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Abstract

Background—Identifying genetic relationships between complex traits in emerging adulthood 

can provide useful etiological insights into risk for psychopathology. College-age individuals are 

under-represented in genomic analyses thus far, and the majority of work has focused on the 

clinical disorder or cognitive abilities rather than normal-range behavioral outcomes.

Methods—This study examined a sample of emerging adults 18–22 years of age (N = 5947) to 

construct an atlas of polygenic risk for 33 traits predicting relevant phenotypic outcomes. Twenty-

eight hypotheses were tested based on the previous literature on samples of European ancestry, and 

the availability of rich assessment data allowed for polygenic predictions across 55 psychological 

and medical phenotypes.

Results—Polygenic risk for schizophrenia (SZ) in emerging adults predicted anxiety, depression, 

nicotine use, trauma, and family history of psychological disorders. Polygenic risk for neuroticism 
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predicted anxiety, depression, phobia, panic, neuroticism, and was correlated with polygenic risk 

for cardiovascular disease.

Conclusions—These results demonstrate the extensive impact of genetic risk for SZ, 

neuroticism, and major depression on a range of health outcomes in early adulthood. Minimal 

cross-ancestry replication of these phenomic patterns of polygenic influence underscores the need 

for more genome-wide association studies of non-European populations.

Keywords

Cardiovascular; genetic; neuroticism; phenome; polygenic; schizophrenia

Introduction

Broad phenotyping can greatly enhance our understanding of the underlying structure of 

genetic vulnerability to psychiatric disorders. Thus, genome-wide polygenic risk research is 

increasingly considering batteries of clinical phenotypes in ‘phenome-wide’ studies (Bulik-

Sullivan et al. 2015; Krapohl et al. 2015; Hagenaars et al. 2016). One promising approach 

emerging from the phenome-wide genomic literature uses published summary statistics from 

large genome-wide association studies (GWAS) to calculate genome-wide polygenic scores 

(GPS) for an array of major disorders and clinically relevant traits. These scores are then 

used to predict a number of potentially informative psychiatric, psychological, and physical 

health phenotypes. Along with cross-disorder genomic research examining the co-

heritability of major psychiatric disorders [e.g. linkage disequilibrium (LD) regression] 

(Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013), polygenic 

phenomic approaches are among the most promising methods for elucidating the complex 

overlapping genetic architecture of psychiatric disorders and discovering unexpected 

genotype–phenotype associations (Docherty et al. 2016a, b). However, previous research has 

suffered from a restricted range of phenotypes, and has not included, for instance, GPS of 

anxiety, eating, and inflammatory disorders, personality, lipid levels and puberty traits in the 

prediction of outcome phenotypes (which have generally focused on cognitive abilities) and 

has not examined samples between the ages of 17 and 35, the developmentally critical stage 

encompassing emerging and young adulthood.

This study applied such an approach to GPS (33 total) in a phenotypically extensive genetic 

study of emerging adulthood outcomes. Emerging adulthood, a period starting at the age of 

18 when adolescents begin to develop the roles and independence of adulthood, reflects a 

high-risk age range for the onset of many psychiatric and substance use disorders, including 

schizophrenia (SZ), affective disorders, anxiety disorders and alcohol and drug use 

disorders. Data from the National Comorbidity Survey Replication sample indicate that three 

quarters of all lifetime cases of DSM-IV diagnoses start by age 24 (Kessler et al. 2005), and 

WHO’s World Mental Health data indicate that approximately three quarters of lifetime 

psychiatric disorders begin by the mid-1920s (Kessler et al. 2007).

