that the use of human muscle 

power can supplement the powered exoskeleton’s power (motor torque) requirements; thus, 

potentially reducing the size and weight of a walking restoration system. To realize these 

advantages, however, it is unknown how to concurrently optimize desired control performance and 

allocation of control inputs between FES and electric motor. In this paper, a model predictive 

control-based dynamic control allocation (DCA) is used to allocate control between FES and the 

electric motor that simultaneously maintain a desired knee angle. The experimental results, 

depicting the performance of the DCA method while the muscle fatigues, are presented for an 

able-bodied participant and a participant with spinal cord injury. The experimental results showed 

that the motor torque recruited by the hybrid system was less than that recruited by the motor-only 

system, the algorithm can be easily used to allocate more control input to the electric motor as the 

muscle fatigues, and the muscle fatigue induced by the hybrid system was found to be less than the 

Digital Object Identifier: 10.1109/TNSRE.2017.2756023

HHS Public Access
Author manuscript
IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2019 January 
01.

Published in final edited form as:
IEEE Trans Neural Syst Rehabil Eng. 2018 January ; 26(1): 224–232. doi:10.1109/TNSRE.
2017.2756023.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fatigue induced by sole FES. These results validate the aforementioned advantages of the hybrid 

system; thus implying the hybrid technology’s potential use in walking rehabilitation.

I. Introduction

Each year in the United States 17,000 people experience a spinal cord injury (SCI), and 

41.3% of these injuries result in paraplegia [1]. The loss of lower limb motor function 

greatly inhibits the ability of a person with SCI to perform activities of daily living. 

Potentially, the lower limb function can be enhanced by using functional electrical 

stimulation (FES), which is an artificial stimulation of motor units to produce functional 

movements. By coordinated stimulation of the paralyzed lower limb muscles, the walking 

motion can be restored [2]–[5]. FES can be applied either using transcutaneous (surface) 

electrodes [3] or through percutaneous intramuscular electrodes or implanted electrodes [4], 

[6]. The intramuscular and implanted electrodes provide more selective recruitment of 

muscles [4], [7], while the transcutaneous electrodes are applied directly to the skin surface 

and can be adjusted and removed with ease when desired. However, stimulation through the 

surface electrodes causes non-selective and repeated muscle stimulation, which leads to the 

rapid onset of muscle fatigue [8]. FES-induced muscle fatigue decreases a muscle’s ability 

to produce or sustain a force, which can greatly inhibit the effectiveness of FES-based gait 

restoration devices and thus limit their duration of use.

To alleviate the effects of FES-induced muscle fatigue, FES-based devices can be combined 

with passive orthoses [9]–[11] to lower the overall stimulation duty cycle of FES. These 

hybrid devices lock the knee joints, which means that FES is not required to stimulate the 

quadriceps muscle to elicit standing. Another class of hybrid walking devices that combine 

FES with a powered exoskeleton gait have also been proposed [12]–[16]. These devices use 

the powered exoskeleton to dynamically compensate for the FES-induced muscle fatigue. 

Compared to sole FES-based walking systems, powered exoskeletons such as the Indego 

[17], ReWalk [18], Mina [19], and EKSO [20], [21] are capable of greater walking durations 

but may have higher power consumption to operate high torque motors. Bulky high torque 

motors and larger batteries increase weight and hence reduce wearability. The hybrid system 

can overcome these limitations by reducing power consumption and actuator size in the 

powered exoskeleton by combining it with FES.

