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Abstract

Background—Recent studies have shown that epigenetic differences can increase the risk of 

spontaneous preterm birth (PTB). However, little is known about heterogeneity underlying such 

epigenetic differences, which could lead to hypotheses for biological pathways in specific patient 

subgroups, and corresponding targeted interventions critical for precision medicine. Using 

bipartite network analysis of fetal DNA methylation data we demonstrate a novel method for 

classification of PTB.

Method—The data consisted of DNA methylation across the genome (HumanMethylation450 

BeadChip) in cord blood from 50 African-American subjects consisting of 22 cases of early 

spontaneous PTB (24-34 weeks of gestation) and 28 controls (>39 weeks of gestation). These data 

were analyzed using a combination of (1) a supervised method to select the top 10 significant 

methylation sites, (2) unsupervised “subject-variable” bipartite networks to visualize and 

quantitatively analyze how those 10 methylation sites co-occurred across all the subjects, and 

across only the cases with the goal of analyzing subgroups and their underlying pathways, and (3) 

a simple linear regression to test whether there was an association between the total methylation in 

the cases, and gestational age.

Results—The bipartite network analysis of all subjects and significant methylation sites revealed 

statistically significant clustering consisting of an inverse symmetrical relationship in the 

methylation profiles between a case-enriched subgroup and a control-enriched subgroup: the 
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former was predominantly hypermethylated across seven methylation sites, and hypomethylated 

across three methylation sites, whereas the latter was predominantly hypomethylated across the 

above seven methylation sites and hypermethylated across the three methylation sites. 

Furthermore, the analysis of only cases revealed one subgroup that was predominantly 

hypomethylated across seven methylation sites, and another subgroup that was hypomethylated 

across all methylation sites suggesting the presence of heterogeneity in PTB pathophysiology. 

Finally, the analysis found a strong inverse linear relationship between total methylation and 

gestational age suggesting that methylation differences could be used as predictive markers for 

gestational length.

Conclusions—The results demonstrate that unsupervised bipartite networks helped to identify a 

complex but comprehensible data-driven hypotheses related to patient subgroups and inferences 

about their underlying pathways, and therefore were an effective complement to supervised 

approaches currently used.
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Introduction

An estimated 13 million children are born annually through preterm deliveries, accounting 

for 9.6% of all births worldwide [1]. Preterm births (PTB; less than 37 weeks of gestation) 

account for approximately 70% of infant mortality and morbidity resulting in high personal 

and financial costs [1]. For example, compared to children born at term, those born preterm 

have a higher incidence of conditions such as cerebral palsy, sensory deficits, learning 

disabilities, and respiratory illnesses [2]. Furthermore, as preterm children tend to have 

reduced fetal growth and numerous adverse intrauterine conditions, they are highly prone to 

the late onset of chronic diseases such as diabetes, hypertension, coronary heart disease, and 

stroke [3, 4]. Being born preterm therefore not only imparts a difficult start to life, but also 

confers considerable risk for a disease-burdened life [2–6].

What causes PTBs, and how can they be prevented? Reviews on this topic (e.g., [7]) cite 

numerous studies which have identified risk factors for PTB including socioeconomic status 

[8, 9], pre-existing comorbidities [10, 11], and smoking [12] that predispose a mother to a 

PTB. For example, African-American women have approximately twice the risk of PTB 

compared to other races [13]. However, given the narrow window of the gestation period, 

few of these risk factors can be easily modified, and therefore do not provide practical 

targets for effective and timely interventions.

Recent studies [14–16] have begun to focus on the genetic and epigenetic changes that could 

be implicated in triggering preterm deliveries, and which could potentially provide more 

practical targets for preventing them. As these studies have suggested the existence of 

epigenetic components in the biological pathways that trigger PTB, we recently analyzed 

methylated sites in fetal leukocyte DNA using whole genome analysis of cord blood from 

mothers who had early spontaneous PTB (gestational age 24-34 weeks) with intact 
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membranes [16]. Methylated sites are locations on the DNA where methyl groups are added 

to the DNA, resulting in modification in the function of genes. In humans, DNA methylation 

typically occurs where a cytosine nucleotide occurs next to a guanine nucleotide (often 

referred to as a CpG site). Our analysis identified more than 9,000 differentially methylated 

sites representing several potential pathophysiologic pathways including inflammation, 

oxidative stress, matrix metabolisms, and myometrial activation. While such studies have 

proposed several biological pathways, little is known about how they trigger early 

spontaneous PTB with intact membranes.

