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Abstract

Understanding brain function requires technologies that can control the activity of large 

populations of neurons with high fidelity in space and time. We developed a new multiphoton 

holographic approach to activate or suppress the activity of ensembles of cortical neurons with 

cellular resolution and sub-millisecond precision. Since existing opsins were inadequate, we 

engineered new soma-targeted (ST) optogenetic tools, ST-ChroME and IRES-ST-eGtACR1, 

optimized for multiphoton activation and suppression. Employing a three-dimensional all-optical 

read/write interface, we demonstrate the ability to photo-stimulate up to 50 neurons 

simultaneously distributed in three dimensions in a 550 × 550 × 100 μm volume of brain tissue. 

This new approach allows the synthesis and editing of complex neural activity patterns needed to 

gain insight into the principles of neural codes.
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Introduction

Neural circuits can encode information in the rate1, timing2, number3, and synchrony of 

action potentials4, and in the identity of active neurons5. Yet the technical inability to create 

or edit custom patterns of spatiotemporal neural activity is a key impediment to 

understanding the logic and syntax of the neural code6. Experimental approaches that allow 

high fidelity temporal control of neural activity7 from specific groups of neurons would 

make it possible to systematically vary spike rate, timing, synchrony, and number, and 

permit definitive tests for how neural ensembles encode information. Similarly, deleting 

action potentials from functionally defined neurons will allow experimenters to probe the 

elements of endogenous activity patterns that contribute to neural computations and 

behaviors with unprecedented precision.

Optogenetics offers the basis for such a technology, but many neural computations rely on 

genetically similar, yet functionally distinct neurons that are physically intermixed8,9, and 

are thus beyond the reach of conventional approaches. Two-photon (2P) optogenetics10–13 

allows experimenters to stimulate neurons based on their precise spatial location as well as 

their genetic identity. Combined with 2P calcium imaging, this allows activation of specific 

neurons on the basis of any desired feature14–18. However, in vivo all-optical approaches in 

mice have suffered from low temporal precision (>10 ms jitter)14–16, or could only photo-

stimulate several neurons simultaneously15,19, and thus could not create precise neural 

activity patterns. Furthermore, in vivo multiphoton suppression of neural activity was not 

previously possible20, critically limiting the ability of experimenters to assess the necessity 

of spikes originating from specific, functionally defined neurons.

Several optical methods can stimulate neurons using 2P excitation, although all have 

limitations. A standard 2P optogenetic technique is to scan a small laser spot over neurons 

that express variants of slow red-shifted opsins like C1V1 T/T
10,13. While this approach 

effectively drives spiking, the slow kinetics of the scanning laser and the opsin preclude 

precise control of the specific sequence of neural activity, resulting in uncertain trial-to-trial 

reproducibility12,14,16. In contrast, scanless multiphoton stimulation using computer 

generated holography (CGH) and temporal focusing (TF) allows simultaneous illumination 

of the entire somatic membrane, and can provide higher temporal fidelity when used with a 

fast opsin19,21–25. However, existing excitatory opsins are too weak or too slow to drive 

precise neural activity patterns with scanless 2P optogenetics in vivo15,20. Additionally, only 

recent innovations have allowed scanless holographic optogenetics to function with high 

axial resolution in three dimensions (3D)26,27.

Therefore, to synthesize and edit custom distributed patterns of neural ensemble activity, we 

engineered powerful new opsins optimized for multiphoton optogenetics. We developed 

ChroME, a new ultra-fast and highly potent opsin with 3–5 times larger photocurrents than 

opsins commonly used for multiphoton optogenetics12,13,28. This allows high fidelity sub-

millisecond control of pyramidal neuron spiking. In vivo, we activated ensembles of neurons 

expressing soma targeted (ST-) ChroME using 3D-SHOT (3D-Scanless Holographic 

Optogenetics with Temporal Focusing)27, synthesizing precise sequences of neural activity 

with cellular resolution and millisecond precision. By combining 3D-SHOT with volumetric 
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2P calcium imaging, we obtain all-optical control of distributed neural ensembles, 

simultaneously stimulating up to 50 neurons with high temporal precision. Furthermore, to 

achieve all-optical suppression, we improved and employed the extremely potent inhibitory 

anion opsin, GtACR129, which exhibits 80 fold increases in photocurrent over previously 

employed pump-based opsins for multiphoton optogenetic silencing13. Critically, we 

identified a strategy to prevent the cellular toxicity we observed when the transgene was 

expressed conventionally. Using this new construct, IRES-ST-eGtACR1, with 3D-SHOT, we 

provide electrophysiological and all-optical demonstration of high fidelity silencing of 

neural activity from identified neurons in vivo. Together, these data represent a novel 

technological approach for precise multimodal control of neural ensemble activity with high 

fidelity.

Results

Requirements for controlling neural activity with millisecond precision

To control neural activity with sub-millisecond precision, we sought an opsin and a 2P 

stimulation paradigm that can generate large currents with rapid kinetics30. Injecting current 

into patched neurons (layer 2/3 (L2/3) pyramidal cells, used throughout this study unless 

otherwise noted) in brain slices, we could reliably evoke precise spike trains with brief, high 

amplitude current steps. In contrast, long current injections, analogous to some spiral 

scanning approaches14,16, resulted in variable spike number and timing, but required lower 

current amplitudes (Fig 1a–b, Supplementary Fig. 1).

To achieve fast currents using 2P excitation, we adopted scanless holographic paradigms, 

CGH and 3D-SHOT, that can simultaneously illuminate the entire soma. We developed an 

experimental setup that combines a standard 2P imaging system with a custom 

photostimulation laser path. The photostimulation path features a high power (20W or 40W) 

2 MHz 1040 nm laser with a spatial light modulator (SLM) placed in Fourier space to 

simultaneously target neurons in 3D. For targeting neural ensembles in vivo with high 

spatial resolution, the CGH path was replaced with 3D-SHOT27, a new form of 3D 

holography with temporal focusing that we recently developed and further improved 

(Supplementary Fig. 2, see Supplementary Table 1–2, and methods).

We first sought to identify the best opsin for precise temporal control of neural activity using 

scanless approaches. We rejected ChR2, as its 2P excitation peak is centered at 920 nm, and 

would be strongly activated by GCaMP imaging, resulting in undesirable optical cross-

talk10. Instead we tested several red-shifted opsins: C1V113 T/T, ChrimsonR, and Chronos28 

(Supplementary Fig. 3a). CGH stimulation (5 ms, 0.4 mW/μm2) of Chronos-expressing 

neurons elicited small photocurrents that were typically unable to generate action potentials 

(205±50 pA). To improve spatial resolution and photocurrent amplitude, we employed the 

Kv2.1 sequence tag to synthesize soma-targeted31,32 (ST-) variants of Chronos, C1V1 T/T, 

and ChrimsonR that increased photocurrents elicited by CGH stimulation (ST-Chronos: 

460±60 pA, Supplementary Fig. 3b). Neurons expressing ST-opsins had photocurrent 

kinetics similar to published reports28 and normal intrinsic properties (Supplementary Fig. 

3c–i).
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Despite this improvement, photocurrents were insufficient to reliably spike pyramidal 

neurons (Fig. 1a). We therefore optimized the pulse parameters of the stimulation laser. We 

tested the effect of peak power, pulse energy, and average power on photocurrents by 

systematically varying the laser repetition rate (2 – 40 MHz) and pulse dispersion. We could 

saturate photocurrents across a range of powers, but high-peak powers (i.e. low rep-rates) 

saturated more efficiently (Supplementary Fig. 4a–d). Stimulation powers used in 

experiments did not damage cells33 (Supplementary Fig. 4e–f). For all subsequent 

experiments, we employed 250–300 fs laser pulses at a repetition rate of 2 MHz with power 

varying from 0.1–0.4 mW/μm2.

Even after optimization, average maximal photocurrents elicited by CGH stimulation (5 ms, 

0.4 mW/um2) of pyramidal neurons expressing ST-opsins remained relatively weak (ST-

C1V1 T/T: 380±80 pA, ST-ChrimsonR: 430±60 pA, ST-Chronos: 530±50 pA, Fig. 1c). A 

simple integrate and fire model of typical L2/3 neurons suggested that these photocurrents 

were unlikely to generate spikes (Supplementary Fig. 5a). Even using long light pulses and 

high light powers, only a minority of neurons expressing these opsins could be activated by 

CGH stimulation (Fig 1d, Supplementary Fig. 5).

The new opsin ChroME allows high fidelity replay of complex activity patterns

Since none of these opsins could reliably spike neurons in response to brief holographic 

stimulation, we engineered a stronger opsin with the goal of holographically stimulating 

large ensembles of neurons. We focused on mutating ST-Chronos, aiming to develop a 

variant that would preserve its fast kinetics but would generate sufficiently large 

photocurrents with brief light pulses. Guided by homology modeling to the crystal structure 

of C1C234 (Supplementary Fig. 6a), we mutated the pore region of ST-Chronos, identifying 

a neutral putative pore residue (M140) in Chronos that is negatively charged in other opsins 

(Supplementary Fig. 6b). We reasoned that mutating this methionine to a negatively charged 

residue might increase the flux of positive ions through the pore and therefore increase 

current amplitudes. We tested several mutations via 1P stimulation in Chinese hamster ovary 

(CHO) cells against a panel of ST-opsins and identified several mutants with larger 

photocurrent amplitudes than any other opsin that we tested (Supplementary Fig. 6c–d). One 

of these mutants, ST-Chronos-M140E, or ‘ChroME’, exhibited rapid decay kinetics while 

exhibiting photocurrents more than 10 times higher than ChR2 (Supplementary Fig. 6e). 

Neurons electroporated with ST-ChroME exhibited photocurrent amplitudes 3–5 times 

larger than ST-C1V1T/T or ST-Chronos in response to CGH stimulation (5ms 0.4 mW/μm2 

evoked 1.8±0.2 nA, Fig. 1c). ST-ChroME retained ST-Chronos’s excitation spectrum and 

rapid rise time (Fig 1e, Supplementary Fig. 3c), but its decay time constant (3.0±0.4 ms) was 

slightly slower than ST-Chronos (1.7±0.6 ms, Supplementary Fig. 3d).

In contrast to other ST-opsins (and as predicted by modeling, Supplementary Fig 5a), 96% 

of ST-ChroME-expressing neurons were activated by CGH stimulation (Fig. 1d), requiring 

lower laser powers and shorter light pulses to evoke spikes than the other opsins 

(Supplementary Fig. 5b). This was true whether opsins were delivered via in utero 
electroporation (IUE) or by viral infection (Supplementary Fig. 6f–k).
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We next examined the temporal precision of action potentials evoked from ST-ChroME-

expressing neurons and the minority of neurons expressing other ST-opsins that could be 

activated. At 1 Hz, light-evoked spikes from neurons expressing ST-ChroME or ST-Chronos 

occurred with short latency and low jitter, whereas the timing of spikes from ST-C1V1T/T or 

ST-ChrimsonR-expressing neurons was more variable (Fig. 1f–h). To test temporal precision 

while eliciting naturalistic sequences of action potentials, we stimulated neurons with 

Poisson trains of holographic light pulses. Neurons expressing ST-ChroME and ST-Chronos 

followed these patterns with high fidelity, exhibiting high spike probability and low jitter 

across a wide range of stimulation frequencies throughout the stimulus train (fidelity index 

score: ST-ChroME: 0.87±0.03; ST-Chronos: 0.90±0.02, see methods). However, neurons 

expressing ST-ChrimsonR or ST-C1V1 T/T could not follow complex stimulus patterns 

(fidelity index score: ST-ChrimsonR: 0.48±0.05, ST-C1V1 T/T: 0.25±0.04, Fig. 1i–j, 

Supplementary Fig. 5c–g).