The University Student Survey (called ‘Spit for Science’, or S4S) was developed to identify 

risk factors for onset of mental health disorders with a large-scale assessment of genetic, 

environmental, and developmental influences. Discovery summary statistics from 33GWAS 
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were used to derive GPSs in this large sample of young adults (N = 5947) across a range of 

psychiatric, psychological, and physical health traits (Table S1 in online supplementary 

materials). Expanding on previous research, 28 hypotheses of genetic prediction were tested 

based on selected studies in the past literature. Further, the availability of rich clinical 

assessment data allowed for the calculation of polygenic predictions across a greater number 

of outcomes than has ever been studied previously, many of which were completely novel in 

phenomic studies. These included 55 psychiatric, psychological, and medical phenotypes 

(listed in Table S2 in the online supplementary material).

Moreover, the GPS metrics were powerful enough to examine relationships across 

subsamples of different ancestries. While GWAS approaches require tens of thousands of 

individuals to locate ‘hits,’ continuous polygenic scores require far smaller samples for 

adequate power. This sample was suitably diverse in ancestry to map the GPS phenotype in 

young adults of European ancestry (EUR, N = 3016) and then to replicate these findings 

across non-European ancestry groups including of African origin (AFR, N = 1339), native 

American origin (AMR, N = 581), East Asian (EAS, N = 557), and South Asian origin 

(SAS, N = 454). Separate association matrices were created for the empirically categorized 

AFR, AMR, EAS, and SAS samples and are provided here and in the supplemental figures 

available online.

We can learn much from the study of emerging adults over and above adolescent samples, as 

early behavioral patterns that may precede adult psychopathology can be studied, and new 

hypotheses about critical exposures and environmental risk factors can emerge. The results 

presented here reflect a polygenic modeling framework in a large young adult sample, and 

provides evidence that the integration of phenotypic and genotypic data will be useful in the 

prediction of negative health outcomes in emerging adults.

Methods

Sample ascertainment and phenotyping

Phenome-wide behavioral data (N = 7592) were drawn from young adults from the first 

three cohorts in S4S, samples drawn from a large urban university in the Mid-Atlantic 

United States, which included 5947 unrelated individuals with genome-wide genotypes 

(Dick et al. 2014). The S4S sample does not overlap with any of the discovery GWAS 

samples used in these analyses. Details of participant ascertainment have been published 

elsewhere (Dick et al. 2014) but briefly, emerging adults ages 18–22 were recruited across 

multiple cohorts, for a campus-wide study of genetic and environmental factors contributing 

to alcohol and substance use. The protocol was approved by the university Institutional 

Review Board, and carried out in accordance with the provisions of the World Medical 

Association Declaration of Helsinki. Participants were 61.1% female with a mean age of 

18.59 at first assessment. Representativeness of this sample is strong and has been reported 

elsewhere (Dick et al. 2014). Assignment to ancestry group was empirically based on 

greatest similarity to 1000 Genomes Phase 3 super-populations. The present analyses 

included 55 traits from the domains of psychopathology, personality, health factors, and 

educational achievement (Table S2 in the online supplementary materials). All analyses 

included age, sex, and 10 ancestry principal components as covariates. Variables assessed on 
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multiple occasions or in multiple cohorts were adjusted for a number of assessments and 

cohort group. Sample sizes for each of the phenotypic measures are also provided in Table 

S2.

Genetic risk scoring

DNA collection, calling, and imputation are detailed elsewhere (Dick et al. 2014). We 

processed genotypes using standard quality control procedures followed by imputation of 

SNPs (single-nucleotide polymorphisms) using the 1000 Genomes Project reference panel. 

After imputation and quality control, we included approximately 2.3 million variants into the 

polygenic scoring analyses. A GPS for each discovery phenotype was calculated using the 

summary statistics we obtained from 33 GWAS (Table S1 in the online supplementary 

materials). Python-based LDpred (Vilhjalmsson et al. 2015) was used for these analyses 

because of its ability to account for LD structure (Krapohl et al. 2015) using our own large 

EUR test sample, and its use of all genetic variants (instead of specified p value threshold for 

inclusion of the genetic variants in the GPS). LDpred allows for the modeling of LD based 

on LD in the discovery sample to weight the relative contributions of syntenic variants to the 

outcome phenotype. LDpred uses postulated proportions of causal variants in the genome as 

Bayesian prior probabilities for GPS calculations, and we tested a range of different priors 

(proportions of 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001), as well as the model of infinite 

variants of infinitesimally small effect (Fisher, 1919) to construct scores.