A control method for the hybrid device has to simultaneously coordinate FES and the 

electric motor while maintaining desired control performance and compensating for the 

muscle fatigue. In [22], an open-loop control of stimulation was used to provide the active 

torque and controlled brakes were used like a dynamic stopper to restrict a single joint to a 

desired joint angle. In [23], this method was extended to a full orthosis with FES and 

controlled brakes at both the hip and knee joints of each leg. Similar to [22], the controlled 

brakes of the orthosis were used to eliminate the requirement for stimulation during standing 

and in between steps. The disadvantage of this method is that the antagonistic muscles are 

stimulated at the maximum stimulation to generate a raw joint torque, which is fine tuned 

through the controlled brakes. This may result in over stimulation of the muscles leading to 

the rapid onset of muscle fatigue. Later, in [24], a hybrid neuroprosthesis with 16 
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intramuscular stimulation channels combined with a locking orthosis was tested on 

participants with SCI. A pre-programmed open-loop stimulation was used, which may result 

in over stimulation and thus reduce the duration that such a device may be used.

In [25], a combination of FES and active actuators (electric motors) were used to control 

knee extension using an adaptive gain-based controller to allocate the control effort. The 

electric motors were controlled using a PD controller, while the stimulation was controlled 

by a proportional gain whose adaptation was dependent on the current sent to the electric 

motor. In [12] a cooperative knee joint controller was used in a hybrid knee-ankle-foot 

exoskeleton. The approach was tested on able-bodied subjects. A variable stiffness controller 

computed knee electric motor stiffness based on the measured interaction torque between the 

user and the exoskeleton. A PID controller controlled the stimulation to the quadriceps 

muscle and an iterative learning controller for stimulating the knee flexors was used. In [12], 

a fatigue estimator that measures torque-time integral was to detect the onset of fatigue and 

modify the stimulation parameters. In [13], another cooperative control approach was used 

to coordinate hip motors with the stimulation of the hamstrings and knee motors with the 

stimulation of quadriceps muscle. The approach was tested on three subjects with SCI. The 

motors were controlled using a high-bandwidth position feedback and the FES control was 

modified by the difference between the estimated muscle torque and the reference torque 

profile. Also the controller would turn-off the stimulation if in five consecutive trials FES is 

unable to generate over one third of the previous torque output.

In both [12] and [13] the controllers take into account the muscle fatigue for allocating 

control between FES and electric motors; however, their allocation is not computed as a 

result of an optimization and did not use a muscle fatigue model, and therefore may be sub-

optimal. For example, traditional high-bandwidth feedback control methods used in these 

works do not provide an explicit way to optimally allocate control inputs in systems with 

redundant actuation, such as hybrid neuroprostheses. Therefore, the key control issue is how 

to optimally allocate control between the FES and the electric motor, simultaneously, while 

maintaining a desired control performance.

In our previous research, a dynamic optimization method was used to optimize a hybrid 

walking system (FES + passive orthosis) [11]. However, the method computes FES control 

inputs offline. Motivated to develop an optimization method for a real-time implementation, 

in [26], a linear model predictive control (MPC) method was proposed to dynamically 

allocate control in a hybrid knee joint control system composed of FES and an electric 

motor. However, a linearized musculoskeletal model was used for the linear MPC method, 

which may lose control performance outside the region of linearization. Therefore a 

nonlinear model predictive controller (NMPC) for an FES only case was developed in [27] 

to elicit knee extension in able-bodied participants.

The objective of this paper is to validate the NMPC-based dynamic control allocation (DCA) 

that is used to optimally allocate control between FES and an electric motor to elicit desired 

knee movement, and to show that the hybrid neuroprosthesis induces less muscle fatigue 

than neuroprostheses that strictly use FES. The DCA method solves a finite time optimal 

control problem [28], [29] such that the minimum control necessary is used to produce the 
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movement. The key contribution of the paper is that a gradient projection algorithm [27], 

[30], [31], was used to facilitate real-time implementation of the DCA method while 

including the nonlinear musculoskeletal model, muscle fatigue dynamics, and constraints on 

the control inputs. The DCA algorithm was demonstrated through experiments on a lower 

leg extension machine that combines the stimulation of the quadriceps muscle with an 

electric motor. The DCA experimental results were obtained from an able-bodied participant 

and a participant with SCI.