Since ST-ChroME allowed fast and reliable responses with brief stimulation, we reasoned 

that we could employ high speed SLMs to spike different sets of neurons at high rates. To 

test the speed at which we could generate spike patterns in two different neurons, we 

recorded two ChroME-expressing neurons and used a fast SLM (Supplementary Fig. 7, 

Supplementary Movie 1) to interleave holographic stimulation of each cell at the maximum 

SLM rate. We generated a Poisson train of light pulses on each trial and delivered the same 

sequence to both neurons separated by 3 ms. This experiment showed we could generate 

naturalistic spike trains in multiple neurons offset by brief periods (Fig. 1k).

To test if ST-ChroME drives reliable spiking under more relevant in vivo conditions, we 

performed 2P guided loose-patch in anesthetized animals. While only 31% of ST-Chronos-

expressing could be made to spike with 5 ms CGH pulses, over 89% ST-ChroME-expressing 

neurons could be activated in vivo (Fig. 1l). Together, these data demonstrate that ST-

ChroME can reliably generate the rapid, large photocurrents necessary to drive the 

temporally precise, short-latency spikes needed to replicate naturalistic neural activity 

patterns.

Anion opsins permit rapid and potent silencing of neural activity

We next asked if we could identify or engineer an optogenetic silencer to suppress neural 

activity with high efficacy and temporal precision. We synthesized and tested a suite of ST-

inhibitory opsins with ER export motifs35 (‘e’) including pumps (eNpHR3 and eArch3)36,37 

and anion channels (GtACR1, psuACR29,38, and iC++39). ST-eGtACR1 generated the 

largest outward photocurrents while retaining moderately fast kinetics (rise time 1.5 ± 0.7 

ms, decay time 12.5 ± 0.7 ms, Fig. 2a–b, Supplementary Fig. 8a–b). GtACR1 photocurrents 

were near saturation in normal conditions and not improved by the ‘e’ signal 

(Supplementary Fig. 8c–g). Furthermore, ST-eGtACR1 was more sensitive to 1040 nm light 

than 930 nm (Supplementary Fig. 8h).

Since these silencers function through different biophysical mechanisms, it was possible that 

the opsin with the largest photocurrent might not be the most effective suppressor of 

endogenous neural activity. We therefore tested 2P holographic suppression in vivo by 

performing targeted loose patch recordings from cells expressing inhibitory opsins. Of the 
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opsins that we tested, ST-eGtACR1 was the most efficient silencer, reducing activity to 

8.4±3% of normal firing rate with 0.2 mW/μm2 of 2P stimulation. In contrast, at the same 

laser power, ST-eArch3 only reduced activity to 37±8 %, whereas ST-ePsuACR or light 

alone did not significantly alter firing rates (82±4% and 90±9 %, respectively, Fig. 2c, 

Supplementary Fig. 8i).

However, unlike all other opsins we expressed in vivo, we had difficulty identifying ST-

eGtACR1-mRuby2 positive neurons. This seemed to be a problem only in adult animals but 

was partially mitigated by the ‘e’ signal (Fig 2d, Supplementary Fig. 9a). We suspected this 

might be related to aggregation of GtACR1 protein when highly expressed, possibility 

leading to degradation or toxicity. To address this problem, we generated a bicistronic 

construct with a nuclear localized fluorophore (H2B-mRuby3-IRES-ST-eGtACR1) that 

lowers expression levels of the opsin and spares the fluorophore from degradation. IRES-ST-

eGtACR1 exhibited large photocurrents in CHO cells and neurons (460 ± 200 pA CHO 

cells, 920 ± 140 pA neurons, Fig. 2b,e). Antibody staining to a FLAG epitope on the 

GtACR1 protein confirmed that it remained soma-targeted (Supplementary Fig. 9b). 

Importantly, unlike ST-eGtACR1, IRES-ST-eGtACR1-expressing cells were easily identified 

into adulthood (Fig. 2d, Supplementary Fig. 9a). IRES-ST-eGtACR1-expressing neurons 

had normal intrinsic properties (Supplementary Fig. 3e–j) and spontaneous in vivo firing 

rates (Supplementary Fig. 9c) even in older mice. Targeted in vivo loose patch revealed that 

IRES-ST-eGtACR1-expressing neurons reduced their firing to 6.8 ± 5% of nominal rate in 

response to CGH stimulation (0.3 mW/um2), suggesting that lowering expression levels did 

not affect the efficacy of silencing (Fig 2f).

To measure the timing of suppression, we induced spiking in brain slices through current 

injection in cells electroporated with IRES-ST-eGtACR1. We varied the onset time of 

holographic suppression so that spike timing was randomized trial-to-trial, and we varied the 

stimulation intensity and duration in separate experiments (Fig. 2g–j). We found that onset 

of suppression was rapid, with spiking eliminated within 1.5±0.3 ms after light onset. 

Similar to photocurrents, the onset time of suppression was power-dependent (Fig. 2g–h, 

Supplementary Fig. 8e). Despite current injection, cells hyperpolarized to near the reversal 

potential of GtACR1 when stimulated with <0.1mW/μm2, indicating potent suppression 

(−54 ± 3 mV at 0.08 mW/μm2 stimulation, Fig. 2h). Although the onset of suppression was 

rapid, suppression of neural activity persisted for 50 – 250 ms after the cessation of 

photostimulation, due to the decay kinetics of the GtACR1 channel. This suppression was 

dependent on both the intensity and duration of the light stimulus (Fig. 2h–i). Together, these 

data validate IRES-ST-eGtACR1 as a new tool for stable, rapid suppression of neural 

activity using 2P optogenetics.

Creating and editing spatiotemporal sequences of neural activity in vivo

Next, we employed ST-ChroME and IRES-ST-eGtACR1 in the intact brain to create and edit 

spatiotemporal patterns of neural activity. For this, we employed 3D-SHOT27 (Fig. 3a, 

Supplementary Fig. 2,11) to enable 3D holographic stimulation with high axial resolution in 
vivo. To validate spatial resolution, we recorded the physiological point spread function 

(PPSF) using targeted loose patch recordings from ST-ChroME-expressing neurons in 
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anesthetized mice at multiple focal planes (Fig. 3b–c, spot diameter = 20 μm; radial full-

width half-max (FWHM): 11±3 μm, axial FWHM: 28±4 μm).

The majority of ST-ChroME-expressing neurons fired reliable, temporally precise action 

potentials in response to brief 3D-SHOT stimulation using powers less than 0.2 mW/μm2. 

This was true when electroporated with ST-ChroME-mRuby2 or virally transduced with 

AAV DIO-ST-ChroME-P2A-H2B-mRuby3 (Fig 3d, Supplementary Fig 12). We then 

stimulated with a naturalistic Poisson pattern, varying the pattern each trial to generate 

unique sequences of evoked activity (Fig. 3e). Quantifying these experiments revealed that 

ST-ChroME-expressing neurons reliably spiked with sub-millisecond jitter, allowing the 

production of spatiotemporal activity patterns with high fidelity (Fig 3f, Supplementary Fig 

13a).

Conversely, to remove spikes from endogenous neural activity, we recorded from IRES-ST-

eGtACR1-expressing neurons. 3D-SHOT stimulation at 0.32 mW/μm2 produced at least a 

95% reduction in firing in >75% of IRES-ST-eGtACR1-expressing cells (Fig. 3g). The 

efficacy of holographic suppression increased with stimulation power, allowing us to either 

completely silence the activity of a neuron during a defined time window at high power, or 

titrate a neuron’s average firing rate with lower powers (Fig. 3h–I, Supplementary Fig 10a–

b). Suppression appeared constant over the entire stimulation period, consistent with the 

observation that GtACR1-evoked photocurrents did not substantially desensitize (Fig. 3h–I). 

Suppression was repeatable over many trials without loss of efficacy or an apparent change 

in spontaneous firing rates of stimulated neurons (Fig. 3h Supplementary Fig 10c). This 

demonstration of single neuron suppression using 3D-SHOT represents the second element 

in a bidirectional toolbox to control spatiotemporal patterns of neural activity.

Holographic spatiotemporal control of cortical inhibitory neurons

Whereas L2/3 neurons typically fire sparsely, cortical inhibitory neurons are heterogeneous 

and many fire at much higher frequencies40. We therefore combined spatial and genetic 

selectivity by stimulating specific subsets of GABAergic neurons (PV, SOM, or VIP)41,42 

expressing Cre recombinase transgenically and infected with AAV-DIO-ST-Chronos-

mRuby2. Inhibitory neurons are typically more excitable than pyramidal neurons, and ST-

Chronos was sufficient to generate reliable action potentials in these cells24 (Fig 4a–b). We 

identified power levels needed to elicit reliable spiking at 1 Hz (<0.3 mW/μm2
, Fig. 4c) and 

performed Poisson 3D-SHOT stimulation (Fig. 4d–f). Stimulation of each GABAergic cell 

type drove reliable, short latency spikes with sub-millisecond jitter across many stimulation 

frequencies, allowing these neurons to follow stimulus trains with high fidelity (Fig. 4g–j, 

Supplementary Fig. 13b–d). Unlike L2/3 pyramidal neurons and VIP neurons, PV and SOM 

cells were able to follow stimuli with instantaneous frequencies up to 100 Hz (Fig. 4j). 

Additionally, we replayed several unique patterns of action potentials with identical mean 

rates, demonstrating our ability to reliably generate precise activity patterns over many trials 

(Supplementary Fig. 13e–g).
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Addressing multiple forms of optical crosstalk

To edit spatiotemporal activity patterns while simultaneously reading out network activity, 

we sought to combine our approach with 2P calcium imaging. To accomplish this, we 

addressed two forms of optical crosstalk that we encountered. First, the photostimulation 

laser can directly excite GCaMP6 adding severe artifacts to the imaging data. To overcome 

this problem, we synchronized the stimulation laser pulse gating with the resonant 

galvomirrors using a custom thresholded RC circuit (Supplementary Fig. 14a–d). This 

resulted in a stimulation duty cycle of ~16 kHz, providing stimulation on either side of each 

imaging line. Because this circuit is tunable, it provides a customizable tool to trade average 

stimulation power for effective field of view along the x-axis. Typically, we sacrifice ~50% 

of our stimulation power, resulting in light artifacts in <240 μm of imaging area along the x-

axis (Supplementary Fig. 14d: imaging window normally: 550 × 550 μm; with gate 

synchronization: 310 × 550 μm free of stimulation artifact). However, due to the extremely 

fast duty cycle compared to the kinetics of the opsins, we observed that this loss of 

stimulation power results in only a 10–20% reduction in photocurrents when using the laser 

gate (Supplementary Fig. 14e–f). All reported estimates of illumination densities account for 

losses from use of this circuit.

Secondly, the imaging laser can excite opsins and thereby modulate neural activity 

independently of the stimulation laser. To characterize the effect of the imaging laser on 

photocurrents, we patched opsin-expressing neurons in brain slices and imaged at different 

powers, window sizes, and volumes (i.e. frame rate). During two photon imaging of 

GCaMP6, the imaging laser induced brief photocurrents as the laser contacted the cell. 