Phenotype prediction

A flowchart depicting the GPS-phenome cross-ancestry prediction and GPS–GPS 

correlation procedure is presented in Fig. 1. Regressions were run using R to compare full 

(GPS, ten ancestry principal components, age, sex, cohort, and a number of measurements 

when applicable) and restricted models where GPS was removed. Prior to the global 

analyses, a set of a priori hypotheses, gathered from previous research, were tested (Table 1). 

We elected to generate several hypotheses prior to analysis, because some literature was 

available to support previous evidence of relationships between GPS and outcome. We 

elected to forgo experimental binning (into quantiles, for example) in order to minimize the 

number of exploratory analyses beyond regressions of GPS on the phenotypes. Multiple 

testing was corrected for using a False Discovery Rate (FDR) of 5% (Benjamini & 

Hochberg, 1995) within each ancestry group using the p.adjust function in R; the FDR is 

appropriate for an analysis designed to evaluate the pattern of relationships between many 

constructs because it treats each combination of discovery phenotype, outcome, and LDpred 

prior level as an independent test, despite the presence of positive dependency between 

many of these tests. It should be noted that this multiple testing corrections did not account 

for previously established associations or for the correlations observed in our sample, 

between multiple prior levels tested in the same discovery phenotypes. This was an added 

attempt to filter out potentially spurious results.

Cross-disorder GPS partial correlations and GPS–GPS replication hypotheses across 
ancestry

In addition to testing the GPSs prediction of the phenotypes, GPSs were also examined for 

correlations with each other in all ethnicities. These provide different results than genetic 
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correlation estimates, but are intended to demonstrate that GPS scores are not independent, 

and that variance attributable to a particular discovery phenotype may be partially shared 

with another. This sharing may be due to common genetic factors between phenotypes, 

possible sample overlap, and error variance. GPS correlations have been previously reported 

in EUR, but this analysis added phenotypes such as cardiovascular and triglyceride factors. 

Correlation coefficients, p values, and q values (after correcting the p values for the FDR of 

5%) were derived for GPS partial correlations using R and adjusting for the ancestry 

principal components. We chose to use partial correlations in order to standardize the 

weights across phenotype and provide more direct comparisons of statistics for plotting 

purposes. Based on the cross-disorder psychiatric genomics findings to date (Bulik-Sullivan 

et al. 2015), we expected significant GPS associations between SZ and bipolar disorder 

(BP), SZ and autism (AUT), SZ and major depressive disorder (MDD), BP and MDD, and 

AUT and ADHD (attention deficit hyperactivity disorder) across each of the ancestry groups 

(see Table 2).

Results

Genetic profile score-phenotype prediction

A priori replication analyses—We evaluated previous cross-phenotype predictions 

based on recent work – for example, that age at menarche had an inverse association with 

obesity/body mass index (BMI) (Bulik-Sullivan et al. 2015). We tested several hypotheses in 

the European group, in order to maximize sample size without introducing potential 

population stratification. The multiple testing correction procedures we chose (FDR) was 

suitable for these analyses, given the positive dependency between many of the tests, 

allowing us to correct uniformly for the total number of tests, while still keeping type I error 

rate relatively controlled. Of the 28 predictions tested, 22 showed effects in the expected 

direction ( p = 0.002, one-tailed sign test), and 7 were significant after stringent multiple-

testing correction. Two previous notable null associations, MDD GPS predicting Grade 

Point Average (GPA), and Type 2 Diabetes GPS predicting GPA, were also null in our 

sample. Full results are presented in Table 1, including additional associations with the listed 

GPS phenotypes.