One possible limitation of many such studies is that they have used primarily supervised 

methods to conduct a univariable analysis of the genes or methylation sites. Such methods 

typically generate a list of significant methylated sites (after correcting for multiple testing) 

based on their differential methylation levels between cases and controls. While such 

univariable analyses are powerful for narrowing genome-wide data to a small set of 

significant methylation sites, the methods potentially conceal patient subgroups that share 

similar methylation profiles caused by underlying molecular heterogeneity. Identifying and 

comprehending such patient subgroups based on their methylation profiles could enable 

inference for pathways triggering PTBs in each subgroup. Such results are a critical step in 

the design of targeted interventions, a corner stone of precision medicine.

One promising approach for identifying and comprehending such complex patterns of co-

occurrence is through unsupervised bipartite network analysis [17]. For example, we have 

demonstrated that subject-variable bipartite networks [18] (which represent both subjects 

and variables in the same representation) can enable (1) the rapid identification of significant 

patient subgroups, and the variables (e.g., genes) that are strongly associated with them, and 

(2) the comprehension of those relationships resulting in hypotheses for processes (e.g., 

biological mechanisms) underlying those subgroups. Here we demonstrate the use of 

bipartite network analysis and visualization for re-analyzing data from our previous study 

[16] with the goal of enabling new insights into molecular heterogeneity and potential 

mechanisms that underlie PTB.

We begin by briefly describing current methods that have been used to identify patient 

subgroups in biomedical data, and our motivation for using bipartite networks to analyze 

subgroups based on PTB methylation. Next, we describe our network-based analytical 

method and how it enabled a domain expert in PTB to rapidly arrive at a complex but 

comprehensible understanding of heterogeneity in cases and in controls, in addition to 

heterogeneity within the cases which could be critical to the design of future targeted 

interventions. We conclude with a discussion on why subject-variable bipartite networks 

enabled a deeper comprehension of the data, resulting in data-driven hypotheses about the 

mechanisms underlying PTB.
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The Role of Bipartite Networks in Identifying and Comprehending Patient 

Subgroups and Underlying Mechanisms

Current Approaches for Identifying Patient Subgroups

A patient subgroup is defined as a subset of patients drawn from a population (e.g., PTB 

patients) that share one or more characteristics (e.g., a combination of methylation sites). 

Patients have been divided into subgroups by using (a) investigator-selected variables such 

as using race for developing stratified regression models,[19] or assigning patients to 

different arms of a clinical trial, (b) existing classification systems such as by using the 

Medicare Severity-Diagnosis Related Group (MS-DRG) [20] to assign patients into a 

disease category for purposes of billing, or (c) computational methods such as 

classification [21–23] and clustering [24, 25] to discover patient subgroups from data.

One of the simplest unsupervised methods for computationally identifying patient subgroups 

is by enumerating conjunctions of variables, such as by analyzing all dyads and triads of 

co-occurring comorbidities in the Medicare database [26], and then examining the most 

prevalent subgroups. Other methods attempt to partition a dataset of patients and 

characteristics into sets that are relatively homogenous. These sets can either be one-sided 
clusters (clusters of patients, or clusters of characteristics) or co-clusters [25, 27, 28] 

(clusters of patients and characteristics). K-means and hierarchical clustering [23, 25] are 

among the most commonly used one-sided clustering methods and require inputs such as a 

similarity measure (e.g., Jaccard similarity) and the expected number of subgroups, but with 

no agreed-upon approaches to automatically determine them. More recently, co-clustering 

[25, 27, 28] methods (also called biclustering methods) have been developed to 

automatically identify non-overlapping or overlapping submatrices consisting of both 

patients and characteristics. Compared to the above partitioning methods that use similarity 

measures to identify clusters, dimensionality reduction methods attempt to find a reduced 

dimensional space where differences among patients is maximized. For example, principle 

component analysis [23] (PCA) attempts to identify principal components which are 

weighted combinations of characteristics along which patients have the maximum variance. 

The patients are projected onto a plane typically defined by the two most important principal 

components. Methods such as k-means are then used to identify clusters of patients in this 

reduced dimensional space.

In contrast to the above unsupervised methods, supervised methods focus on identifying 

patient subgroups by taking into consideration outcome variables (e.g., responders and non-

responders in a treatment arm). For example, classification and regression trees (CART) [23] 

(and enhancements such as random forests [29] and bump hunting [22]) progressively 

divides patients into subgroups based on the outcome variable by using conjunctions of 

patient characteristics at each step. The method outputs a tree, and each path from the root 

node to a leaf node defines a patient subgroup.

Strengths and Limitations of Existing Methods

Although the above methods have improved our understanding of heterogeneity in different 

populations, they have important limitations with respect to enabling the identification and 
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comprehension of patient subgroups. While all share the goal of identifying patient 

subgroups based on characteristics, they either (a) consider only some characteristics at a 

time when defining subgroups (e.g., methods using variable conjunctions), (b) output one-
sided clusters such as patient subgroups without their characteristics (e.g., k-means, 

hierarchical clustering, PCA), or (c) cannot reveal the relationship among patient 
subgroups (e.g., co-clustering, CART).