These currents decayed between frames and were substantially smaller than holographic 

currents (Supplementary Fig 15a,d). Imaging volumetrically reduced the effective frame 

rate, decreasing the imaging-induced photocurrents. When reducing the size of the imaging 

window, thus increasing the dwell time of the imaging laser on the opsin-expressing neuron, 

photocurrents increased (Supplementary Fig. 15a–f).

Together, these data indicate that photocurrents caused by the imaging laser under standard 

wide-field volumetric imaging conditions are unlikely to influence firing rates. Nevertheless, 

to directly test 2P imaging-induced crosstalk in vivo, we performed loose patch recordings 

from all four classes of cortical neurons. Pyramidal neurons were electroporated with ST-

ChroME or IRES-ST-eGtACR1 or virally transduced with AAV DIO-ST-ChroME, while PV, 

SOM, and VIP neuron were virally transduced with AAV DIO-ST-Chronos. We did not 

observe detectable modulation of firing rates by the imaging laser when scanning with 50 

mW at 30 Hz over a 400 × 400 μm window, at depths between 100 and 270 μm 

(Supplementary Figure 15g–h). However, ChroME-expressing neurons increased their firing 

rates when the size of the imaging window was below 400×400 μm (Supplementary Figure 

15i). These data indicate that wide-field volumetric or video-rate 2P imaging is compatible 

with these optogenetic tools if care is taken to minimize cross-talk.

Next, to enable 3D all-optical read/write experiments (Fig. 5a), we created a custom suite of 

software to co-align 3D-SHOT and 3D calcium imaging (Supplementary Fig. 16). This 

alignment was facilitated by an improved version of 3D-SHOT that employs a rotating 

diffuser instead of a lens to shape the phase of the temporally focused disc. Using this 
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approach, phase is randomly encoded spatially and temporally rather than shaped into a 

static spherical pattern. This increases available power through the objective and eliminates 

the secondary geometric focus27, further enhancing axial confinement (Supplementary 

Figure 11).

All-optical control of neural activity with high spatiotemporal fidelity

Using these technical advances, we tested our ability to perform all-optical read/write using 

3D-SHOT stimulation to generate spikes with high fidelity, sub-millisecond temporal 

precision, and cellular resolution in full 3D. Experiments were performed in primary 

somatosensory cortex (S1) of awake, head-fixed mice on a treadmill. Mice expressed both 

GCaMP6s43 and ST-ChroME in excitatory neurons (See methods). To avoid failures or extra 

spikes, we determined the minimum laser power needed for each cell to reliably drive 

spiking with short pulses (Fig. 5b–c). The all-optical data matched in vivo physiology 

measurements, as neurons’ optical response function reached 80% of saturation with 

0.16±0.02 mW/μm2 (Fig. 5d).

We then rapidly activated neurons located throughout a 550 μm × 550 μm × 100 μm volume 

(3 imaging planes spaced 50 μm apart using an electro-tunable lens44, as used throughout 

the study), well within the accessible volume of our stimulation (Supplementary Figure 11h–

i). Neurons were stimulated one-by-one with a series of ten light pulses (5 ms, 30 Hz), and 

we read out the effects via GCaMP fluorescence. Generation of action potentials in this 

manner elicited large increases in GCaMP6s fluorescence. OASIS deconvolution of the 

calcium signal (see methods) revealed that the temporal sequence of activation was reliable 

across many trials and repeatable in multiple animals (Fig. 5e–g). On average, spatial 

resolution remained high even in awake in vivo conditions (Fig. 5h), but failures and off-

target activation could occur during rare episodes of brain motion (Supplementary Fig 17a). 

Such motion was easily identified post-hoc and trials where motion coincided with photo-

stimulation were excluded from analysis (Supplementary Fig. 17b). Holographic stimulation 

did not affect the animals’ running behavior (Supplementary Fig. 17c).

All-optical suppression of neurons

Next, we performed all-optical suppression of activity in awake mice. As L2/3 pyramidal 

neurons fire sparsely, we focused on PV-expressing interneurons, which have high tonic 

firing rates. To accomplish this, we created a Cre-dependent viral version of IRES-ST-

eGtACR1 (AAV9 DIO-NLS-mRuby3-IRES-ST-eGtACR1), and confirmed its efficacy in 
vitro via whole cell recordings and in PV cells in vivo via cell attached recordings 

(Supplementary Fig 18a–c). We co-infected PV-Cre mice with viral DIO-IRES-ST-

eGtACR1 and DIO-GCaMP6f. As in Figure 5 we imaged calcium activity while the animal 

was awake and head-fixed on a treadmill (Fig 6a). We sequentially suppressed individual PV 

cells (1s illumination, 0.16mW/μm2, Fig 6b, Supplementary Fig 18d–e); most (90.6%) cells 

exhibited reduced fluorescence when targeted but showed no consistent change when other 

neurons were targeted (Fig 6b–d). We observed no correlation between the direction or 

magnitude of a response and its distance from the targeted cell (Supplementary Fig 18f).
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Next, we suppressed groups of 4 randomly selected PV cells while simultaneously imaging 

(Fig 6e–h. 6–12 groups per experiment, 1s illumination 0.08 mW/μm2). Suppression of 

ensembles was also selective, as the laser caused suppression in only the cells targeted by 

the holographic pattern (Fig 6h). These data demonstrate all-optical suppression of neural 

activity in multiple neurons across a large working volume.

All-optical spatiotemporal control of neural ensembles

We next employed ST-ChroME to manipulate larger ensembles. When testing spatial 

resolution of ensemble stimulation in brain slices, we found that use of the ST-opsin, which 

increases stimulation resolution for one target31, was essential when stimulating groups of 

neurons with many holograms (Supplementary Fig. 19a–f), something not employed in 

previous manipulations of neural ensembles14,16,45. We tested multi-spot spatial resolution 

in vivo with cell attached recordings of ST-ChroME-expressing cells. The spiking PPSF was 

measured for each cell with holograms targeting 1–50 spots simultaneously throughout a 

large volume (400 × 400 × 200 μm). These experiments showed that 3D-SHOT stimulation 

in vivo remained spatially precise when targeting up to 50 locations simultaneously 

(Supplementary 19g–i).

To manipulate large groups of cells all-optically we prepared mice as in Figure 5, and 

selected 150 ST-ChroME-expressing neurons across three planes (Fig 7a). We randomly 

assigned them to unique neural ensembles containing overlapping sets of 10, 25, or 50 

neurons and stimulated them with 10 pulses at 10, 20, or 30 Hz (Fig 7b, Supplementary Fig 

20a, and Supplementary Movie 2). We did not stimulate more than 50 neurons 

simultaneously due to limitations in available laser power (4.1 Watts available from the 

objective resulting in approximately 0.13 mW/μm2, or 40 mW per target, accounting for 

losses from the imaging gate, but not for decreased diffraction efficiency of phase masks 

encoding 50 spots across the accessible volume). For control trials we either did not 

photostimulate the brain at all, or we directed the laser to 50 random spots (Supplementary 

Fig 20a). Neurons responded reliably to stimulation when targeted as a member of an 

ensemble, regardless of the identity of the other ensemble members. These neurons retained 

normal calcium dynamics when not being stimulated (Fig 7b, Supplementary Fig 20b). 

Stimulation of ensembles was selective and successful when targeting ensembles of different 

sizes, at different frequencies, and either within or across axial planes (Fig 7c–h, 

Supplementary Fig 20a–c).

During ensemble stimulation, we observed infrequent activation of neurons that were not 

holographically targeted. Cells located within the PPSF (0–11 μm distance from nearest 

target neuron) showed evidence of the expected facilitation from the stimulation laser (z-

score 0.87±1.3 mean and s.d., Supplementary Figure 21a–c). However, just outside the 

PPSF, neurons were not modulated by the optogenetic stimulus (11.5–25 μm away from 

nearest target: z-score 0.07±0.86 mean and s.d). On average, neurons distal from the nearest 

target exhibited a small but significant suppression suggesting that optogenetic stimulation 

engaged cortical circuits for lateral inhibition46 (> 30 μm distal from the nearest target, z-

score = −0.081±0.69 mean and s.d.). Similar effects were not observed in control trials 

(Supplementary Figure 21d). Non-target neurons exhibited high variability during both 
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control and stimulation trials consistent with expected spontaneous activity in the awake, 

running mouse, whereas the variability of target neurons was strongly reduced by 

holographic stimulation (Supplementary Figure 21e–h).

Analysis of targeted neurons during interleaved control trials showed no evidence that 

repeated stimulation caused toxicity (Supplementary Figure 22a–c). To directly measure 

temperature changes induced by stimulation, we implanted a thermal probe into the cortex 

of anesthetized mice and repeated the stimulation protocol exactly as used above. This 

resulted in brain heating of 1.7–2.2° C over the course of an hour (Supplementary Figure 

22d). We next addressed whether heat would constrain future all-optical experiments using 

full laser power at maximum rates. We found that one second of stimulation targeting 50 

spots at full laser power (4.1W, 83% duty cycle) increased brain temperature by ~2° C 

(Supplementary Figure 22e). Continuous stimulation resulted in significant brain heating 

after one minute (6–8° C, Supplementary Figure 22f). These data define bounds for 

potentially acceptable levels of laser illumination.

The ability to control the firing patterns of arbitrary neural ensembles raises the possibility 

of achieving optogenetic control over population activity47. Since sensory stimuli often 

decorrelate population activity48; we tested whether holographic ensemble stimulation could 

drive a change in population activity that mimicked a sensory stimulus. Towards this end, we 

computed the pairwise correlations during spontaneous activity of all neurons during control 

trials or during trials in which random ensembles were photostimulated. Ensemble 

photostimulation resulted in striking changes in the structure of population correlations (Fig 

8a–b), and resulted in significant decorrelation of untargeted neurons during stimulation 

trials (Fig 8c). Conversely, targeted neurons exhibited the opposite effect, increasing their 

pairwise correlations on trials that they were stimulated (Fig 8d). These results show that 

high fidelity, temporally precise holographic activation of neural ensembles can provide the 

scale of experimental control need to directly manipulate previously inaccessible properties 

of neural networks such as correlational structure and shared variability with cellular 

resolution.

Discussion

We developed an integrated experimental approach for multimodal control of neural 

ensemble activity with cellular resolution and millisecond precision in vivo. This new 

system achieves the simultaneous temporal precision, spatial resolution, reliability, and scale 

needed to generate or edit custom spatiotemporal activity patterns. It builds on previous 2P 

optogenetics manipulations of neural activity14–16, but offers the critical advances needed to 

achieve the faithful reproduction of naturalistic or artificial sequences of neural activity that 

could help parse temporal and spatial information in neural codes. The generation of ST-

ChroME and IRES-ST-eGtACR1, the application and improvement of 3D-SHOT, and the 

integration and optimization of these systems with fast volumetric calcium imaging provides 

the increase in performance needed to address many fundamental, yet unanswered question 

in neuroscience.
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Several in vivo mouse studies have previously employed 2P optogenetics with calcium 

imaging and/or electrophysiology to activate identified neurons13–16. Since these studies 

used C1V1T/T, a slow opsin exhibiting 2P photocurrents <500 pA12,13, they had 

comparatively poor control over the onset, timing, and, perhaps most importantly, the 

absolute number (and pattern) of evoked spikes over any given time window. Thus, spiral 

scanning of C1V1T/T-expressing neurons allows all-optical manipulation of neural 

ensembles (most recently in 3D45), but not the generation of spatiotemporally precise 

patterns of neural activity. However, recent work suggests that spiral scanning may be more 

power-efficient than scanless holography45, which should be considered when seeking to 

maximize the number of neurons simultaneously addressed if precise control of the 

underlying spike train is not required.