II. Dynamic Model of the Hybrid Neuroprosthesis System

The dynamics of the hybrid leg extension neuroprosthesis system, illustrated in Fig. 1, can 

be modeled as

Jθ̇ + G + τp = τm + τke, (1)

where θ, θ̇, θ̈ ∈ ℝ are the angular position, velocity, and acceleration of the shank (lower leg 

and foot), respectively. The moment of inertia of the shank is J ∈ ℝ+ and the gravitational 

term, G ∈ ℝ, is given as G(θ) = mglcsin(θ + θeq), where the variables m, g, lc ∈ ℝ+ are the 

mass of the shank, gravitational acceleration, and length from the knee joint to the center of 

mass of the shank, respectively. The torque τm ∈ ℝ is the torque of the motor, τp(ϕ, ϕ̇) ∈ ℝ is 

the joint torque due to passive dynamics (passive effects of muscles, tendons, and ligaments 

are all lumped into this function), and τke(ϕ, ϕ̇, ake) ∈ ℝ is the knee extension torque due to 

stimulation of the quadriceps muscle. Due to the fast response time of electric motors, in 

comparison to electrically stimulated muscles, the actuation dynamics of the motor were 

neglected. The passive and FES-induced muscle dynamics will be modeled based on the 

models in [32]. This model was selected over other models (such as those presented in [33], 

[34] and references there in) because it is a continuous model that sufficiently describes the 

dynamics without unnecessary complexities. Such a model is ideal for MPC because it is 

differentiable and its simplicity reduces the computation time when solving the optimal 

control problem. The passive joint torque can be expressed as a function of the anatomical 

knee joint angle, ϕ ∈ ℝ, as [32]

τp = d1(ϕ − ϕ0) + d2ϕ̇ + d3e
d4ϕ

− d5e
d6ϕ

, (2)

where di ∈ ℝ∀i = 1 − 6  and ϕ0 ∈ ℝ are subject specific parameters. The knee extension 

torque due to stimulation can be expressed as a function of the anatomical knee joint as [32]

τke = (c2ϕ2 + c1ϕ + c0) 1 + c3ϕ̇ akeμ, (3)
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where c j ∈ ℝ∀ j = 1 − 3  are subject specific parameters. It should be noted that the torque-

velocity dependence in (3) is modified from the piece-wise continuous function used in [32] 

to a single function to simplify the optimal control problem. If the piece-wise force-velocity 

function were used, multiple gradients would need to be calculated to account for each 

piece-wise case, and the optimization algorithm would need to perform state-dependent 

switching between the gradients to compute the solution. One limitation of this 

simplification is that the torque-velocity function is now no longer bounded, unlike the 

piece-wise model in [32]. The muscle activation state, ake ∈ [0, 1], in (3) can be modeled as 

[35]

Taȧke = − ake + uke, (4)

where Ta ∈ ℝ+ is the muscle activation time constant. The normalized stimulation 

amplitude, uke ∈ [0, 1] in (4), can be determined from the stimulation current amplitude, 

I ∈ ℝ+, as

uke =

0, I < It

I − It
Is − It

, It ≤ I ≤ Is

1, Is < I

(5)

where It, Is ∈ ℝ+ are the threshold and saturation limits of the muscle, respectively. The 

threshold current amplitude, It, is defined as the minimum stimulation amplitude required to 

produce the first significant muscle contraction. The saturation current amplitude, Is, is 

defined as the minimum current amplitude that produces that maximum muscle contraction 

force.

The muscle fatigue, μ ∈ [μmin, 1] in (3), has dynamics that are dependent on the muscle 

activation and can be represented as [36]

μ̇ =
μmin − μ ake

T f
+

1 − μ 1 − ake
Tr

, (6)

where μmin ∈ (0, 1) is the minimum fatigue level that the muscle can be, T f ∈ ℝ+ is the 

fatigue time constant, and Tr ∈ ℝ+ is the recovery time constant. This fatigue model was 

chosen over the models presented in [33], [34] because of its simplicity (a first order 

differential equation) and is driven by the muscle activation, which is modulated via 

stimulation pulse width or amplitude, unlike fatigue models in [33], [34] that use frequency 

modulation as the input.
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Using equations (1), (4), and (6) the dynamics of the hybrid neuroprosthesis system can be 

expressed in a state-space form as

ẋ = f (x, u) =

x2
1
J (u1 + τke − τp − G)

u2 − x3
Ta

(μmin − x4)x3
T f

+
(1 − x4)(1 − x3)