As stated in the introduction, a central goal of precision medicine is not only to identify 
patient subgroups, but also to enable stakeholders to comprehend the processes underlying 

those subgroups. This comprehension of disease processes underlying patient subgroups 

enables stakeholders to design interventions that are targeted for each subgroup.

Bipartite Network Analysis and Visualization

One approach that achieves the goals of analysis and comprehension of multivariable is 

unsupervised bipartite networks [17]. Network visualization and analysis [17] is an 

advanced form of visual analytics defined as “the science of analytical reasoning facilitated 

by interactive visual interfaces” [30]. Visual analytical methods such as unsupervised 

network analysis are designed to augment cognitive reasoning by transforming symbolic and 

numeric data into visualizations, which can be manipulated through interaction [30]. 

Networks have been used to analyze a wide range of complex clinical, molecular, and social 

phenomena such as the co-occurrence of multimorbidities across patients [31], protein-

protein interactions [32], and the spread of infections across a social group [33].

A network (also called a graph) [17] consists of a set of nodes, connected in pairs by edges; 

nodes represent one or more types of entities (e.g., subjects or methylation sites). Edges 

between nodes represent a specific relationship between the entities (e.g., a subject has a 

specific methylation difference at a methylation site). Figure 1A shows a unipartite network 

where nodes are of the same type (commonly used to analyze co-occurrence of genes across 

patients, or to analyze protein-protein interaction networks [32]). In contrast, Figure 1B 

shows a bipartite network where nodes are of two types, and edges exist only between 

different types of nodes such as between subject nodes (circles) and methylation site nodes 

(triangles).

Networks are typically laid out using force-directed algorithms that pull together nodes that 

are strongly connected, and push apart nodes that are not. The result is that nodes with a 

similar pattern of connections are placed close to each other, and those that are dissimilar are 

pushed apart. As shown in Figure 1C, the application of the Kamada Kawai force-directed 

algorithm [34] to a bipartite network has revealed two clusters of subjects (one on the left 

and one on the right), each strongly associated with different methylation sites.

In prior work [35–40] we have shown that such “subject-variable” [18] bipartite networks 

are especially effective in helping to comprehend subject subgroups because they not only 

help to identify how subjects cluster with each other, but also how they are related to 

variables such as methylation sites. This feature enables an understanding of intra-cluster 
associations (e.g., the left cluster in enriched with cases associated predominantly with three 

methylation sites) and inter-cluster associations (e.g. the degree to which the subjects in the 
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case-enriched cluster shares methylation sites with the control-enriched cluster as reevaled 

by the inter-cluster edges). This feature distinguishes bipartite networks from other 

unsupervised methods [41] such as unipartite clustering (e.g., k-means and hierarchical 

clustering), and dimensionality reduction methods (e.g., principal component analysis) that 

cluster either subjects or variables, but not both simultaneously.

Method

Data Selection

For the current study, we reanalyzed samples drawn from the Nashville Birth Cohort (NBC) 

described in a previous study [16]. Briefly, the NBC consists of samples of spontaneous 

preterm birth (cases), and of normal term birth (controls). In this cohort, maternal 

demographic and clinical data were recorded from medical records or through interviews 

during the consenting process; demographic and clinical data specific to the fetus were 

extracted from clinical records; gestational age of the neonate was determined by maternal 

reporting of the last menstrual period and corroborated through ultrasound dating; race was 

identified by self-reporting tracing back to three generations from the maternal and paternal 

sides of the fetus; and maternal self-reports were used to determine socioeconomic 

(education, household income, marital status, and insurance status), and behavioral (cigarette 

smoking) factors. A detailed description of these and other variables such as infections are 

described in past publications [42–44].

As described in our primary study [16], the samples used for the current analysis consisted 

of 50 African-American subjects of non-Hispanic ethnicity consisting of 22 cases of early 

spontaneous PTB (gestational age 24-34 weeks) and 28 controls (gestational age > 39 

weeks). These cases and controls did not differ significantly in demographic or clinical 

factors [16, 45–50]. A detailed description of assay methods, analytical approaches, and data 

quality control measures can be accessed from the primary study [16]. To limit the influence 

of technical artifacts, beta values for each methylation site were residualized to account for 

chip and row. Similarly, to limit sex-specific effects, the effects of sex were also residualized 

using a multiple regression. This retrospective study was approved by the Institutional 

Review Board (IRB) at the University of Texas Medical Branch. The data files used for the 

study were in the research identifiable format (RIF), and the records were anonymized and 

de-identified prior to analysis. As analysis of such data does not require informed consent, it 

was therefore not done.