Phenome-wide prediction: We also performed hypothesis-free analyses across all 33 GPS 

and 55 S4S phenotypes to explore potentially novel associations. Multiple prior proportions 

of causal variants in the genome were tested, as detailed in Methods. Figure 2 presents 

notable results for GPS prediction of phenotypes in the European group for the prior 

proportion of 0.3 (i.e., an initial assumption that 30% of the genome is associated with the 

GPS phenotype). The 0.3 prior level showed stronger prediction in the past work (Krapohl et 
al. 2015), and corresponds to a plausible assumption about the genetic architecture of many 

complex traits, due to instances of increasing the sample size of GWAS proportionally 

increasing numbers of associated loci. In this group and prior proportion level, out of 1815 

associations 35 were between q < 0.16 and q > 0.05 [0.16 being the p value threshold 

corresponding to Akaike Information Criterion (Akaike, 1974)], 11 between q < 0.05 and q 
> 0.01, and 26 q < 0.01. An additional 53 associations showed at least suggestive 

significance at other prior levels. A heatmap of analyses at can be found in Fig. 2 (EUR; and 
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for replications in all ancestries, Fig S1–Fig S4 available in the online supplementary 

materials). Each plot presents significant associations as well as the direction of effect. 

Because of the uniform correction for multiple testing, we included of interest q < 0.16 

associations, which would be significant with more traditional correction methods 

accounting for previously established associations.

Notable results included SZ GPS significantly predicting nicotine use, depression and 

anxiety symptoms, and family history of depression, anxiety, alcohol use disorder, and drug 

use. In addition, GPS for neuroticism (N) predicted a number of relevant psychiatric 

phenotypes, including neuroticism, depression, and anxiety symptoms.

Genetic profile score prediction of the phenome across non-European ancestries

As noted earlier, most discovery GWAS have used European samples, and while there is 

good evidence for cross-ancestral replication for some traits, the generalizability of many of 

these relationships across ancestry is not known. The diverse ancestry groups within S4S 

allowed cross-ancestral replication, and the use of continuous GPS metrics made the sample 

sizes available powerful enough to examine these hypotheses. A small proportion of the 

strongest predictors observed in the EUR were replicated across the other ancestries, with a 

broadly similar pattern of results across all ancestry groups only for ‘basic’ traits such as 

height and BMI. While some outcome phenotypes were strongly predicted by GPS, a few 

outcome phenotypes, including physical activity, lifetime history of panic attack, age at first 

sexual intercourse, and bulimia nervosa were not predicted by any GPS in any ancestry 

group. In addition, some expected associations (e.g. PRS for nicotine use predicting 

smoking behaviors) while in the expected direction, were not significant in this sample.

Most associations of SZ GPS with outcome traits observed in EUR did not reach 

significance in other ancestry samples. In addition, some novel associations were observed 

in other ancestries. For example, lifetime smoking GPS was positively associated with a 

number of alcoholic drinks per day in AMR. Neuroticism GPS was positively associated 

with stressful life events, trauma (interpersonal and general), and posttraumatic stress 

disorder (PTSD) in SAS. These patterns of effects are based on EUR GWAS summary 

statistics, and must be replicated using AMR and SAS GWAS summary statistics in the 

future. However, they suggest potential pleiotropic effects relevant to outcomes in these 

populations.

GPS–GPS correlations

A priori hypothesis testing and global cross-disorder genetic profile analyses
—A priori hypotheses (described in the Methods and listed in Table 2) of relationships 

between GPS scores were tested at a prior proportion level of 0.3. Figure 3 presents the 

results for GPS–GPS partial correlations at a GPS p = 0.3, and these results are presented 

because some phenotypes studied here (e.g. Neuroticism) were not included in previous 

analyses. Notable unexpected correlations were observed, including significant positive 

correlations of neuroticism GPS with GPSs for triglycerides and coronary artery disease. 