Tr

, (7)

where x = x1, x2, x3, x4
T = θ, θ̇, ake, μ T are the states of the system and u = [u1, u2]T = [τm, 

uke]T are the inputs. Note that although τm is applied to the system (1) directly, uke cannot 

be. It is mapped to normalized muscle activation ake via (4), and then ake is mapped to τke 

via (3). τke is the input that evolve the dynamics in (1). These relation are all embedded in 

the (7). Please note that the above state-space form in (7) is continuously differentiable. This 

is an important and necessary property for implementing the gradient projection algorithm, 

which is described in the next section.

III. Gradient Projection Dynamic Control Allocation

The control objectives are to regulate the knee angle to a desired position while allocating 

the control effort to the electric motor and FES and constraining the input region. These 

control objectives can be posed as an NMPC scheme based on the following optimal control 

problem

min
u

J(xk, uk) = V(Δx(T)) + ∫
t0

T
l(Δx(τ), Δu(τ))dτ (8)

subject to: ẋ(τ) = f (x, u)
x(t0) = xk
uk ∈ 𝒰

The objective of the optimal control problem is to solve for the optimal control input that 

minimizes the cost function J(xk, uk) ∈ ℝ+ in its prediction horizon.

In the cost function Δx = xd − x where xd, x ∈ ℝ4 are the desired and the nominal states. 

xk ∈ ℝ4 denotes the actual system state at time tk ∈ [t0, TN], where [t0, TN] denotes the 

period of the entire control process. The initial states of the nominal system x(t0) is set to be 

xk for the prediction horizon τ ∈ [t0, T], for convenience we also denote xk ∈ ℝ4 as the 
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nominal states with initial value, xk. Δu = ud − uk, where ud ∈ 𝒰 is the desired input 

trajectory, and uk ∈ 𝒰 is the nominal input trajectory starts at tk, note that 𝒰 = u−, u+  is the 

input constraint. After the optimal control input uk
∗(τ) is solved, 

uk(τk) = uk
∗(τk | :τ = t0 t0 + ε) is applied to the actual system at tk, where uk ∈ 𝒰 is the actual 

input trajectory to the system and ε is an infinitesimal time constant that makes tk+1 = tk + ε.

In (8), V(∆x(T)) and l(Δx(τ), Δu(τ)) ∈ ℝ+ are defined as

V(Δx(T)) ≜ Δx(T)TPΔx(T),
l(Δx(τ), Δu(τ)) ≜ Δx(τ)TQΔx(τ)TRΔu(τ),

where P, Q ∈ ℝ4 × 4 and R ∈ ℝ2 × 2 are positive-definite and symmetric weight matrices that 

may be tuned to achieve the desired performance. Although the presence of the nonlinear 

dynamics in the constraints means that the optimal control problem may have many local 

minimum, the positive-definite cost function ensures that the optimization will converge to a 

bounded solution that is a local minimum.

Pontryagin’s Minimum Principle states that uk
∗(τ) ∈ 𝒰 solves the optimal control problem in 

(8) for the finite time horizon τ ∈ [t0, T) if it minimizes the Hamiltonian [37]. Given the 

definition of the optimal control problem in (8) the Hamiltonian is defined as

H(x, λ, u) ≜ l(x, u) + λT f (x, u)

where λ(τ) ∈ ℝ4 is the costate vector. After analytically solving for the gradient of the 

Hamiltonian a gradient-based iterative solver can be used to solve for uk
∗(τ)∀τ ∈ t0, T  that 

minimizes the Hamiltonian and subsequently solves the optimal control problem in (8).