Bipartite Network Analysis

Our analysis consisted of three steps [18]: (1) exploratory visual analysis to identify 

emergent bipartite relationships such as patterns of how methylation sites co-occur across 

subjects; (2) quantitative analysis to quantitatively verify and statistically evaluate the 

emergent patterns such as clusters; (3) inference of the biological mechanisms underlying 

different emergent clusters of subjects. This three-step method used in our earlier studies has 

revealed complex but comprehensible visual patterns, leading to inferences about the 

biomarkers and underlying mechanisms involved.
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1. Exploratory Visual Analysis—We constructed two bipartite networks to analyze 

patient subgroups based on methylation profiles with the goal of comprehending the 

molecular pathways involved in PTB: (1) a case-control bipartite network of 22 cases, 28 

controls, and significant methylation sites, and (2) a case-only bipartite network of only 

the 22 PTB cases and significant methylation sites.

Nodes in the above bipartite networks represented subjects or methylation sites. To analyze 

the association of subjects to methylation sites that had strong signal for PTB, we (a) ranked 

all methylation sites identified in our earlier study based on their univariable significance, 

(b) removed all methylation sites that were not on a gene, and that had a SNP under the 

probe, and (c) selected the top-10 ranked (FDR≤7.41× 10−8) methylation sites. The resulting 

case-control network consisted of 50 subjects (22 cases and 28 controls) and 10 methylation 

sites, and the case-only network consisted of 22 cases and the same 10 methylation sites. 

Furthermore, we used node color to distinguish cases (red) from controls (green) in the case-

control network, and to distinguish emergent subgroups (case-subgroup-1 = pink, case-

subgroup-2 = blue) in the case-only network.

Edge weights in the networks were used to represent the degree of methylation differences 

for each subject-methylation site pair. Because DNA methylation was measured on different 

chips, and methylation is already known to be strongly associated with gender of the fetus, 

the beta values for each methylation site were residualized to account for chip, row, and sex-

specific effects using a multiple regression. As regression residuals can range from negative 

to positive, and network layout algorithms require positive distances to position nodes, we 

shifted all residual values into the positive range. This was done by adding the least residual 

value for each methylation site to all its values, an approach which preserved the relative 

distances between subjects, and therefore enabled laying out the network using a standard 

force-directed algorithm.

Global patterns related to subjects and variables in the network were visualized and analyzed 

using the Kamada-Kawai [34] layout algorithm in Pajek (version 3.02) [51]. As shown in 

Figure 1C, the algorithm pulls together nodes that are strongly connected, and pushes apart 

nodes that are not. This algorithm is fast but approximate and is well-suited for medium 

sized networks consisting of between 100-1000 nodes [51]. The result is that nodes with a 

similar pattern of connections (e.g., M1 and M2 strongly associated with the left cluster in 

Figure 1C) are placed close to each other.

A key advantage of a bipartite network representation is the simultaneous visualization of 

subjects and variables, relationships between them (methylation differences), node type 

(cases and controls), and emergent global patterns (clusters) in a uniform visual 

representation. Such a representation enables domain experts such as clinicians and 

biologists to comprehend explicit associations such as how subject nodes are connected to 

methylation site nodes, in addition to emergent associations such as intra and inter cluster 

associations, leading to the rapid generation of hypotheses based on complex multivariable 

relationships.
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2. Quantitative Analysis—We used three measures to quantitatively verify and 

statistically evaluate patterns derived from the exploratory visual analysis. These methods 

were selected based on their appropriateness to the emergent patterns in the network.

(a) Agglomerative Hierarchical Clustering: Because the network layout suggested a 

clustered topology for subjects and for methylation sites, we used the agglomerative 

hierarchical clustering method [41], which is best suited for networks that have small 

clusters [18, 35]. The clustering was done using the Manhattan dissimilarity measure with 

the Ward linkage function, and the number of clusters and their boundaries were determined 

based on natural breaks in the subject and methylation site dendrograms. The dendrograms 

were also combined with the heatmaps to aid in the visual analysis of the results.

(b) Clusteredness: To test whether the clusters in the network could have occurred by 

chance, we compared the variance, skewness, and kurtosis of the dissimilarities in the data, 

to 1000 random permutations of the dataset. For each network permutation, we preserved 

the size of the network, in addition to the edge weight distribution across patients when 

analyzing the patient dendrogram, and the edge weight distribution across methylation sites 

when analyzing the methylation dendrogram. Significant breaks in the subject or 

methylation site dendrograms would result in a significantly larger variance, skewness, and 

kurtosis of the dissimilarity measures, compared to the same measures generated from 

random permutations of the networks. Furthermore, we tested whether the proportion of 

cases and controls in the emergent subject clusters were significant using chi-square.

