Skip to main content
. Author manuscript; available in PMC: 2019 Jun 15.
Published in final edited form as: Bioorg Med Chem Lett. 2018 Apr 22;28(11):2074–2079. doi: 10.1016/j.bmcl.2018.04.052

Table 1. Energetic analysis for S-1, R-1, S-2, and R-2 with FtFabI complexes as obtained by MM-GBSA.

Energy (kcal mol-1) S-1 R-1 S-2 R-2
AEvdw -45.61 ± 0.02 a -45.91 ± 0.02 -47.95 ± 0.02 -47.16 ± 0.02
ΔEelec -12.08 ± 0.02 -8.92 ± 0.02 -12.86 ± 0.02 -9.95 ± 0.02
ΔEMMb -57.68 ± 0.02 -54.84 ± 0.03 -60.81 ± 0.03 -57.11 ± 0.03
ΔGnonpol -5.40 ± 0.01 -4.84 ± 0.01 -5.38 ± 0.01 -5.20 ± 0.01
ΔGpol 20.07 ± 0.01 18.03 ± 0.02 21.87 ± 0.02 19.05 ± 0.02
ΔGsolvc 14.68 ± 0.01 13.19 ± 0.02 16.48 ± 0.02 13.86 ± 0.02
ΔH(MM+solv) -43.01 ± 0.02 -41.65 ± 0.02 -44.32 ± 0.02 -43.25 ± 0.02
-TΔS 5.91 6.83 7.89 8.37
ΔGpredict -37.10 ± 0.02 -34.82 ± 0.02 -36.43 ± 0.02 -34.88 ± 0.02
ΔΔGpredict -2.28 ± 0.02 -1.55 ± 0.02
ΔGexpd -10.25 -8.00 -10.11 -7.14
ΔΔGexp -2.25 -2.97
a

Values are average ± standard error of the mean.

b

ΔEMM = ΔEvdw + ΔEelec.

c

ΔGsolv = ΔGnonpol + ΔGpol.

d

ΔGexp is the experimental binding energy as calculated by ΔGexp = RT lnKi, where R is the ideal gas constant (1.9872 × 10-3 kcal K-1 mol-1) and T is 300 K.