To solve the optimal control problem a gradient projection algorithm [31], [38], [39], is 

used. The detailed computation steps of the gradient projection algorithm can be found in 

[38], and summarized as in Table I for each time instant k.

In this MPC-based DCA algorithm, a terminal cost function, V(∆x(T)) = ∆x(T)T P∆x(T), is 

used as a control Lyapunov function to ensure stability. The control Lyapunov condition is 

approximately satisfied by solving the algebraic Riccati equation [30], [38]

PA + ATP − PBR−1BTP + Q = 0

for the gain matrix P, where the matrices A ∈ ℝ4 × 4 and B ∈ ℝ4 × 2 are the linearized state-

space dynamics of the nonlinear system, which are defined as

A = ∂ f (x, u)
∂x x = xd, u = ud

, B = ∂ f (x, u)
∂u x = xd, u = ud

.
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A terminal constraint could also have been used [40] to stabilize the system, but it can make 

the optimal control problem difficult and more time consuming to solve.

IV. Experiments

One person without SCI (labeled as S1; 30 year old, male, height 1.78m, weight 63.5kg) and 

one person with SCI (labeled as S2; 41 year old, male, height 1.70m, weight 70kg, with T10 

AIS A paraplegia since 1994), participated in the study. Prior to any experiments, participant 

consent and approval from the Institutional Review Board of the University of Pittsburgh 

was obtained. S1 was instructed to remain relaxed during the procedures so that they would 

not influence the measurements with volitional muscle contractions. The experiments were 

performed using the modified leg extension machine shown in Fig. 2. The modified leg 

extension machine has an encoder (Hengxiang, CN) with 1024 pulses per revolution 

resolution to measure the joint angle, and a load cell (Omega, USA) to measure the joint 

torque. Also, the leg extension machine can be pinned in place and used for isometric 

contraction tests. A RehaStim 8-channel stimulator (Hasomed Inc., DE) was used to 

generate the biphasic pulse train to stimulate the muscles via surface electrodes, and a 

Harmonic Drive LPA-17-100-SP electric motor (Harmonic Drive, US) was used to generate 

torque. The Harmonic drive motor has a 100:1 gear ratio, a peak torque of 54Nm, and a 

maximum speed of 30rpm. Two sets of experiments were performed: 1) parameter 

estimation experiments and 2) DCA experiments.

A. Parameter Estimation

To implement the NMPC-based DCA method, the parameters of the dynamics in (7) must be 

estimated. The parameter estimation methods used in this paper were was also used in our 

previous work [27], and is based on the methods in [41]–[43]. The procedure for estimating 

the fatigue dynamics of the quadriceps muscles were based on methods in [36]. For all 

parameter estimation procedures, a biphasic 35Hz pulse train with a pulse width of 400μs 
was used as the wave form parameters of the pulse train. Six tests were performed in the 

modified leg extension machine to identify the musculoskeletal parameters. During the first 

five tests it was assumed that the duration of stimulation was short enough and sufficient 

time to rest were provided, so that muscle fatigue was assumed not to occur (this can be 

verified from the resulting, estimated muscle fatigue time constants), i.e. μ = 1 during these 

tests. Detailed descriptions of the parameter estimation procedures can be found in our 

previous work [27] as well as in the supplemental material.

The results of the parameter estimation for the both legs of the S1 participant (able-bodied) 

and both legs of S2 participant (with SCI) are shown in the Table II. The parameters in Table 

II are subject specific, and are specific to the stimulation pulse width and frequency used 

during the parameter estimation. During control validation experiments these stimulation 

parameters were kept constant and only the stimulation amplitude was input to the system. 