(c) Association between Methylation and Gestational Age: As the two clusters of nodes 

in the case-only network appeared to have a wide range in methylation differences, we used 

simple linear regression to test whether there was an association between total methylation 

of each subject, and gestational age. This was done by calculating the weighted degree 

centrality [17] for each patient node (sum of all its methylation differences across all the 

methylation sites), and testing its association (binned in increments of 0.25) to gestational 

age.

3. Inference of Biological Mechanisms—The verified clusters of subjects and 

methylation sites were used to identify hypotheses for biological pathways. This was done 

by (a) identifying the methylation sites that were strongly associated with each subject 

cluster, (b) mapping the methylation sites to their respective genes, and (c) identifying the 

biological pathways that are represented by the differentially methylated genes through the 

use of Ingenuity Pathway Analysis (IPA). IPA (Ingenuity® Systems www.ingenuity.com) is 

a widely used database and retrieval system designed to help researchers map a given set of 

molecules to biological pathways published in the literature.

Results

The bipartite network analyses revealed distinct patterns of methylation differences between 

cases and controls, in addition to distinct patterns of methylation differences between 

subsets of cases.
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DNA Methylation Differences between Cases and Controls

The bipartite network visualization of 50 subjects (22 cases and 28 controls), and 10 

methylation sites revealed a complex but understandable clustered pattern. As shown in 

Figure 2, there were two major clusters of subjects and methylation sites, one to the left, and 

another to the right.

To quantitatively verify the number of clusters and their members, we used agglomerative 

hierarchical clustering for the subjects, and for the methylation sites. As shown in Figure 3, 

the dendrogram shows a substantial break at 2 clusters both for the subjects, and for the 

methylation sites. The clusteredness of the subjects in the case-control network was 

statistically significant when compared to 1000 random permutations of the networks based 

on variance of the dissimilarities (case-control network = 9.25, Random Mean = 1.09, p<.

001 two-tailed test), skewness of the distribution of dissimilarities (case-control network = 

6.06, Random Mean = 2.77, p<.001 two-tailed test), and kurtosis of the distribution of 

dissimilarities (case-control network = 40.08, Random Mean = 12.40, p<.001 two-tailed 

test). Similarly, the clusteredness of the methylation sites in the case-control network was 

also statistically significant when compared to 1000 random permutations of the networks 

based on variance of the dissimilarities (case-control network = 38.01, Random Mean = 

3.61, p<.001 two-tailed test), skewness of the distribution of dissimilarities (case-control 

network = 2.32, Random Mean = −0.24, p<.001 two-tailed test), and kurtosis of the 

distribution of dissimilarities (case-control network = 6.68, Random Mean = 1.89, p<.001 

two-tailed test).

The cluster boundaries of subjects were superimposed onto the network using translucent 

blue shapes, and the cluster boundaries of methylation sites were superimposed on the 

network using dashed ovals. This superimposition of cluster boundaries on the network 

revealed that the subject cluster on the left contained mainly cases, but also included two 

controls; the subject cluster on the right had mainly controls, but also included two cases. 

Despite this cross-over of phenotypes, the proportion of cases and controls in each subject 

cluster was significantly different (χ2 Yates (1, N=50) = 35.0757, p<.001), suggesting an 

overall strong separation in cases and controls based on their methylation profiles.

The subjects in the left case-dominated cluster (red nodes) were hypermethylated at 7 

methylation sites and their respective genes: cg10020892 (BCL9), cg22846826 (FOXK1), 

cg08726900 (ANKRD11), cg02753354 (HMHA1), cg07835443 (C16orf55), cg16705546 

(IRF8), cg00153101 (PLCH2). They were also hypomethylated at the following 3 

methylation sites and their respective genes: cg23754392 (BMI1) and cg25592206 

(CDKN2C), and cg18183624 (IGF2BP1). In contrast, the subjects in the right control-

dominated cluster (green nodes) had the opposite pattern: the subjects were hypomethylated 

at the above 7 methylation sites, and hypermethylated at the above 3 methylation sites.

DNA Methylation Differences among Cases

Because there was an overall strong and significant separation of cases from controls, this 

separation could have concealed sub-patterns within the cases. We therefore removed all the 

controls from the network to inspect possible patterns among only the cases. Figure 4 shows 
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the resulting network of 22 cases and the 10 methylation sites which was laid out and 

analyzed using the same approach as was used for the previous case-control network.

As shown in Figure 4, there was a cluster of cases on the left that was strongly 

hypermethylated at the same 7 methylated sites as in the case-control network. However, as 

shown on the right, there was a dispersed group of cases with mainly thin edges connecting 

them to all the methylation sites, suggesting that this subgroup was hypomethelated at all the 

10 methylation sites.