These associations also serve as evidence of non-independence across traits in this sample. 

Finally, Figure S5–Figure S8 (available in the online supplementary materials) present these 
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same correlations across the four non-EUR ancestry groups. There is some overlap between 

the discovery samples for neuroticism and triglycerides, but no overlapping studies were 

included in the neuroticism and the coronary artery disease discovery samples. Therefore, 

the correlation of neuroticism and coronary artery disease is especially likely to reflect the 

underlying genetic correlation between neuroticism and artery disease. Despite overlap in 

the discovery samples for the neuroticism and triglycerides polygenic scores, validation 

using LD score regression supported the existence of a genetic relationship between them 

(rG = 0.53; S.E. = 0.04; p = 1.5×10−36).

Discussion

The findings here present a wide-ranging and nuanced picture of major dimensions of 

vulnerability to psychopathology at a genetic level. This study includes substantial sample 

sizes of emerging adults, uses outcome measures (with novel phenotypes in phenomic 

analyses; see Table S2 in the online supplement for details of assessment scales), includes a 

wide range of discovery GWAS, and is powerful enough to draw preliminary conclusions 

about several ancestries. Because this study does not look for ‘hits’ in the traditional GWAS 

sense and instead uses continuous GPS metrics, sample sizes provide adequate power across 

all separate ancestries in this study.

Importantly, results reflect EUR relationships between anxiety, depressive, and SZ-spectrum 

disorders that are largely consistent with current conceptualizations of diagnostic 

classification, and confirm the important involvement of a network of medical and risk 

phenotypes in genetic predisposition to these disorders. Informative genetic associations 

between medical and clinical phenotypes exist despite the relative dearth of individual loci 

of genome-wide significance.

We can learn a lot from the study of emerging adults relative to younger, adolescent samples, 

as more targeted theories about critical exposures and environmental risk factors can emerge. 

For example, GPS for SZ predicted anxiety, depression, nicotine use, experiences of 

interpersonal trauma, and family history of mental health problems. Importantly, these 

results expand on recent evidence that genetic risk for SZ can successfully predict diverse 

risk phenotypes such as anxiety and negative symptoms (Kendler et al. 1996; Fanous et al. 
2001; Docherty & Sponheim, 2008; Docherty & Sponheim, 2014; Docherty et al. 2015; 

Jones et al. 2016; Kendler, 2016), and demonstrate important links between SZ genetic risk 

and health factors in early adulthood. Significant association of GPS with easily measured, 

specific risk factors (e.g. nicotine use, family history, and trauma) indicates that GPS could 

be useful in predicting psychopathology, particularly in conjunction with environmental 

moderators.

The incorporation of personality traits such as neuroticism was also quite informative. For 

example, neuroticism GPS significantly predicted a broad network of general anxiety, 

phobia, panic, neuroticism, and depression phenotypes in EUR, as well as multiple health-

related GPSs. This is consistent with previous biometrical and genomic research reporting 

significant relationships of neuroticism with MDD (Kendler & Myers, 2010; Genetics of 

Personality Consortium et al. 2015; Docherty et al. 2016a, b), and preliminary findings from 
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the UKBiobank suggesting a genetic overlap of neuroticism with cardiovascular health (Gale 

et al. 2016). Conversely, GPS for extraversion predicted fewer depressive symptoms, fewer 

anxiety symptoms, and less family history of mental health problems, though these 

associations did not remain significant after multiple testing corrections. Associations 

pertaining to GPS for well-being in this sample are forthcoming from our research group.

Notable unexpected GPS–GPS results included positive correlations of neuroticism GPS 

with GPSs for coronary artery disease, which is likely to reflect underlying genetic 

correlation, as well as with triglycerides. This is the first study we know of to document 

significant positive genetic associations between neuroticism and cardiac health, despite the 

high public health cost of neuroticism being well documented (Cuijpers et al. 2010; 

cardiovascular risk and association with psychiatric phenotypes such as neuroticism may be 

of special interest to public health efforts). Most of the GPS–GPS a priori relationships 

chosen for replication testing were represented in the same direction across all ancestry 

groups, corroborating previous efforts to map relationships between genetic risk profiles.