Small differences that can be seen between the right and left leg of each participant can 

possibly be attributed to asymmetry in the muscle structure between the participants right 

and left legs, and variations in positioning of the electrodes between each leg.
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B. Dynamic Control Allocation Results

Experiments were run on both legs of S1 and both legs of S2, in which the knees were 

regulated to a desired angular position. The codes for the NMPC algorithm were compiled 

by C programming language, and they were embedded in Simulink® in the form of S-

function. The discrete time step was set to be 0.01s, and the NMPC time horizon was chosen 

to be 0.5s. The desired angular position was set to be 40°. The desired inputs, which are 

supposed to be able to regulate the knee at the desired angular position, were computed 

based on the nominal model. The following experiments to evaluate the DCA-based control 

of a hybrid neuroprosthesis were performed within a few days of the parameter estimation 

procedures to ensure that the parameters used in the model-based controller were valid.

Four scenarios were designed to evaluate the regulation performance. (1) Motor-only: In this 

case only motor was used; (2) Motor and FES with constant ratio of desired inputs (fixed 

allocation): In this case motor and FES would cooperate with each other to regulate the 

knee. The DCA method balances the control performance and input while allocating the 

input efforts between motor and FES. Each input (motor and FES) would share 50% of the 

working load, i.e., the ratio of FES to motor is 1:1, and this ratio was kept constant through 

the experiment. (3) Motor and FES with varying ratio of desired inputs (varying allocation): 

This scenario is similar to (2), except that the desired input ratio was adapted as per the 

estimated fatigue. With the propagation of the muscle fatigue, desired motor input would 

share more work than FES, so that the muscle would have a chance to recover from the 

fatigue. This ratio updates automatically every 5 seconds based on 1
2 μ2:1 − 1

2 μ2, where μ ∈ 

[0, 1] is fatigue state defined in (6). (4) FES-only: In this scenario only FES was applied to 

the human leg. As the quadriceps muscle would get fatigued rapidly in this scenario, and no 

motor can share the load, this experiment was only run for 60 seconds for S1 and 30 seconds 

for S2, while other scenarios were run for 120 seconds for both participants. These cases 

were tested on different days to avoid creating bias in the results.

Fig. 3 demonstrates the regulation performance on the right leg of S1 and the left leg of S2. 

Table III summarizes the performance of the experiments for the right and left legs of both 

participants. Since the results for the right and left leg of each participant were qualitatively 

very similar only the results of the left leg of S1 and right leg of S2 will be plotted for 

brevity. Fig. 4 and Fig. 5 shows the control inputs and fatigue estimates during the four 

scenarios, respectively.

Because the fatigue, shown in Fig. 5, is only a model estimate, a post-experiment fatigue test 

was performed aiming to experimentally quantify the muscle fatigue effects. In this test, 

frequency and pulse width were kept the same as in the regulation test, except that the FES 

amplitude was set to be at the saturation level, which would recruit the maximum isometric 

torque. The tests were perfomed after 3 scenarios (Scenarios 1, 3, and 4). The decrease in 

the torque, which is shown in Fig. 6, indicates the residual torque levels after the regulation 

of each control scenario. A torque time integral (T-T) was used as a metric to measure the 

residual torque levels. The integrated joint torque also averages out any abnormal torque 

peaks. The initial torque levels at the start of the post-experiment fatigue test and at every 5 
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second intervals were also measured. The T-T and torque values for each scenario and the 

participants are listed in Table IV.

V. Discussion

The NMPC-based DCA control method was shown to regulate the knee extension. Unlike, 

the traditional high-bandwidth feedback control methods used in [12], [13], [25] for hybrid 

exoskeletons, control between the FES and the electric motor was simultaneously and 

optimally allocated. Importantly in Scenario 3, the DCA technique was shown to divert 

control from the FES to the electric motors as the muscles begin to fatigue, while 

maintaining the desired knee angle. Moreover, the motor torque recruited by the hybrid 

system was shown to be less than the motor-only system. This is consistent with the results 

obtained in [13], [25] that also show a decrease in the power consumption in the ‘with FES’ 

case compared to the ‘without FES’ case. We also found that the control performance was 

more accurate with the assistance of the electric motor than in the FES only case. For 

instance, the RMS of Scenario (2) was reduced by 43.3% compared to Scenario (4) (see 

Table. III).