Similar to the previous analysis, we quantitatively determined the boundaries of the clusters 

in the case-only network through agglomerative hierarchical clustering for the subjects and 

for the methylation sites. As shown in Figure 5, the dendrogram showed a substantial break 

at 2 clusters both for the subjects, as well as for the methylation sites. The cluster boundaries 

of the subjects were superimposed on the network using node color, and the cluster 

boundaries of the methylation sites were superimposed on the network using dashed ovals.

The clusteredness of the subjects in the case-only network was statistically significant when 

compared to 1000 random permutations of the network based on variance of the 

dissimilarities (case-only network = 1.31, Random Mean = 0.89, p<.001 two-tailed test), 

skewness of the distribution of dissimilarities (case-only network = 2.80, Random Mean = 

1.60, p<.001 two-tailed test), and kurtosis of the distribution of dissimilarities (case-control 

network = 10.47, Random Mean = 5.20, p<.001 two-tailed test). Similarly, the clusteredness 

of the methylation sites in the case-only network was also statistically significant when 

compared to 1000 random permutations of the network based on variance of the 

dissimilarities (case-only network = 10.05, Random Mean = 3.76, p<.001 two-tailed test), 

skewness of the distribution of dissimilarities (case-only network = 2.30, Random Mean = 

1.96, p<.001 two-tailed test), and kurtosis of the distribution of dissimilarities (case-only 

network = 6.62, Random Mean = 5.66, p<.001 two-tailed test). These results suggest the 

existence of two PTB subgroups. The first subgroup on the left was hypermethylated at 7 

sites, and hypomethylated at 3 sites. In contrast, the second subgroup on the right was 

hypomethylated on all 10 sites.

In summary, the bipartite network visualizations and analyses led to two key findings. (1) 

There existed an inverse symmetrical relationship in the methylation profiles between the 

cases and controls: cases were predominantly hypermethylated at 7 methylation sites, and 

hypomethylated at 3 methylation sites, whereas controls were predominantly 

hypomethylated at the above 7 methylation sites and hypermethylated at the above 3 

methylation sites. (2) There was strong evidence for heterogeneity in the profiles of the 

cases, where one subgroup was predominantly hypermethylated across 7 methylation sites, 

and another subgroup was hyomethylated across all 10 methylation sites.

Relationship between Methylation and Gestational Age

Because the two subgroups in the case-only network had a wide range in overall methylation 

differences, we tested if there was an association between total methylation difference in 

each case, and gestational age. The results showed an inverse linear relationship between the 
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total methylation for each subject (binned in increments of 0.25), and gestational age (best 

fitted by y = −1.6222x + 36.052, R2 = 0.8488).

Inferences for Biological Mechanisms in Preterm Birth

An important goal of network visualization and analysis is to enable the comprehension of 

complex patterns in the data leading to hypotheses for the underlying processes such as 

biological mechanisms. Accordingly, given the significant separation of cases and controls 

in the case-control network, and the significant heterogeneity in the case-only network, our 

goal was to infer the possible biological pathways underlying those patterns. We therefore 

used IPA to identify known pathways related to genes represented by the 7 methylation sites, 

and related to the genes represented by the 3 methylation sites (shown on the left and the 

right of both networks respectively). The two bipartite networks along with the pathways 

identified from IPA were provided to a domain expert in PTB, who was asked to infer the 

potential mechanisms leading to PTB.

For the case-control network, he first attempted to analyze the IPA-identified pathways 

related to the 7 methylation sites that were hypermethylated in the left case-dominated 

cluster. Unfortunately, none of the pathways appeared to be meaningful for PTB. Next, he 

analyzed the IPA-identified pathways related to the 3 sites that were hypermethylated in the 

right control-dominated cluster. Here he inferred that two of the hypermethylated sites 

(cg23754392, cg25592206) were likely downregulating their respective genes (BMI1 and 

CDKN2C) leading to the upregulation of TP53 (a known tumor suppressor), resulting in 

normal cell senescence required for the normal rupture of the placenta during labor. Because 

these very methylation sites were hypomethylated (represented explicitly by the thin edges 

that connected most of the subjects in the left case-dominated cluster, to these two 

methylation sites on the right), he hypothesized that the opposite might hold for the cases: 

hypomethylation of the same two sites would lead to upregulation of BMI1 and CDKN2C, 

leading to the suppression of TP53 potentially resulting in decreased or absent cellular 

senescence.

Having determined a plausible role of cellular senescence in PTB, he reexamined the genes 

related to the hypermethylated sites in the case-dominated cluster on the left. This led to a 

focus on BCL9 and IRF8, which he noted were both cell cycle promoters. He therefore 

unified the two insights by hypothesizing that the decrease or absence of the pathway related 

to normal cellular senescence (inferred from the methylation sites strongly associated with 

the control-dominated cluster on the right), in combination with the presence of the pathway 

that promoted cell cycle (inferred from the methylation sites strongly associated with the 

case-dominated cluster on the left) might potentially be responsible for triggering PTB in the 

cases.