Although scanless 2P optogenetics holds the promise of eliciting short-latency, low jitter 

action potentials, it was initially limited by the strength of available opsins (photocurrents < 

500 pA)19,49. However, two recent papers demonstrated sub-millisecond temporal resolution 

using scanless holographic optogenetics in brain slices24,25. One employed the ultra-fast 

opsin Chronos fused with GFP to demonstrate sub-millisecond control of firing at high rates 

in inhibitory interneurons24. This study reported average photocurrents of ~400 pA, agreeing 

with our observations that Chronos is not powerful enough to reliably elicit spiking in most 

L2/3 pyramidal neurons, which require larger photocurrents due to their low intrinsic 

excitability. Here, we extend these results by using ST-Chronos-mRuby2 to drive naturalistic 

spatiotemporal activity patterns in three genetically defined inhibitory neuron subtypes in 
vivo (Figure 4).

Another study presented soCoChR25, a combination of a novel soma-restriction sequence 

(‘so’ versus ‘ST’31,32) and CoChR, a previously characterized potent opsin with slow off 

kinetics28 (see Supplementary Fig 6). Direct comparison of the ‘so’ tag and the Kv2.1 tag in 

brain slices and in vivo are needed to address which tag is preferable. ST-ChroME exhibited 

larger 2P photocurrent amplitudes than those exhibited by soCoChR, suggesting that 

ChroME may be preferable for many applications.

Recently, multiple groups reported that opsins with slow kinetics can generate a temporally 

precise spike upon 2P stimulation25,45. We elicited spikes with sub-millisecond jitter in 1 of 

11 ST-C1V1-expressing and 4 of 14 ST-ChrimsonR-expressing neurons, though the 

population average (8.6±2 and 12±5 ms respectively, Fig 1h) agreed with previous reports14. 

Our data indicate that opsins with slow decay constants are at an inherent disadvantage 

reproducing precise spike trains at physiological spike rates30. If more than one action 

potential per trial is required, faster opsins have a clear advantage. Almost every neuron 

expressing ST-ChroME exhibited sub-millisecond jitter, even in response to naturalistic 

Poisson stimulation in vivo.

We further optimized the extremely potent GtACR129 specifically for the purpose of 

multiphoton suppression, achieving fast, reliable, and potent silencing of neurons. Using 

IRES-ST-eGtACR1, we observe a significantly higher photocurrent than a previous report of 

2P suppression13, which employed a different stimulation method and targeting sequences. 

Direct comparison of IRES-ST-eGtACR1 to ST-eArch3 yielded an 80-fold increase in 
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photocurrent. Therefore, the approach presented here represents an important advance in 

optogenetic technology for the editing and synthesis of neural activity patterns that can be 

used to probe the fundamental logic of sensation, cognition, and behavior at the cellular 

scale.

Limiting optical cross talk between the read and write channels is a critical aspect of any all-

optical approach. Our data show that we can minimize undesired activation of opsin-

expressing neurons with the imaging laser. Since even red-shifted opsins absorb at the blue 

end of the two-photon spectrum, an alternative approach is to employ a blue shifted opsin 

and a red-shifted calcium indicator20. However, the lower efficacy of these red indicators 

compared to GCaMPs (at least at present), and the lack of high pulse energy lasers at 920 

nm restricts the scale of this approach. Nevertheless, for applications seeking to minimize 

optical-cross talk, this color-flipped scheme may be preferable.

The utility of multiphoton optogenetics for biological applications depends on the number of 

neurons that can be photostimulated simultaneously and per unit time. The number of 

simultaneous targets is constrained by the available average power from the stimulation laser 

and the diffraction efficiency of the SLM phase mask. To estimate the maximum number of 

light-evoked spikes under various conditions, we built a model based on our empirical data 

and our hardware specifications. The model indicates that our system could produce 

thousands of light-evoked spikes in one second (Supplementary Fig. 23, and see methods), 

though detecting these responses using calcium imaging would be technically challenging. 

We note that laser-induced brain damage or heating will place an upper bound on the 

maximum duration and power of light that can be directed into brain tissue33, and may 

significantly constrain the maximum numbers of neurons that can be stimulated in practice.

This combination of temporally focused 3D holography with fast, potent actuators and 

suppressors and calcium imaging allows new experimental applications. This approach 

should enable experiments where specific statistical features of neural activity can be varied 

optogenetically to probe functional connectivity, perception, or behavior. For example, 

controlling the number, rate, and timing of action potentials written to specific ensembles 

will allow neuroscientists to test models of cortical dynamics by probing the boundary 

conditions for the initiation of ‘winner take all’ ensemble activity. Perhaps most intriguingly, 

our approach provides the tight stimulus control needed to rigorously test how parameterized 

manipulation of specific neurons can create or alter behavior. Various reports suggest that 

animals can engage behavioral responses based on the activity of a number of neurons 

compatible with our approach50. By recording neural activity and simultaneously writing or 

suppressing custom spatiotemporal sequences of neural activity, investigators can use this 

new technology to probe how specific, unique patterns of neural activity influence neural 

circuits and behavior.

Accession Codes (addgene)

pCAG-ChroME-mRuby2-ST 108902

pAAV-CAG-DIO-ChroME-P2A-H2B-mRuby3 108912

pCAG-H2B-mRuby3-IRES-eGtACR1-ST 108960

pAAV-CAG-DIO-NLS-H2B-mRuby3-IRES-eGtACR1-ST 109048
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Data Availability Statement

The datasets generated and analyzed in this study are available from the corresponding 

author on reasonable request. Additionally, the sequences for constructs created in this study 

will be made publicly available on Addgene.

Online Methods

All experiments were performed in accordance with the guidelines and regulations of the 

ACUC of the University of California, Berkeley. Protocol # AUP-2014010-6832. Every 

experiment was conducted in at least three mice unless otherwise stated.

Transgenic mice

The following mouse lines were used for this study: ICR (CRL:CD1), the PV-IRES-cre line 

(B6;129P2-Pvalbtm1(cre)Arbr/J ; JAX stock #008069), the SOM-IRES-cre line (JAX stock 

013044), the VIP-IRES-cre line (JAX stock 010908), the Emx-IRES-cre line (JAX stock 

005628), the Drd3-Cre line (JAX stock 002958) the teto-GCaMP6s line (JAX stock 

024742), the CaMKII-tTA line (JAX stock 003010). Mice were housed in cohorts of five or 

fewer with a light:dark cycle of 12:12 hours, and were used for experimentation during their 

subjective night.

Plasmid construction and Mutagenesis

Chronos, eArch3.0 and iC++ were generated by gene synthesis (Chronos and eArch3.0 - 

Genewiz, South Plainfield, NJ and iC++ - Integrated DNA Technologies, Coralville, IA) and 

anion opsins PsuACR and GtACR1 were provided by Dr. John Spudich, (University of 

Texas Health Science Center, Houston, TX). C1V1T/T, ChR2, ChrimsonR, and eNpHR3.0 

were obtained from Addgene. All opsins were fused to mRuby2 at their C-terminus either at 

a NotI site (Chronos and eArch3.0) or AgeI site (GtACR1, iC++, PsuACR, eNpHR3.0) and 

sub-cloned into the pCAGGS expression vector between KpnI and XhoI restriction sites by 

In-Fusion cloning (Clontech, Mountain View, CA). In order to target the opsins to the soma 

and proximal dendrites of neurons, the sequence encoding the proximal restriction and 

clustering domain of the Kv2.1 voltage-gated potassium channel consisting of amino acids 

536–60031,32,51 (soma-targeting; ST) was codon optimized, synthesized (Integrated DNA 

Technologies, Coralville, IA) and inserted at the C-terminus of mRuby2 between BsrGI and 

XhoI restriction sites by In-Fusion cloning. To further enhance membrane trafficking, the 

endoplasmic reticulum (ER) export signal from the vertebrate inward rectifier potassium 

channel Kir and a neurite trafficking signal were appended to iC++ and the ER-export signal 

to GtACR1 and PsuACR. For the generation of a bicistronic pCAGGS vector encoding 

mRuby3 fused to histone H2B to promote its nuclear localization followed by GtACR1 

under the control of an internal ribosome entry sequence (IRES), GtACR1 fused to the 

soma-targeting domain was subcloned downstream of an IRES. For GtACR1 AAV 

preparations, the H2B was replaced with a nuclear localization sequence (NLS) due to space 

constraints. Mutations in Chronos were introduced by overlap extension PCR and verified 

by DNA sequencing.

Mardinly et al. Page 14

Nat Neurosci. Author manuscript; available in PMC 2018 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2P Holographic Microscope Setup

Our experimental setup (See Supplementary Figure 2) is a Movable Objective Microscope 

(MOM, Sutter instruments), modified with commercially available parts (listed in 

Supplementary Table 2). The microscope objective is mounted on a 3D mechanical stage 

(MP-285 controller, Sutter) enabling controlled mechanical displacement of the objective in 

3D (We represent this mechanical displacement by the “true coordinates:” (x, y, z), 

expressed in microns). A polarizing beam-splitter (BS) merges the photostimulation and 

imaging laser paths with minimal losses.

Volumetric Photostimulation with two-photon holography

For photostimulation, we relied on femtosecond lasers (Coherent Monaco: 1040nm, 2MHz, 

40W, or Amplitude Satsuma 1040 nm, 2MHz 20W on a separate identical setup). For 

conventional 3D Computer Generated Holography (CGH), the beam is expanded into a 

wider collimated Gaussian beam with a pair of lenses, L10, and L7, placed in a 4-f 

configuration, and illuminates the Spatial Light modulator (SLM). A telescope lens, L6, 

transforms the phase patterning in the pupil plane into a hologram with an accessible volume 

centered on the image plane. In the absence of a phase patterning, the SLM focuses all the 

incoming light into the 0 order, which is absorbed by a reverse pinhole filter. During 

operation, the 3D volume image is replicated by a set of relay lenses, L4, and L5, and aligned 

to maximally overlap with the accessible volume for two-photon imaging. All lenses in the 

optical path are separated by two focal distances on either side, so that the image plane 

(dashed green) and pupil planes (dashed red) alternate between lenses from the initial 

collimated laser beam to the focal plane under the microscope objective. A half wave plate 

adjusts the polarization of the laser to match the orientation of the liquid crystal on the SLM.

3D-SHOT implementation with a rotating diffuser for partially coherent 3D holography with 
temporal focusing

After alignment of the photostimulation path for conventional CGH is complete, we place 

two mirrors mounted on a pair of sliding stages to divert the beam on a separate path on 

either side of lens L10. The beam is diverted towards a blazed holographic diffraction 

grating. The incidence angle of the illumination and the orientation of the grating are 

adjusted so that the first diffracted order is reflected orthogonally to the grating surface and 

back into the optical path along the same optical axis. The outgoing beam is then 

demagnified five times with a pair of lenses L9, and L8. In the focal plane of the demagnified 

image (dashed green line), spectrally separated components interfere constructively after 

propagating along separate paths and reconstruct a custom temporally focused pattern 

(CTFP) matched to the dimensions of a neuron soma (here a disc of radius 10 μm). Let Δλ 
be the spectral bandwidth of the femtosecond laser, and 1/a the spatial frequency of the 

grating. The spectral separation d (on the SLM, Supplementary Figure 2b), is given by:

d =
f 7
f 8

f 9
a Δλ

Mardinly et al. Page 15

Nat Neurosci. Author manuscript; available in PMC 2018 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The fundamental principle of 3D-SHOT is to replicate identical copies of the CTFP 

anywhere in 3D with the SLM. Temporal focusing and 3D holography are made compatible 

by engineering the phase of the CTFP to simultaneously broaden the spatial footprint of all 

spectral components, and to ensure high diffraction efficiency by the SLM. Static phase 

masks introduce geometric secondary foci above or below the temporally focused plane27, 

so we rely on a rotating diffuser placed in the first virtual image plane to apply a rapidly 

varying randomized phase perturbation to CTFP. The characteristic angle of the Gaussian 

diffuser (θ =0.5°, 47–989, Edmund Optics) is chosen to simultaneously broaden the spatial 

footprint of all spectral components. The diffusion length, r, given by:

r = θ f 7

matches the dimensions of the SLM active area. The diffuser is glued on a brushless motor 

(from a modified 30 mm diameter computer hardware ventilation fan), and continuously 

rotates during operation.