Also to provide a qualitative measurement of muscle fatigue after the each scenario, post-

experiment fatigue tests were conducted on the participants. As shown in Figs. 5 and 6 and 

Table IV, the fatigue-effects by the hybrid system were inferred to be lesser than the FES-

only case and the least amount of fatigue was measured in the motor-only case. The torque 

values during the post-experiment (Scenario 4) fatigue test that was performed on the subject 

S1R remain pretty much plateaued except an increase at the end. It could be due to a sensor 

or voluntary disturbance during the force measurement. Overall, however, as seen in Table 

IV, the T-T and measured peak torque values are consistent with the aforementioned 

assertion, and the torque is also showing a decreasing trend. Note that although the FES-only 

cases (60 secs.) were run shorter than the other cases (120 secs.), the quadriceps muscles 

still seem to be more fatigued. According to the estimated fatigue shown in Fig. 5, the 

muscles of the S2 (participant with SCI) seem to be more fatigued than those of S1. Also, 

from Fig. 6 it seems that the torque (peak) value could be strongly affecting the T-T value 

than the plateau during the post fatigue experiment. This suggests it would have been 

interesting to measure the torque values before and after the controller experiments. 

Measuring drops in the torque values after the controller experiments could also be used as a 

metric to measure fatigue effects in addition to or instead of T-T values.

Limitations

In Fig. 3b, the joint angle error for the participant S2 is more in the ‘varying allocation’ case 

than in the ‘fixed allocation’ case. A decrease in performance in one of the experiments 

could be attributed to errors and limitations of the approach. One of the sources of error and 

limitations of this control method is that it is model dependent. In other words inaccuracies 

in the parameter estimation (e.g., variations resulting from positioning of electrodes, day-to-

day parameter changes, etc.) will likely result in poor performance of the controller. Also, 

since the musculoskeletal system can change significantly over time, to be able to use this 

control method in a hybrid neuroprosthesis the parameter estimation must be performed 
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regularly to ensure that the performance does not degrade. Another limitation of the 

controller presented in this paper is that it is only capable of regulation control. Regulation 

control is sufficient for sit-to-stand/stand-to-sit transfers, standing, and in between steps; 

however, further adaptions to the control method are required before it may be used for 

trajectory tracking control, which would be used for dynamic motions such as walking or 

stair climbing. To overcome these issues, an MPC approach for pure tracking task as well as 

a robust MPC approach to handle model uncertainties is needed for future work.

VI. Conclusion

In this paper a model based control allocation was developed for a hybrid neuroprosthesis 

device, which incorporates an electric motor to share the work load with FES. The 

advantage of this set-up is that it can alleviate effects of FES-induced muscle fatigue; thus 

the fatigue effects do not affect the overall performance of a neuroprosthesis. The control 

effort allocation was determined by an NMPC-based DCA method that used a gradient 

projection-based optimization algorithm. The experimental results on the knee joints of 

participants with and without SCI verified the performance of the proposed control method 

for the hybrid neuroprosthesis device. Motor torque requirements and fatigue estimation 

through different cases also validate the aforementioned advantages of the hybrid system. 

The results implied the potential of the hybrid technology for walking rehabilitation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The hybrid leg extension neuroprosthesis uses a motor at the knee joint, τm, and electrical 

stimulation of the quadriceps muscles, I, to move the shank. The position of the shank 

relative to equilibrium is θ, and ϕ is the anatomical knee angle.
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Figure 2. 
The modified hybrid neuroprosthesis system that combines FES quadriceps muscle with an 

electric motor.
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Figure 3. 
This figure shows the regulation performance of the two participants.
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Figure 4. 
This figure shows the inputs applied to the right leg of S1 and left leg of S2. [Norm.] stands 

for normalized (no units). The dashed lines stand for desired control inputs, which were 

computed based on the musculoskeletal parameters as described in Section 4.2.
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Figure 5. 
This figure shows the estimated muscle fatigue of the right leg of S1 and left leg of S2.
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Figure 6. 
This figure shows the post-experiment fatigue test results after the 3 scenarios.
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Table I

The NMPC-based DCA that uses gradient projection algorithm.