The abundance of significant relationships between intuitive combinations of GPSs and 

related outcomes is reassuring considering the many factors that could attenuate the 

statistical link between them. Association between a GPS and an outcome not only reflects 

the correlation between the phenotype in the original (‘discovery’) GWAS that produced the 

statistics used to compute the GPS and the outcome phenotype, but is also related to a 

number of other factors. The link is limited by how accurately the GWAS measured the 

initial phenotype, how similar the discovery and test samples are (in age, ancestry 

composition, proportions of each sex, etc.), how well the test phenotype is measured by the 

data collection instrument, and how well it can incorporate indirect pathways from the 

genetic architectures to either phenotype.

For example, physical activity increases HDL levels (Kokkinos & Fernhall, 1999), so those 

who had higher HDL levels in the discovery GWAS (Teslovich et al. 2010) were likely a mix 

of those with innately high levels, those who engaged in higher levels of physical activity, 

and those with both traits. Therefore, HDL GPS perhaps indexes some propensity to engage 

in HDL-promoting behaviors, in addition to HDL metabolic variation such as a slower rate 

of HDL catabolism, which is thought to be the most common genetically determined 

mechanism of increased HDL levels in humans (Rader, 2006). The portion of the HDL GPS 

due to fitness behaviors may explain some of the polygenic association with the test 

phenotypes of BMI and weight. Of note, while the HDL GPS did not significantly predict 

the physical activity phenotype in S4S, the direction of effect was positive, and that 

particular phenotype had one of the smallest sample sizes, at 433 EUR individuals, and 

therefore lower power than others.

Using EUR GWAS summary statistics produced differential relationships of GPS with 

outcomes across ancestry, with few effects replicating across ancestry groups. This could be 

due to decreased power to detect effects given the smaller sample sizes of the other ancestry 

groups. However, within each ancestry group, new significant effects across GPS and 

outcome measures were observed as well. These effects suggest ancestry-specific summary 

statistics, or those with larger samples, may reveal differences in the pattern of relationships 
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between phenotypes in different groups. Results underscore a need for more GWAS of non-

EUR ancestry samples.

There are a number of limitations to be aware of when interpreting these results. The 

synthesis of information from so many sources compounds any methodological and 

psychometric issues present in the original studies, so there is probable bias in multiple 

levels of the analysis that is difficult to measure. It is unclear how generalizable our results 

are to the general population. However, we might assume that bias in the college sample 

would cause less robust associations with psychopathology, and that effects might be more 

pronounced in the general population. In order to maintain proximity with real outcomes, we 

did not transform our phenotypic variables to increase normality, but standardized the 

continuous variables computed from the participant responses to maintain comparable 

ranges of measurement. However, none of the phenotypes in which we found significant 

results evidenced high skew or kurtosis, so it is unlikely that significant effects were due to 

non-normal phenotype distributions. While LDpred performs adequately across ancestry 

groups, the accuracy in non-European ancestry groups is attenuated to the degree that 

multiple causal variants fall in regions where LD patterns differ across ancestry. In addition, 

a recent pre-print (Martin et al. 2016) shows biased predictions in several different 

populations using GPS for phenotypes that are also used in this paper (for example, Type 2 

diabetes and SZ). Finally, we observed some differential effects across priors in our 

analyses. Until these effects are replicated at a given prior, or there is justified precedent in 

the literature, we are unable to choose one ideal prior.