Hologram Computation and Power Balancing

Variability in opsin expression as well as spatially dependent diffraction efficiency requires 

the ability to control the power distribution precisely in each target. To compensate for 

spatially dependent diffraction efficiency throughout the optical system, we proceed to a 

power calibration, as shown in Supplementary Figure 16g,h,i.

We computed holograms, each targeting one spot in a 3D grid pattern, and we used our 

substage camera system (Supplementary Figure 11a) to quantify the amount of two-photon 

absorption, I2, achieved by each hologram while supplying the same amount of laser power, 

I0, to the SLM. Experimental measurements of two photon absorption I2(x′i, y′i, z′i) 

(Supplementary Figure 16g), show how intensity degrades when targeting far away from the 

zero-order. To digitally compensate for this unwanted effect, we estimate losses with a 3D 

polynomial interpolation of the power calibration data (Supplementary Figure 16h). 

Interpolation error measurements (Supplementary Figure 16i) shows how our model fits 

experimental measurements within the operating volume, with the known exception of the 

blocked zero-order. Several methods have been developed for 3D hologram computation. 

Here, for precise control of the intensity distribution, we used either an iterative method: 

Global Gerchberg Saxton52, or two-photon optimized NOVO-CGH53 with a Euclidean cost 

function to maximize contrast in holograms where precise control of the power distribution 

is required, simultaneously in many targets. Relevant algorithms for 3D-alignment of 3D-

SHOT with 3D imaging, and for digital power compensation with 3D polynomial 

interpolation are provided on our repository (https://github.com/adesniklab/3D-SHOT)

Synchronization of Stimulation Window to Imaging Frames (e.g. Laser Gate)

Since two-photon excitation by the photostimulation laser yields stimulation artifacts, we 

developed an electronic circuit to restrict the photostimulation laser to engage only as the 

resonant galvomirror reverses course, on either side of the imaging window. The electronic 

circuit is shown in Supplementary Fig 14a, with additional details on our repository (https://

github.com/adesniklab/3D-SHOT).
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Stroboscopic Imaging for SLM high speed performance testing

To characterize the illumination pattern during high speed phase transitions (using the 

Meadowlark 512L), we considered a test case with four holograms, each targeting several 

randomized points distributed throughout the volume. We employed stroboscopic imaging to 

measure the intensity during the phase transition at very high speeds by illuminating a 

fluorescent calibration slide at specific times during the cycle and with time-averaged 

imaging with a substage camera (See Supplementary Table 2). A repeating sequence was 

played at 300 Hz using the SLM built-in trigger. To observe holograms at any point of this 

cycle during SLM frame-to-frame transitions, the SLM trigger clock was synchronized with 

the laser controller to restrict illumination to a 1 ms pulse placed anywhere within the 13.3 

ms duration of the cyclic sequence.

CHO cell recording

Chinese hamster ovary (CHO) cells were cultured and recorded as described27. One-photon 

photostimulation of cells was performed at 550nm for C1V1T/T, eNpHR3.0, eArch3.0 and 

PsuACR, 470nm for Chronos, ChroME, iC++ and GtACR1 and 630nm for ChrimsonR at a 

power of 0.55 mW using a Lumencor light engine (Lumencor). For activating opsins, 

currents were measured at a holding potential of −40 mV; for suppressing opsins, currents 

were measured at 0 mV. For two-photon spectra measurements in CHO cells, currents were 

evoked by rapidly raster scanning a diffraction limited spot from a Chameleon Ti-Saphirre 

Laser (Coherent) and average power was normalized across wavelengths by attenuating the 

laser beam using a pockels cell (Conoptics).

In Utero Electroporations

Electroporations were performed on pregnant CD1 (ICR) mice (E15, Charles River ca. SC:

022). For each surgery, the mouse was initially anesthetized with 5% isoflurane and 

maintained with 2.5% isoflurane. The surgery was conducted on a heating pad, and warm 

sterile phosphate-buffered saline (PBS) was intermittently perfused over the pups throughout 

the procedure. A micropipette was used to inject ~2 μl of recombinant DNA at a 

concentration of 2 μg/μl and into the left ventricle of each neonate’s brain (typically DNA 

encoding opsins were doped with plasmids expressing GFP or mRuby3 at a concentration of 

1:20 to facilitate screening for expression). Fast-green (Sigma-Aldrich) was used to visualize 

a successful injection. Following successful injection, platinum-plated 5mm Tweezertrodes 

(BTX Harvard Apparatus ca. 45–0489) were positioned along the frontal axis across the 

head of the neonate with the positive electrode of the tweezers positioned against the left 

side of the head. An Electro Square Porator (BTX Harvard Apparatus ca. 45-0052) was used 

to administer a train of 5 × 40 mV pulses with a 1s delay. After the procedure, the mouse 

was allowed to recover and come to term, and the delivered pups were allowed to develop 

normally.

Brain slice recording

Acute coronal slices were prepared and recorded from mice (ages p14–29) as described27. 

For measuring opsin kinetics, the photocurrent elicited by 0.5 or 1 second CGH stimulation 

(0.04 mW/μm2, 20 mW, disc r=12.5 μm) was measured in voltage clamp. The time to peak 
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current was measured from average currents, and decay time constants were measured by 

fitting the traces from stimuli offset to 80% of baseline to a single exponential. In some 

neurons expressing ST-Chronos and ST-ChroME, the decay kinetics were better fit with a 

two-term exponential decay function of form I = aebt + cedt. The size of the primary decay 

tau (b) was unaffected by the two-term fit. This secondary decay Tau (d) averaged ~50 ms 

for Chronos and ~200 ms for ChroME, and the scale constant (c) for the secondary tau was 

maximally 0.3.

For current injection experiments in figure 1 and Supplementary figure 1, random white 

noise (mean 0 pA, range ± 60 pA) was generated on each sweep, and rheobase was 

determined by increasing current injections in a stepwise fashion (25 pA/step) until action 

potentials were recorded. This procedure was repeated for each stimulus duration tested. In 

supplementary figure 1, current injections were performed at the rheobase 5 ms or 1 second. 

White noise stimulus without additional current injection never resulted in action potentials.

For optogenetics experiments, mice were screened by a handheld 300 mW 594 nm laser and 

filtered goggles for expression after decapitation and before slicing. After slicing, recordings 

were made from the slices with strongest expression from the densest area as judged by 

handheld laser and filter googles. To be included in subsequent datasets neurons were 

required to pass an expression test: experiments were continued if the recorded neuron 

spiked in response to a brief one-photon stimulus (5 ms, 0.5 mW 490 nm Chronos and 

ChroME, and 5 ms 0.5 mW 510 nm for C1V1 T/T and ChrimsonR, for voltage clamp 

experiments this 1P test was performed in cell-attached mode before break-in). As some 

suppressing opsins had much smaller currents, cells were only excluded if no visible current 

was detected with a 250ms 10mW 490nm 1 photon pulse.

To determine a neuron’s optical rheobase, stimulus duration and power levels were increased 

in a step-wise fashion while recording in cell-attached or current-clamp configuration. We 

first increased laser power for a 5 ms stimulus by steps of ~25 mW average power to 0.4 

mW/μm2 (200 mW, CGH disc radius = 12.5 μm) and then the stimulus duration was 

increased by 5 ms steps to 25 ms. If neurons still did not spike, power was increased in a 

step-wise fashion to a maximum of 0.8 mW/μm2 (400 mW, CGH disc radius = 12.5 μm). We 

defined a neuron’s optical rheobase to be the first observed stimulus combination (time and 

power) that elicited 100% spike probability while stimulating at 1–5 Hz. CGH stimulation at 

1Hz to measure latency and jitter was performed at the optical rheobase. Neurons that did 

not spike using laser power 0.8 mW/μm2 (400 mW, disc r=12.5 μm) at stimulus durations < 

30 ms were considered to not be spikeable using 2P holography. In practice, neurons that 

were not activated with 0.4 mW/μm2/10 ms pulses were rarely activated at higher powers.

Latency to spike was quantified as the time from the initiation of holographic stimulation 

until the membrane potential crossed 0 mV. Jitter is defined as the standard deviation for the 

spike latencies corresponding to a particular stimulus. For Poisson stimulation in pyramidal 

neurons, stimulation was conducted with a mean frequency of 5 Hz, and was performed at 

power levels approximately 25% higher than the optical rheobase. For Poisson stimulation, 

jitter was calculated as the standard deviation of all spike latencies across all instantaneous 

rates. To calculate the fidelity index, for each sweep, the pulsatile time indices of stimulation 
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times and the spike times were each convolved with a Gaussian kernel with σ = 10 ms, and 

the fidelity index for that sweep was defined as the max normalized cross-correlation at lag 

0–10 ms. Fidelity index reported for each cell is the mean score computed for each sweep.

For dual patch experiments using the fast SLM, pyramidal neurons expressing ST-ChroME 

virally (neonatally injected into Emx-Cre mice) were stimulated with a mean rate of 10 Hz. 

On each trial a Poisson train was generated for cell 1, and replicated with an offset of 3 ms 

with a flip of the SLM in between (exposure time: 2.5 ms with 0.5 ms to allow the SLM to 

flip frames). The time between spikes was calculated as the difference in spike times of cells 

A and B given a spike in cell A within the preceding 10 ms. Cells were excluded if a 2.5 ms 

stimulation time was unable to generate action potentials. To determine the onset of time of 

holographic suppression from current clamp recordings, the time of each action potential 

was binned into 1 ms bins. The observed bin counts were fit to an exponential decay from 

the mean firing rate to 0 spikes per bin starting at the time of light onset and assuming a 

Poisson noise distribution. The duration of suppression was defined as the mean time from 

suppression onset to the next detected spike after suppression ceased. For 2P imaging cross-

talk experiments, neurons were placed in the center of the field of view in the focal plane of 

the natural 2P focus for volumetric imaging. 2P imaging was performed at the specified 

window size, speed, and power for one second sweeps after a one second baseline period.

Shaping 2P Stimulation Pulse and Survival Curve

For laser pulse shaping experiments, whole cell recordings were obtained and pulse features 

of CGH stimulation (radius = 12.5 μm) were varied on-line while holding the cell. The 

Satsuma HP 1040 nm stimulation laser is switchable between 2 and 40 MHz, allowing on-

line testing of the response to multiple repetition rates. Peak power was controlled using the 

EOM to vary average power and the relationship between peak power and pulse energy was 

probed using the Satsuma HP laser’s onboard dispersion compensation that allowed us to 

control pulse-width online to test pulses of identical pulse energy with variable peak power. 