Next, he attempted to infer the plausible mechanisms underlying the heterogeneity in the 

case-only network (Figure 4). As the left subgroup had mostly uniform hypermethylation of 

7 sites and hypomethylation of 3 sites, he inferred that the mechanisms underlying this 

subgroup also related to senescence. In contrast, as the right subgroup had mostly uniform 

hypomethylation of all 10 sites, he inferred that while they did not have a strong signature 

for senescence like the left subgroup, they also did not have as strong a signature as that of 
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the control-dominated subgroup identified in Figure 3. This implied the existence of a 

continuum in methylation profiles, which could be the result of interaction with other risk 

factors triggering a PTB. Furthermore, the inverse relationship between total methylation 

and gestational age suggested that the fetal methylation associated epigenetic signature may 

be a useful predictor of an adverse pregnancy outcome such as PTB.

Recent studies provide corroborative evidence for the above mechanistic inferences. For 

example, existence of senescence as a mechanism was recently reported in fetal membranes 

and in fetal DNA [52–55]. However, because the precise mechanisms or functional pathways 

cannot be identified from differential methylation profiling, additional functional studies 

need to be conducted on these identified genes. Furthermore, methylation differences (hyper 

or hypo) are not always unidirectional [14], and many of the functional changes are linked to 

the type of cell or tissue, and the environment to which they are associated. Therefore, while 

the above inferences of pathways and heterogeneity derived from the visual analytics 

provide promising hypotheses related to senescence of fetal cells, these results need to be 

closely examined through future hypothesis-testing studies.

Discussion

From a biological perspective, even though the data had been previously rigorously 

analyzed, both networks revealed complex but comprehensible patterns leading to novel 

data-driven hypotheses. The case-control network revealed an inverse symmetrical 

relationship between cases and controls leading to biological inferences related to 

senescence. Furthermore, as discussed in the methods section, we used stringent criteria for 

the inclusion and exclusion of subjects, resulting in a relatively homogeneous group of cases 

and of controls with no significant demographic and clinical differences between them. 

However, despite these stringent criteria, the case-only network revealed patient subgroups 

based on methylation differences alone, demonstrating the important role that methylation 

changes in fetal DNA can play in revealing meaningful heterogeneities among cases.

From a methodological perspective, there were four features of the network representation 

that together contributed to the rapid inferences related to the pathophysiology in preterm 

births:

1. Representation of Node Similarity in a Euclidean Plane. Because a force-

directed algorithm positions nodes in a Euclidean plane, it can use two degrees of 

freedom and continuous distances to more accurately represent inter-node 
similarity. For example, in a Euclidean plane, a node can have an identical 

relationship to many other nodes simultaneously. This feature enabled the rapid 

detection of node associations such as clusters in both networks, in addition to 

revealing the degree of similarity of nodes within each cluster in the case-only 

network. In contrast, heatmaps (Figures 3 and 5) position all nodes along a line 

either on the x- or y-axes at discrete distances determined by the widths of the 

rows and columns, which constrains how distance can be used to represent 

similarity between nodes. For example, a node can have an identical distance to a 

maximum of two nodes (one on either side), making it more difficult to 
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accurately represent and comprehend complex inter- and intra-cluster 

relationships. Therefore, while heatmaps are useful for verifying patterns once 

identified, bipartite networks laid out in a Euclidean plane are more effective to 

support the process of discovery and inference of inter-node associations 

between and within clusters [35].

2. Representation of Subjects and Variables Using Two Sets of Nodes. Because 

we represented subjects and variables simultaneously in the network, they helped 

to comprehend inter and intra cluster relationships. This feature facilitated the 

inspection of which subject clusters were or were not strongly associated with 

which methylation clusters enabling inference of pathways.

3. Representation of Subject Type Using Node Color. Because we chose to 

distinguish cases and controls in the case-control network by coloring them red 

and green respectively, they enabled rapid detection of the composition of 
clusters. This feature resulted in the identification of a case-dominated cluster, 

and a control-dominated cluster in the case-control network.

4. Representation of Variable Values Using Continuous Edge Thickness. 
Because we chose to represent variable values as edge thicknesses, they enabled 

comprehension of the strength of associations within and across clusters. This 

feature enabled detection of hypo- and hypermethylation associations within and 

between clusters in both networks.

While each of the above representational features made specific contributions to the 

comprehension of the data, it is their simultaneous visualization which enabled the complex 

inference of the underlying biology. Therefore, while the network topology with two subject 

and two methylation site clusters looked deceptively simple, the combination of the above 

four representational features precipitated a plausible hypothesis of mechanisms and 

heterogeneity in PTB. Such a result would be difficult to derive if we had used only 

supervised methods such as univariable significance of the methylation sites, or by just 

analyzing a textual description of node membership in subject and methylation clusters.