Overall, this broader picture of genetic vulnerability has important implications for how we 

study risk and resilience in emerging adulthood. While the variance explained by any of 

these GPSs is small, (for instance, the largest R2 for predicting the height phenotype was 

0.055, from the height GPS at a prior level of (1) they provide easily accessible information 

to guide future prediction, prevention, and intervention efforts to improve health and quality 

of life outcomes. Future longitudinal and intervention research could elaborate on this atlas 

to examine the predictive validity and prevention utility of many of the phenotypes here, 

such as neuroticism, family history, trauma, and nicotine use. This research also suggests 

that future polygenic work would benefit from GPSs based on non-European ancestry 

groups when such summary statistics are available. Phenome-wide research utilizing deeper 

phenotyping methods will likely further enhance results, and thus the future prediction of 

positive and negative health outcomes.

Finally, the relationships outlined here provide implicit suggestions for studies of the causal 

structure of the GPS phenotypes themselves. The genetic architecture of most of the traits 

and disorders in the atlas display substantial overlap; a significant portion of genetic 

variation involved in the etiology of these constructs does not selectively contribute to risk 

for one phenotype as we know it, but rather has effects that act on some axis of liability that 

increases the likelihood of many phenotypes. Analyzing multiple related phenotypes in a 

holistic fashion allows elucidation of the individual patterns of genetic and environmental 

factors that may explain causal mechanisms – which risk factors they share, and which are 

unique to one phenotype, thus serving to refine our nosological theories. Any 

epidemiological analysis is limited if the construct under study is not a uniform disease 
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entity, but as a characterization of constructs improves, the power to find their correlates 

does as well. The better we ask the questions, the more useful the answers become, for both 

clinical and scientific purposes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flow chart of the GPS-phenome and GPS–GPS analyses. GWAS, genome wide association 

study; FDR, false discovery rate; GPS, genome-wide polygenic score; PC, principal 

component.
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Fig. 2. 
Phenome on GPS regression q-values in European Sample (EUR). GPS displayed with prior 

proportion of causal effects = 0.3. Here, asterisks in the cells of the heatmap denote results 

of greater effect: *** = q-value < 0.01, ** = q-value < 0.05, * = q-value < 0.16. Blue values 

reflect a negative association, and red reflect positive association. Intensity of color indicates 

−log10 p value.
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Fig. 3. 
Genetic Overlap and Co-Heritability of GPS in European Sample (EUR). Heatmap of partial 

correlation coefficients between GPS with prior proportion of causal effects = 0.3. Here, 

asterisks in the cells of the heatmap denote results of greater effect: **** = q-value < 

0.0001, *** = q-value < 0.001, ** = q value < 0.01, * = q value < 0.05, and ~ = suggestive 

significance at q value < 0.16. Blue values reflect a negative correlation, and red reflect 

positive correlation.
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Table 1

Phenotype prediction at 0.3 GPS: tests of a priori associations based on previous research

Discovery phenotype
Test
phenotype Previous finding

Sign of
coefficient Other observed associations

Age at menarche BMI/obesity − (Bulik-Sullivan et al. 2015) −*** −Weight*, + Extraversion*

Height + (Bulik-Sullivan et al. 2015) +*

Alzheimer’s disease GPA − Educational attainment 
(Hagenaars et al. 2016)

+ None

Anorexia BMI/obesity − (Bulik-Sullivan et al. 2015) − None

Attention deficit disorder GPA − Educational attainment 
(Hagenaars et al. 2016)

− −Parental Education*

Autism GPA + Educational attainment 
(Hagenaars et al. 2016)

− +Parental Education*

Bipolar disorder Depression + MDD (Bulik-Sullivan et al. 
2015)

+ −BMI**, −Weight***, +Family history for 

Alcohol*, Drug use**, and Depression/ 

anxiety**GPA + Educational attainment 
(Hagenaars et al. 2016)

+

Birth height Height + (Bulik-Sullivan et al. 2015) +*** None

Birth weight Height + (Bulik-Sullivan et al. 2015) + None

Body mass index BMI + (Krapohl et al. 2015) +*** +Weight***, +Subjective response to