1 Initialization: j = 0

(a) Set the convergence tolerance εj.

(b)
Choose initial control trajectory uk

0 τ ∈ 𝒰
t0, T

, where τ ∊ [t0, T].

(c)
Integrate the system dynamics forward in time to solve for xk

0 τ  given uk
0 τ  and xk

0 0 = xk, where τ ∊ [t0, T].

2 Gradient Step:

(d)

Integrate backward in time to solve for the costates λ(j) (τ) λ̇ τ = − ∂H x, λ, u
∂x x = xk

j , u = uk
j , where λk

j T =
∂V xk

j T

∂x T  is 

the terminal condition.

(e)
Compute the search direction, sk

j τ , from the Hamiltonian sk
j τ = − ∂H x, λ, u

∂u x = xk
j , u = uk

j , λ = λk
j .

(f)
Compute the step size, αk

j

αk
j = arg min

α > 0
J xk

j , ψ uk
j + αsk

j .

(g)
Compute the new control trajectory uk

j + 1 τ = ψ uk
j + αk

j sk
j ,

ψ u ≜
u−, u < u−

u, u− ≤ u ≤ u+

u+, u+ < u

.

(h)
Integrate the system dynamics forward in time (h1) solve for xk

j + 1 τ  given uk
j + 1 τ ,

(h2) evaluate the cost function J xk
j + 1 , uk

j + 1 ·

(i)
Check Quit Conditions(i1) quit if J(xk

j + 1 , uk
j + 1 − J xk

j , uk
j ) ≤ ε j,

(i2) quit if j has exceeded the max iteration limit, Nt,
(i3) otherwise set j = j + 1 and reiterate gradient step from (a).
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Table II

Musculoskeletal parameters estimated for the right and left legs of each participant.

Parameters of S1

Parameter Right Leg Left Leg

It [mA] 18.10 21.21

Is [mA] 60.00 60.00

m [kg] 4.69 4.68

lc [m] 0.37 0.37

J [kg m2] 0.19 0.18

θeq [rads] 1.20 1.18

d1 [Nm] 2.66×10−14 2.40×10−14

d2 [Nm] 1.68 3.50

d3 [Nm] 1.64 1.48×10−9

d4 1.59 3.47

d5 [Nm] 0.76 4.37

d6 −39.09 −39.97

ϕ0 [rads] 5.29×10−8 1.88×10−8

c0 [Nm] 78.78 80.36

c1 [Nm] 55.76 67.12

c2 [Nm] −49.02 −56.25

c3 1.44 1.04

Ta [sec] 0.26 0.25

μmin 2.61×10−9 3.15×10−9

Tf [sec] 29.17 30.14

Tr [sec] 48.09 41.50

RMS [deg.] 8.10 6.06

Parameters of S2

Parameter Right Leg Left Leg

It [mA] 20.00 20.00

Is [mA] 70.00 70.00

m [kg] 2.10 2.59

lc [m] 0.18 0.16

J [kg m2] 0.18 0.24

θeq [rads] 1.30 1.24

d1 [Nm] 13.53 11.01

d2 [Nm] 1.95 2.01

d3 [Nm] 2.29×10−7 8.22×10−9
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Parameters of S2

Parameter Right Leg Left Leg

d4 11.71 15.40

d5 [Nm] 2.59×10−6 0.99

d6 −6.40×10−5 −21.27

ϕ0 [rads] 1.03 0.85

c0 [Nm] 51.08 30.37

c1 [Nm] −21.86 9.58

c2 [Nm] −17.49 −17.49

c3 1.69 0.90

Ta [sec] 0.41 0.50

μmin 6.54×10−2 2.55×10−10

Tf [sec] 9.34 24.89

Tr [sec] 68.19 71.46

RMS [deg.] 6.18 2.95
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