The stage positions necessary to chirp the laser pulses were determined before the 

experiment began using a Mini TPA Compact, Tuning-free Autocorrelator (Angewandte 

Physik & Elektronik GmbH).

To establish the maximum safe power levels useable before acute cellular damage, GCaMP6 

positive cells (without opsin) were stimulated with increasing power densities until calcium 

responses (indicating cell death) or cavitation of the tissue was observed. We do not know 

the specific mechanisms of cellular damage, but only scored damage when a laser pulse 

resulted in an acute change in cellular fluorescence. Teto-GCaMP mice were headplated and 

windowed as if for in vivo imaging (see below), deeply anesthetized as in cell attached 

recordings (see below). Up to 800mW per target (3D-SHOT disc radius r=10μm) were used.

In Vivo Patch

Two-photon guided patch recordings were performed from adult mice (35 days old or older) 

as described27. For suppression experiments, whisker stimulation was achieved with an air 

puffer (PicoSpritzer II, General Value) directed towards the contralateral whisker pad. Six 50 

ms puffs were applied before during and after each optogenetic stimulation, in general L2/3 
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neurons did not respond in a time locked manner but increased their overall firing rates 

during stimulation. Glass pipettes (2–5MΩ resistance) were filled with HEPES ACSF and 

Alexa 488 dye (100μM) for visualization. Cells were identified by the presence of mRuby2 

or mRuby3 fluorescence imaged at 50–100 mW at 930–1000 nm. Data were acquired using 

a Multiclamp 700B Amplifier (Axon Instruments) and digitized at 20 kHz (National 

Instruments). Data was digitally band pass filtered 0.5–2.2 kHz for identification of spikes. 

All data were acquired using custom written MATLAB (Mathworks) software.

Cells were included for analysis if they were spontaneously active and those spikes were 

sufficiently larger than the noise (>5 Standard deviations of the noise). Furthermore, cells 

had to respond to a one photon LED stimulation (Sola SE, Lumencor), fire action 

potential(s) if they expressed an excitatory opsin or temporarily cease firing if they 

expressed a suppressing opsin (5 ms, 0.5 mW 490 nm Chronos and ChroME, 250 ms 10 

mW 490 nm for GtACR).

To determine fraction spikeable neurons, cells that exhibited spontaneous activity and passed 

the 1P test were stimulated repetitively (1–5 Hz) with 5 ms light pulses of increasing laser 

power until they spiked to each laser pulse. Neurons that did not spike reliably with stimuli 

of 5 ms, 0.32 mW/μm2 (100 mW) 3D-SHOT disc r =10 μm were considered not spikeable. 

In practice, neurons that responded to holographic stimulation were activated with much less 

than maximum power. These laser powers and conditions were used for Poisson stimulus 

trains and tests of spatial resolution. Poisson stimuli were analyzed as in brain slices. 

Neurons were typically recorded at a depth of 75–250 μm below the pia surface. For 2P 

imaging cross-talk experiments, cells were centered in the field of view in the focal plane 

and 2P imaging was conducted at the specified window size, speed, and laser power for five 

seconds after five seconds of non-imaging. All experiments used 512×512 pixels for the 

imaging window.

In Vivo Temperature Measurements

To measure brain temperature during holographic photostimulation and imaging, animals 

were prepared and deeply anesthetized as above for in vivo cell attached patch, except they 

were additionally administered 2 mg/kg of dexamethasone as an anti-inflammatory agent. 

Once the craniotomy was completed, the dura was removed, and an 800 μm thick 

thermocouple coated in DiI was slowly lowered at 45° degree angle using a 

micromanipulator (Sutter MP285) until it was 300–500 μm beneath the pial surface. It was 

then secured in place with orthojet while the open craniotomy was protected by gelfoam and 

ACSF. The thermocouple was attached to a TC-324C temperature controller (Warner 

Instruments). The temperature to voltage conversion was calibrated in a series of water 

baths. The thermocouple was located under 2P illumination based on DiI signal, and the 

objective was placed over the thermocouple for the duration of stimulation. A single phase 

mask that targeted 50 spots was held static for the duration of the experiment, and duty 

cycling of the stimulation laser was performed using the EOM.
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Histology

Mice were deeply anesthetized with ketamine/xylazine and transcardially perfused with 

phosphate-buffered saline (PBS) and 4% paraformaldehyde. Brains were post fixed for at 

least 2 h. Brains were embedded in 30% sucrose solution overnight, then frozen and 40 μm 

sections made on a microtome (American Optical Society). If the sections required 

immunohistochemistry, they were blocked for 1h at 4°C in blocking solution (0.6% Triton 

X-100, 0.2% Tween-20, 3% normal goat serum, and 3% BSA in PBS, all from fisher 

scientific), and then incubated in α-FLAG antibody at 1:1000 dilution (Sigma clone M2). 

Then sections were washed with PBS and 0.25% Triton X-100, before being incubated in 

secondary antibody Alexa Fluor 488 Mouse anti-mouse (1:1000). All sections were mounted 

on slides and sealed with Vectashield with DAPI (Vector Laboratories). Confocal images 

were acquired using an Olympus Fluoview system (Fv1000 Olympus Microscope) running 

the Fluoview software (Olympus), with 488 and 543nm lasers.

Viral Infection

For viral injection animals where anesthetized using 2% isoflurane on a heating pad and 

head fixed in a stereotactic apparatus (Kopf). After sterilizing the incision site, the skin was 

opened, and a small burr hole was drilled over S1 using a 0.24 mm drill bit (Busch) (3.5 mm 

lateral, 1.4 mm posterior to bregma). 200–600 nL of virus was injected using a micro 

syringe pump (Micro4) and a wiretrol II glass pipette (Drummond) at a rate of 25–50 nL/

second at a depth of 150–300 μm below the pia surface. After the injection was complete, 

we waited five minutes before retracting the needle and closing the scalp using sutures. On 

some surgeries, the virus was injected directly after installation of a headplate (see below). 

For opsin injections, mice were used 2–6 weeks post injection. For GCaMP6 injections, 

mice were used for experimentation 1–2 weeks post injection. Viruses used were: AAV-syn-

DIO-ST-Chronos-mRuby2 (UC Berkeley Vector core, titer: 4.8 ×1014), AAV-CAG-DIO-ST-

ChroME-P2A-H2B-mRuby3 (Custom Order Penn Vector core, titer: 3.76×1012 – 7.53 

×1012), AAV-CAG-DIO-IRES-eGtACR1-NLS-mRuby3 (Custom Order Penn Vector Core, 

titer: 6.82e1014), AAV-syn-DIO-GCaMP6f (Penn Vector Core titer: 6.56×1012), AAV-Syn-

Cre (titer: 1.4 ×1012). For some whole cell slice experiments using virus to test ST-Chronos, 

ST-ChroME, or IRES-ST-eGtACR1, viruses were introduced via neonatal injection as 

described27,54 into P2–3 littermate Emx-Cre or Drd3-Cre animals (p3, 3 injection site, 2 

injections per site at 100 and 250 μm below the pial surface, 18.5 nL/injection).

In vivo two photon imaging and photostimulation

Three different combinations of opsin and GCaMP6s were used in this study for all-optical 

experiments. First, mice expressing GCaMP6s in excitatory neurons using CamKII-tTA 

crossed to tetO-GCaMP6s43 were co-injected with AAV-syn-Cre and AAV-CAG-DIO-ST-

ChroME-P2A-H2B-mRuby3. Alternatively, triple transgenic animals expressing CamKII-

tTA, teto-GCaMP6s, and Em×1-Cre were injected with AAV-CAG-DIO-ST-ChroME-P2A-

H2B-mRuby3. For all-optical suppression experiments, mice expressing PV-Cre were co-

injected with AAV DIO-Syn-GCaMP6f and AAV-CAG-DIO-IRES-eGtACR1-NLS-

mRuby3. Mice were fitted with a custom stainless steel headplate described54. Mice were 

anesthetized with isoflurane (2%), and administered 2 mg/kg of dexamethasone as an anti-

Mardinly et al. Page 21

Nat Neurosci. Author manuscript; available in PMC 2018 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inflammatory and 0.05 mg/kg bupromorphine as an analgesic. The scalp was removed, the 

fascia retracted, and the skull lightly etched. Following application of Vetbond (3M) to the 

skull surface, a custom stainless steel headplate was fixed to the skull with two dental 

cements: Metabond (C&B) followed by Orthojet (Lang). After the dental cement dried, a 3 

mm diameter craniotomy over the left primary somatosensory cortex was drilled, and 

residual bleeding stopped with repeated wet-dry cycles using sterile artificial cerebral spinal 

fluid, gauze, and Gelfoam (Pfizer). A window plug consisting of two 3mm diameter 

coverslips glued to the bottom of a single 5mm diameter coverslip (using Norland Optial 

Adhesive #71) was placed over the craniotomy and sealed permanently using Orthojet 

(Lang). Animals were allowed to recover in a heated recovery cage before being returned to 

their home cage. Two days after surgery, animals were habituated to head fixation under a 

freely moving circular treadmill for 2–7 days.

For calcium imaging, mice were head-fixed on a freely spinning running wheel under a 

Nixon 20x-magnification water immersion objective and imaged with a Sutter MOM two-

photon resonant scanning microscope within a darkened box (see above for description of 

imaging setup). Volume acquisition occurred at 5.8–6.6 Hz for 550 × 550 μm fields of view 

with three Z-planes each separated by 50 μm. Imaging planes were 100–350 μm below the 

pia surface. 2P imaging was conducted at a wavelength of 930 nm with average powers at 50 

mW. Neurons that co-expressed opsin tagged to a red fluorophore and GCaMP6 were 

identified based on average movies taken at 1000–1040 nm, and using custom Matlab 

software, regions of interest were circled and their centroids were used to compute 

holographic targets that were pre-loaded in sequence on the SLM. Custom Matlab digital 

acquisition software controlled the experiment by triggering Scanimage5 to acquire frames, 

the SLM to change hologram, and EOM to control laser power.

Two photon imaging data analysis

Motion correction, calcium source extraction, and deconvolution were performed using 

Suite2P as described55. Briefly, raw calcium movies were motion corrected using Suite2P 

with subpixel alignment = 2, and calcium sources extracted with key parameters Diameter = 

12–16 μm and Signal Extraction = ‘raw’. Calcium sources were then manually examined 

and accepted or rejected based on their overlap with morphologically identifiable neurons. 

Neuropil subtracted Fluorescence vectors (F) or the OASIS deconvolution (S) were used for 

downstream analysis. Calcium signals were acquired continuously, and each cell’s 

fluorescence Z-scored or ΔF/Fo was calculated using Fo = the tenth percentile of 

Fluorescence observed over the entire experiment. If a trial had motion over threshold (5μm) 

during half or more of the stimulation period the entire trial was excluded, since the results 

of experiment may not be interpretable, but if motion occurred when not stimulating it was 

corrected post hoc and the data was included. Holographic targets were aligned to calcium 

sources by calculating the Euclidean distance between the centroids of all holographic 

targets and all calcium sources and finding the minimum. Very rarely, targets assigned were 

assigned to calcium sources with distance > 15 μm. These targets were assumed to have 

failed and were excluded from subsequence analysis.
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We found that the OASIS deconvolution signals provided a good estimate for the first 

derivate of the calcium signal, since local peaks in the S vector aligned with the frame on 

which stimulation occurred better than ΔF/Fo. Since deconvolved calcium signals decay 

much faster than fluorescent signals this ameliorates analysis problems where slowly 

decaying fluorescence from a recently stimulated neuron may be attributed to holographic 

stimulation of the next cell in a sequence. Therefore, most subsequent analysis for ST-

ChroME expressing neurons was performed based on the S vector.