Ethanol***, −GAD Screener*
GPA − Educational attainment 

(Hagenaars et al. 2016)
−

Child IQ GPA + Cognitive ability (Krapohl et 
al. 2015)

+ None

College BMI/obesity − (Bulik-Sullivan et al. 2015) − −Subjective response to Ethanol*, 

−Conscientiousness*, +Parental education***
Cigarette use − Ever smoker (Bulik-Sullivan et 

al. 2015)
+

GPA + Cognitive ability (Krapohl et 
al. 2015)

+*

Coronary artery disease GPA − Educational attainment 
(Hagenaars et al. 2016)

− None

Height –– −

Ever smoker BMI/obesity + (Bulik-Sullivan et al. 2015) + +Antisocial high school behavior*

Height GPA + Educational attainment 
(Hagenaars et al. 2016)

− −BMI**, +Weight***

Height + (Krapohl et al. 2015) +***

Infant head circumference Height + (Bulik-Sullivan et al. 2015) + None

Intracranial volume GPA + Educational attainment 
(Hagenaars et al. 2016)

− None

Major depressive disorder GPA Null (Hagenaars et al. 2016) Null +Depressive symptoms**, +Neuroticism*, 

+GAD screener*, +Specific phobia screener*, 

+Family history for alcohol***, and 

Depression/anxiety***

Schizophrenia Depression + MDD (Bulik-Sullivan et al. 
2015)

+** +Alcohol use disorder symptoms*. +Anxiety 

symptoms***, +Neuroticism*, +Interpersonal 

Trauma***, +PTSD Screener*, +Ever use Cigarette use Null, Ever smoker (Bulik-
Sullivan et al. 2015)

+**
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Discovery phenotype
Test
phenotype Previous finding

Sign of
coefficient Other observed associations

nicotine*, +GAD Screener*, +Social phobia 

screener*, +Family history of alcohol*, Drug 

use**, and Depression/anxiety***

GPA + Educational attainment 
(Hagenaars et al. 2016)

−

Type 2 diabetes GPA Null (Hagenaars et al. 2016) Null None

BMI, body mass index; GPA, grade point average; GAD, generalized anxiety disorder; MDD, major depressive disorder; PTSD, posttraumatic 
stress disorder; S4S, Spit for Science.

Note:

*
= q < 0.16,

**
= q < 0.05,

***
= q < 0.01.
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Table 2

Cross-ancestry replication tests of European GPS–GPS correlations based on Atlas from Bulik-Sullivan et al. 
(2015)

Discovery phenotype Previous finding (Bulik-Sullivan et al. 2015) Significant replication in spit for science

Age at menarche +Height, +HDL +Height****+HDL**

Alzheimer’s −College −College*

Anorexia +Schizophrenia +Schizophrenia****

Bipolar disorder +College, +Schizophrenia, +Major depression +College****, +Schizophrenia****, +Major depression****

Birth weight −Type 2 diabetes, +Infant head circumference −Type 2 Diabetes* (+ in EAS and SAS only), +Infant head 

circumference****

College −Ever smoked, −Triglycerides, −Coronary 
artery disease, +HDL

−Ever smoked*, −Triglycerides****, −Coronary artery 

disease****, (+in AMR and EAS only), +HDL****

Coronary artery disease +Type 2 Diabetes, +Triglycerides +Type 2 diabetes****, +Triglycerides****

Crohn’s +Ulcerative colitis +Ulcerative colitis****

HDL −Type 2 diabetes, −Waist hip ratio, 
−Triglycerides

−Type 2 diabetes****, −Waist hip ratio****, –

Triglycerides****

Height +Infant head circumference +Infant head circumference****

LDL +Triglycerides +Triglycerides****

Major depressive disorder +Schizophrenia +Schizophrenia****

Note:

****
= q-value < 0.0001,

***
= q-value < 0.001,

**
= q-value < 0.01,

*
= q-value < 0.05.
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