The above process of comprehending visual patterns and inferring their meaning is based on 

well-known cognitive processes related to information visualization. Cognitively, 

visualizations such as subject-variable networks map multiple data elements to externalized 
visual representations. When this mapping to visual elements is aligned with cognitive 

principles [30, 56–59], the resulting visual representation enables comprehension of 

complex patterns because of two key cognitive processes: (1) The visual representation 

leverages the massively parallel architecture of the human visual system consisting of the 

eye and the visual cortex of the brain [56]. This parallel cognitive architecture enables the 

rapid comprehension of multiple graphical elements simultaneously, which often leads to 

insights about relationships in complex data such as similarities, trends, and anomalies [30]. 

(2) The externalized representation reduces working memory load needed to process the data 

[60], enabling the freed-up working memory to be used for higher-level processing such as 

the interpretation of patterns, requiring access of domain-knowledge in long-term memory.

Bhavnani et al. Page 13

J Perinat Med. Author manuscript; available in PMC 2019 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, while visualizations enable rapid comprehension of associations that are made 

explicit by the nodes, edges, and their properties, they also enable detection of implicit 
associations [61] resulting from the layout in an Euclidean plane including emergent 

multivariable patterns such as clusters. As demonstrated in the current analyses, these 

cognitive advantages conferred by appropriately designed subject-variable networks are 

critical for projects at early stages of discovery (such as the epigenetic analysis of PTB) as 

they enable complex reasoning about subjects and the variables. Often this process results in 

the discovery of novel multivariable patterns in the data [35–40], such as heterogeneity 

based on methylation differences, and hypotheses for their underlying mechanisms, an early 

but crucial step in the design of targeted interventions.

Conclusion

Although several studies have analyzed epigenetic changes in preterm, little is known about 

the mechanisms that trigger PTB. Here we demonstrated how bipartite networks revealed an 

inverse symmetrical relationship in the methylation profiles between PTB cases and 

controls, resulting in a complex but comprehensible hypothesis of the mechanisms 

precipitating PTB. Furthermore, the analysis revealed statistically significant heterogeneity 

within the methylation profiles of PTB cases, which is an early step towards the design of 

targeted interventions, a critical goal of precision medicine.

Although we don’t yet know how methylation affects the function of genes involved in PTB, 

our analysis suggests distinct mechanisms of PTB that involve the presence or absence of 

senescence. These pathways are most likely mediated by exposure to different risks which 

can impact methylation patterns leading to PTB. Bipartite network analyses therefore 

enabled us to derive data-driven hypotheses of pathways in PTB, which should be tested in 

future functional methylation studies. Our current research focuses on extending the subject-

variable network analysis approach to process big datasets consisting of thousands of 

subjects and variables.

The limitation of this study is that our samples were derived from cord blood, and therefore 

the data cannot be used to establish causation based on fetal DNA methylation patterns at 

the time of birth. Accordingly, in our future work we will use maternal samples and 

prospective samples through which we will test the validity of our approach to further 

delineate cause and effect in patient subgroups, with the ultimate goal of developing targeted 

interventions to reduce the risk of preterm deliveries.
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Figure 1. 
The distinction between a unipartite network (A), a bipartite network (B), and how the latter 

can be used to identify clusters of subjects and strongly associated methylation sites (C).
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Figure 2. 
Bipartite network visualization of 50 subjects (22 cases, 28 controls) and methylation sites. 

The network revealed a significant separation between cases and controls, and the 

methylation sites that were strongly associated with each cluster. The blue shapes and 

dashed ovals denote cluster boundaries of subjects and methylation sites respectively 

identified through agglomerative hierarchical clustering.

Bhavnani et al. Page 20

J Perinat Med. Author manuscript; available in PMC 2019 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Heatmap with dendrograms of 50 subjects and 10 methylation sites generated through 

agglomerative hierarchical clustering. The largest break in the dendrogram is shown with the 

blue dotted lines, resulting in two clusters of methylation sites, and two clusters of subjects.
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Figure 4. 
Bipartite network visualization of 22 cases and 10 methylation sites. The network revealed 

two clusters of cases, and the methylation sites that were strongly associated with each. The 

dashed ovals denote boundaries of case clusters identified through agglomerative 

hierarchical clustering.
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Figure 5. 
Heatmap with dendrograms of 22 cases and 10 methylation sites generated through 

agglomerative hierarchical clustering. The largest break in the dendrogram is shown with the 

blue dotted lines, resulting in two clusters of methylation sites, and two clusters of cases.
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