In GtACR1 experiments with GCaMP6f in PV neurons, reduction of calcium activity was 

most apparent when analyzing Z-scored fluorescence responses, likely due to the relatively 

high firing rates of PV neurons making true baseline F0 hard to determine. Each cell’s 

fluorescence was Z-scored on data from the entire experiment, and then had its baseline 

(determined during a non-stimulation period) subtracted to remove state dependent 

variability. In single-neuron suppression experiments neurons were stimulated one by one at 

a rate of 0.5Hz for 1s at 0.16mW/μm2 (50mW per Neuron). As the fluorescence response to 

self-stimulation lasted more than 2s the trial immediately following self-stimulation was 

excluded from analysis. Similarly, small ensemble stimulation was performed at 0.5Hz for 

1s but at 0.08mW/μm2 (25mW per Neuron) but for 4 neurons simultaneously or 100mW in 

the field of view. In both cases cells that fell within the region of optical artifact were 

excluded from subsequent analysis, but were not considered a failed stimulation. The laser 

gate was used in every all optical experiment. Small ensemble responses were calculated as 

the average of every recorded member of the 4 stimulated cells, in the case that a member of 

the ensemble was in the optical artifact that cells response would be ignored, and the 

remaining cell responses would comprise the ensemble response. The neurons that make up 

each ensemble were selected randomly using matlab ‘randperm’ from a list of identified 

neurons.

For analysis of single-neuron stimulation experiments the S vector was z-scored on a trial-

wise basis. For optical rheobase experiments, neurons were stimulated one-by-one at a rate 

of 2 Hz with 10 × 5 ms pulses at 30 Hz with varying laser intensities (corrected for varying 

diffraction efficiency of holograms targeting areas across the accessible volume). To 

determine the power needed to activate neurons, the relationship between stimulation power 

and the mean z-scored S vectors fit with a smoothing interpolant and the power to reach 

80% of saturation was reported. To determine the single-neuron response matrix, neurons 

were sequentially stimulated with 10 × 5 ms pulses at 30 Hz and the mean z-scored S vector 

for each neuron was averaged for two frames (~300 ms) after stimulation of each target.

For ensemble stimulation experiments, the S vector was z-scored on a trial-wise basis as 

before, but with a small modification. Since stimulated neurons were not stimulated once per 

trial, but instead were repetitively stimulated over the course of every trial as part of many 

different ensembles, we evaluated the response of each neuron to each unique stimulation by 

discarding frames in which it was directly stimulated as part of a different ensemble. This 

analysis essentially treats each 73 second sweep as a series of concatenated 2 second single 

trials, but preserves the baseline information obtained during non-stimulation periods of the 

long sweep. Responses to ensemble stimulation of 10 × 5 ms pulses at 10, 20, or 30 Hz are 

shown as the mean z-scored S vector for each stimulus. Maps showing the response of all 

Mardinly et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2018 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurons to ensemble stimuli show the mean z-scored S vector for all neurons for two frames 

(~300 ms) after the marked ensemble was stimulated.

For correlational analysis, for each pair of neurons, Pearson’s ρ was calculated for each trial 

type from the raw S vector corresponding to those trials (i.e., one correlation coefficient was 

calculated from the concatenation of all trials of a given type, corresponding to 10–13 trials 

of length 73 seconds, or ~12–16 minutes of imaging data). Differences in the distributions of 

correlation coefficients across trial types were assessed for significance by the Friedman test 

with the Tukey-Kramer correction for multiple comparisons.

Modeling the speed and scale of photoactivation

A description of the model used to calculate the maximum number of light-evoked spikes 

per second (relating to supplemental figure 23) is available online in our repository (https://

github.com/adesniklab/3D-SHOT).

Statistics

All analyses were performed MATLAB (Mathworks). The analyses performed were: paired 

t test, Mann-Whitney U-test, Wilcoxon Signed Rank Test, Fisher Exact Test, Friedman’s 

test, Kruskal-Wallis Test. All tests were two-sided unless noted otherwise. For parametric 

tests, data distribution was assumed to be normal but was not formally tested. No statistical 

methods were used to pre-determine sample sizes, but we collected sample sizes that were 

similar to or exceeded those reported in previous publications13,14,25. Data collection and 

analysis was not performed blind to the conditions of the experiments. Randomization was 

used in all applicable experiments (for experiments with multiple trial types, the order of 

trials was randomized). Animals and data points were only excluded based on criteria 

described above.

Code Availability Statement

Code for alignment of 3D holography with 3D imaging, holographic control, hologram 

computation, and analysis will be hosted online upon publication.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ST-ChroME allows precise high-fidelity 2P activation
a) Overlay of 25 trials from a representative L2/3 pyramidal neuron showing the Vm 

response to 5 ms current pulses or sustained current injection near the neuron’s rheobase.

b) Current needed to induce action potentials as a function of stimulus duration (n = 8 L2/3 

pyramidal neurons).

c) Left, grand average photocurrent traces from neurons expressing ST-C1V1T/T (black, n = 

19), ST-ChrimsonR (red, n =11), ST-Chronos (green, n =25), or ST-ChroME (magenta, 

n=11), via IUE. Right, photocurrent amplitudes elicited by CGH stimulation. Dashed line 

represents mean rheobase for 5 ms stimulation of L2/3 pyramidal neurons (ST-ChroME vs 

others: p<0.0008, Kruskal-Wallis test with multiple comparisons correction, all others 

comparisons p>0.13).

d) Top, duration of CGH stimulation needed to elicit action potentials in neurons expressing 

each opsin (n = 8 ST-C1V1, n = 5 ST-ChrimsonR, n=25 ST-Chronos, n= 8 ST-ChroME). 

Bottom, fraction of electroporated L2/3 neurons that could be driven at 1 Hz with best CGH 

stimulation.

e) Traces shown in (c) scaled to the peak current amplitude for each.
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f) 10 overlaid traces from representative L2/3 neurons expressing ST opsins during 1 Hz 

CGH stimulation (red line indicates light pulses).

g) Spike latency for 1 Hz CGH stimulation of L2/3 neurons expressing ST-Opsins. ST-C1V1 

T/T 25.9±4 ms (n=15), ST-ChrimsonR 18.8±3.8 ms (n=14), ST-Chronos 4.4±0.65 ms (n=23), 

ST-ChroME 3.48±0.49 ms (n = 12). ST-ChroME vs ST-C1V1 T/T, p=0, vs ST-ChrimsonR 

p=0.0028; vs ST-Chronos p = 0.95, by Kruskal-Wallis test with multiple comparisons 

correction.

h) Jitter for 1 Hz CGH stimulation of neurons expressing ST-Opsins. ST-C1V1 T/T 8.6±1.8 

ms (n=11), ST-ChrimsonR 12±6.3 ms (n=14), ST-Chronos 1.2±0.36 ms (n=20), ST-ChroME 

0.54±0.1 ms (n=10). ST-ChroME vs ST-C1V1 T/T, p=0.0011, vs ST-ChrimsonR p=0.048; vs 

ST-Chronos p = 0.7 by Kruskal-Wallis test with multiple comparisons correction.

i) Two-photon image of whole cell recording from L2/3 pyramidal neuron expressing ST-

ChroME-mRuby2 (image representative of n=10 ST-ChroME-mRuby2 neurons).

j) Fidelity index in response to Poisson-like stimulation. ST-ChroME (n=7) vs ST-C1V1 T/T 

(n = 6), p = 0, vs ST-ChrimsonR (n=4), p= 0, vs ST-Chronos (n=9), p = 0.99, by Kruskal-

Wallis test with multiple comparisons corrections.

k) Left, representative traces of two simultaneously recorded ST-ChroME expressing 

neurons stimulated with an identical Poisson train for 2.5 ms with a temporal offset of 3 ms. 

Top middle, example light-evoked spikes in the two neurons. Middle bottom, distribution of 

the difference in spike times from an example pair of neurons. Right, difference in mean 

spike times for n = 7 pairs.

l) Bar graph showing the fraction of neurons expressing ST-Chronos (green) or ST-ChroME 

(magenta) that could be optogenetically driven in vivo (p=0.0089, two-sided Fisher Exact 

Test). All data represent mean and s.e.m.
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Figure 2. Fast and potent holographic suppression of neural activity
a) Example average traces of whole cell photocurrents elicited by 500 ms (100 mW, 0.2 

mW/μm2) CGH stimulation from CHO cells held at 0 mV expressing inhibitory ST-opsins 

color-coded as in (b).

b) Mean photocurrent elicited during a 500 ms stimulation, as in (a), plotted on a log scale. 

(n=5 cells expressing ST-eNpHR3, n=8 ST-eArch3, n=9 ST-ePsuACR, n=8 ST-eiC++, n=5 

ST-eGtACR1, n=10 IRES-ST-eGtACR1)

c) In vivo firing activity that persists during optogenetic suppression of L2/3 neurons 

expressing ST-opsins. Each dot represents mean activity for a single neuron (5–60 sweeps 

per cell). n=7 no opsin control, n=6 ST-ePsuACR, n=8 ST-eArch3, n=10 ST-eGtACR1.

d) Example confocal images from juvenile (14–15 days old) and adult (35+ days old) mice 

expressing ST-eGtACR1-mRuby2 or H2b-mRuby3 IRES-ST-eGTACR1. Imaging conditions 

are matched within an opsin. Representative image from 3 mice each condition.

e) Example whole cell voltage clamp recording of a L2/3 neuron expressing IRES-ST-

eGtACR1 held at 0 mV and stimulated for 500 ms with varying illumination powers.

f) In vivo activity that persists during optogenetic suppression with IRES-ST-eGtACR1 

using 3D-SHOT (0.32mW/μm2, 100 mW), presented as in (c). (n=9 IRES-ST-eGtACR1 

cells)

g) Overlay of 30 current clamp traces from a L2/3 pyramidal neuron expressing IRES-ST-

eGtACR1 during current injection, aligned to the onset of a 50 ms stimulation at three 

different power levels.

h) Top, as in (g), the time for suppression to take effect calculated for a 50 ms light 

stimulation. Reported as the tau of a fit to the observed number of action potentials after 

light onset in 1ms bins, assuming a Poisson noise model (n=6 neurons).

Bottom, membrane potential of each neuron during the last 10 ms of a 50 ms stimulus as a 

function of stimulus intensity (n=6 neurons).
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i) Duration of suppression, defined as the mean time until the next action potential as a 

function of stimulus intensity. Grey bars indicate individual replicates, black mean and 

s.e.m. (n=6 neurons).

j) Left, overlay of 30 whole cell current clamp traces during light stimulation of different 

durations. Bottom, schematic of current injection where onset of current injection was varied 

with respect to the light stimulus. Right, quantification of the duration of suppression as a 

function of stimulus duration. Grey bars indicate individual replicates, black mean (n=6 

neurons). All data represent mean and s.e.m.
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Figure 3. Creating and editing spatiotemporal neural activity in vivo
a) Simplified schematic of light path allowing simultaneous 2P imaging and 3D-SHOT 

photostimulation.

b) Physiological point spread function (PPSF) of 3D-SHOT stimulation of neurons 

measured by in vivo loose patch. Left, spike probability for radial (XY) axis; right for axial 

(Z) axis (n=3 neurons).

c) In vivo recording of 3D-SHOT’s axial PPSF as a function of distance from the system’s 

zero order. PPSFs were measured as a function of depth by testing the spiking response to 

digital defocusing of the hologram while mechanically offsetting the objective varying 

distances from the focal plane (n=3 neurons).

d) Spike probability as a function of stimulation power in vivo for 1Hz stimulation in L2/3 

pyramidal neurons expressing ST-ChroME-mRuby2 via IUE (n = 10 neurons).

e) Representative experiment showing in vivo Poisson stimulation of a L2/3 neuron 

expressing ST-ChroME.
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f) Jitter, spike probability, and fidelity index score for Poisson stimulation of L2/3 neurons 

expressing ST-ChroME (n = 7 neurons).

g) Firing rate of neurons during stimulation normalized to pre-stimulation rate and measured 

through in vivo loose patch recordings from cells expressing IRES-ST-eGtACR1 (n=9 

neurons).

h) Representative raster plot from a neuron suppressed with 500 ms stimulation.

i) Representative histogram of firing rate during IRES-ST-eGtACR1 suppression at several 

stimulation powers for the same neuron as in (h). Each line is the mean of 25+ stimulations 

binned at 100ms. All data indicate mean and s.e.m.
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Figure 4. Spatiotemporal activation of cortical inhibition
a)Example image of in vivo loose patch recording of a PV-neuron expressing AAV-ST-

Chronos-mRuby2 (scalebar = 10 μm).

b) Fraction of PV, SOM, and VIP neurons expressing AAV-DIO-ST-Chronos-mRuby2 that 

could be induced to fire action potentials in vivo using 3D-SHOT.

c) Line plots showing mean spike probability at 1 Hz as a function of stimulation power for 

inhibitory neurons expressing ST-Chronos (PV: n = 10, SOM: n = 7, VIP: n= 14 cells).

d–f) Representative experiments showing in vivo 3D-SHOT Poisson stimulation of PV (30 

Hz), SOM (10 Hz), or VIP (10 Hz) neurons expressing ST-Chronos (green: light-evoked 

action potentials, orange: failures, gray: spontaneous activity).

g–i) Bar graphs indicating the jitter, spike probability, and fidelity index score for 3D-SHOT 

Poisson stimulation of PV, SOM, or VIP neurons expressing ST-Chronos (PV: n = 7, SOM: 

n = 7, VIP: n = 9 cells).

j) Spike probability as a function of instantaneous stimulation frequency for PV (brown), 

SOM (blue), or VIP (purple) neurons undergoing Poisson-stimulation in vivo (PV: n = 7, 

SOM: n = 7, VIP: n = 9 cells). All data represent mean and s.e.m.
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Figure 5. All-optical read/write with high spatiotemporal fidelity
a) Schematic illustrating single-cell 3D all-optical read/write experiments performed in 

head-fixed mice freely running on a circular treadmill.

b) Example optical rheobase experiment (10 × 5ms pulses at 30 Hz) with varying light 

intensity using 3D-SHOT. Top, example dF/F calcium trace (black) or deconvolution (red). 

Below, raster plots of z-scored deconvolved calcium traces.

c) Left, average deconvolved calcium traces from an optical rheobase experiment (shaded 

area indicates 95% CI, scale bars represent 10% max response and 1 second). Right, the 

example neurons’ all-optical response function.

d) Power intensity needed to approach saturation of the all-optical response function (80% 

of maximum, n = 96 neurons, representative experiment from N = 3 mice).

e) Five consecutive trials of sequential stimulation of n=134 neurons from a representative 

experiment. Each panel corresponds to one trial (separated by dashed lines), and each line 

shows the trial-wise z-scored deconvolved calcium response for each neuron (see colorbar 

on f). Neurons were stimulated at 2 Hz with 10 × 5 ms pulses at 30 Hz.

f) Mean z-scored deconvolved dF/F for each neuron in response to 3D-SHOT stimulation of 

each holographically targeted neuron. A neuron’s response to its own stimulation is plotted 

on the diagonal. Data represent the mean z-scored deconvolved calcium response from 12 

trials from a representative experiment (N=3 mice).

g) Each point represents the mean change in z-scored calcium response of a stimulated 

neuron upon stimulation (red) or the mean change in response to stimulation of other cells 

(gray). Mouse 1: n = 255 neurons, p=3.76×10−51, Mouse 2: n = 115 neurons, p<4.3×10−17 

Mouse 3: n = 106 neurons, p<1.95×10−18, two-sided paired t-test).

h) Mean fluorescence of all stimulated neurons aligned so the targeted neuron is centered 

(two post-stimulation frames per neuron). Image is the mean response of 134 targets. 

Dashed black lines shows the size of the stimulation area, r = 10 μm. Data is from a 

representative experiment (N = 3 mice). All data represent mean and s.e.m. unless otherwise 

noted.
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Figure 6. All optical suppression
a) Schematic of experimental design as in (Fig 5). Mice expressed GCaMP6f and IRES-ST-

eGtACR1 in PV interneurons via viral infection of PV-cre mice. Individual neurons are 

suppressed sequentially at 0.5 Hz, with 1 second of illumination. Bottom, representative 

image of 3 plane FOV (550 × 550 × 100 μm). Inset, enlargement of a PV-cell expressing 

both GtACR1 and GCaMP6f (Representative image of 16 recordings, 3 mice).

b) Trial averaged Z-scored fluorescence response of each targeted neuron during suppression 

of that neuron (Top, and Bottom, red) and during stimulation of a different neuron in the 

field of view (Bottom, gray). Bottom, mean and 95% CI (shaded), of all neurons from this 

recording (n=45, 24 trials each). Red bar indicates period of stimulation. Targeted cells that 

were obscured by the optical artifact were excluded from analysis.

c) Averaged fluorescence response of each targeted neuron to stimulation of each targeted 

neuron during the reporting window (0.5–1.5s after light onset). The trial immediately after 

self-targeting was ignored and blanked. Each box is the average of all 24 trials from this 

experiment.

d) Summary data from 3 mice (n=78, 32, and 28 cells stimulated and recorded each mouse). 

Each dot is the mean Z-Scored fluorescence of a cell not located in the optical artifact in 

response to self-targeting (red) or in response to all other stimulations (gray). Bars indicate 

mean and s.e.m. of the population response (Mouse 1: p<2.6×10−19, Mouse 2: p<2.3×10−7, 

Mouse 1: p<6.3×10−5, Paired two-sided T-Test, ‘***’ denotes p<0.001).

e) Schematic of experimental design as in (a) but depicting simultaneous suppression of 

multiple neurons in consecutive ensembles. 4 neurons per ensemble 0.5Hz 1s stimulation.

f) Representative responses of two ensembles (trial average z-score of 4 cells) response of 

ensemble 1 (top) and ensemble 2 (bottom) to suppression of ensemble 1 (purple), and 

ensemble 2 (green). Shaded region is the trial wise 95% CI.
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g) Mean Z-score image of entire field of view during ensemble 1 stimulation with cells from 

ensemble 1 and ensemble 2 enlarged (insets). The area of the optical artifact was blanked. 

Mean of 24 Trials.

h) Summary data from 2 mice (n=31 and 18 ensembles of 4 cells, each mouse repeated twice 

in different areas). Each dot represents the mean Z-scored fluorescence of an ensemble of 4 

cells in response to suppression of that ensemble (red) or all other ensembles (gray). Bars 

indicate mean and s.e.m. of the population response. Both mice showed increased 

suppression when recording from a targeted ensemble compared to when recording from a 

non-targeted ensemble (Mouse 1 p<2.0×10−5, Mouse 2 p<5.2×10−8, paired two-sided T-

Test, ‘***’ denotes p<0.001).
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Figure 7. Manipulating neural ensembles with high temporal and spatial precision
a) Top, schematic of all-optical ensemble experiments as in (Fig 5). 33 ensembles of 10, 25, 

or 50 neurons are stimulated with 10 pulses at 10–30 Hz. Bottom, representative images of 3 

plane FOV (550 × 550 × 100 μm), depth from pial surface noted. Inset, enlargement showing 

example calcium source expressing ST-ChroME.

b) A representative neuron stimulated as part of five different ensembles composed of 

varying numbers of cells. Top, normalized mean dF/F (black) or OASIS deconvolution (red) 

during stimulation. Bottom, raster plots showing z-scored deconvolved calcium activity from 

10 stimulation trials (top) or control trials (bottom).

c) Summary data from experiments in three mice. Each point represents the mean change in 

z-scored calcium response of all ensemble members in response to stimulation of the target 

ensemble (red) or mean response to stimulation of other ensembles (gray). Ensembles 
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significantly increased their fluorescence only when they were stimulated (*** indicates 

p<0.001. Mouse 1: n = 33 ensembles, p=3.5×10−10, Mouse 2: n = 22 ensembles, 

p=2.8×10−4, Mouse 3: n = 24 ensembles, p=5.5×10−4, paired two-sided t-test).

d) Normalized z-scored calcium response of the neurons that compose each stimulated 

ensemble upon stimulation of each ensemble. Color codes show the size of the ensembles 

(green: 10, brown: 25, blue: 50 neurons).

e–g) Responses of each neuron in each ensemble to each ensemble stimulation, grouped by 

ensemble identity and separated by size. Scalebars are shared between e–g. Data represent 

the mean z-scored deconvolved calcium response for each neuron.

h) Maps showing the mean response of all calcium sources to stimulation of four unique 

ensembles composed of 50 cells across 3 depths. Green asterisks indicate neurons that were 

targeted for stimulation. Note: ensembles can be distributed in 3D (ensemble 1) or confined 

to one depth (ensembles 2–4). Data calculated from 0–300 ms after stimulation.
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Figure 8. Altering population correlational structure with 2P ensemble stimulation
a) Left, pairwise Pearson’s correlations for non-targeted neurons calculated based on firing 

during control trials (n = 365 neurons); right, pairwise correlations of target neurons during 

control trials (n = 150 neurons).

b) Left, pairwise correlations between non-target neurons or target neurons (right) during 

trials in which ensembles were stimulated at 30 Hz (10 × 5 ms pulses, see color bar on 

right).

c) Cumulative distributions of all pairwise correlations between non-target neurons during 

control trials (black) or during trials on which ensemble stimulation occurred at 10–30 Hz 

(red shaded). All stimulation conditions decorrelated population activity relative to control 

trials (p<0.01), but were not significantly different from each other (p>0.425, Friedman test 

with Tukey-Kramer correction for multiple comparisons). Cumulative distributions are from 

a representative experiment (Experiment performed in n = 3 mice. Stimulation vs. control 

trials, non-target cells: Mouse 1: p=0.007, Mouse 2: p=1.3×10−6, Mouse 3: p=0.004, 

Friedman test with Tukey-Kramer correction for multiple comparisons).

d) Cumulative distributions of all pairwise correlations between target neurons during 

control trials (black) or during trials in which ensembles were stimulated at 10–30 Hz (red 
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shaded). All stimulation conditions increased correlations between target neurons relative to 

control trials (p<0.01), but were not significantly different from each other (p>0.186, 

Friedman test with Tukey-Kramer correction for multiple comparisons). Cumulative 

distributions are from a representative experiment (Experiment performed in n = 3 mice. 

Stimulation vs. control trials, target cells, Mouse 1: p=0.003, Mouse 2: p=5.4×10−3, Mouse 

3: p=0.02, Friedman test with Tukey-Kramer correction for multiple comparisons).
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