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Classic clinical and epidemiologic studies have long ago established the presence of an 

inverse relationship between HDL-C levels and CVD risk, and thus it was assumed that 

measures that increase HDL-C levels would afford protection against atherosclerosis-based 

CVD1,2. However, trials of drugs such as cholesterol ester transfer protein (CETP) inhibitors 

and niacin have failed to provide evidence of cardiovascular benefit in patients on statin 

therapy, indicating that HDL-C increases from 30% up to 120% are not able to modify risk 

when LDL is kept very low. Moreover, genetic polymorphisms that associate with increased 

HDL-C do not predict reduced CVD risk3–5, and isolated low HDL does not predict risk 

when LDL and triglyceride levels are completely normal6. Therefore, while a causal role for 

HDL in arterial homeostasis is still widely accepted, current discussions highlight the 

necessity to identify novel HDL metrics linked to CVD risk and targetable for diagnostic or 

therapeutic development.

Despite the spectacular collapse of the HDL-C hypothesis and the paucity of alternative 

strategies in the clinical space, the field as a whole has experienced a groundbreaking shift in 

the understanding of the basic biology and metabolism of HDL. Advances have been made 

in the areas of HDL functionality as it relates to particle heterogeneity, biogenesis, and 

variations in lipid and protein cargo.

The central functions of HDL are believed to be its ability to quell local oxidative and 

inflammatory events and to accept excess cholesterol from cells via specific efflux 

mechanisms mediated by trans-membrane transporters such as ABCA1, ABCG1 and SR-

B1. The ABCA1 pathway is important in humans, as lipid-laden macrophages–abundant in 

atherosclerotic plaques–will turn on ABCA1 gene transcription in an effort to maximize 

sterol losses. Our current understanding of sterol efflux implicates both lipid-poor apoAI and 

very small HDL particles (HDL3) as main cholesterol acceptors from the ABCA1 

transporter 7. Interestingly, the sterol efflux function of HDL were found to correlate with 
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both prevalence and incidence of CVD, independently of HDL-C and apoAI levels8, 9,10. 

However, these findings were challenged by a case-control study where increased sterol 

efflux activity was actually associated with increased, not decreased, risk of CVD events11. 

Moreover, sterol efflux measured from 3H−cholesterol labeled macrophages does not always 

reflect the functional efficiency of HDL in reverse cholesterol transport in vivo12. In 

addition, the methodology has not converged yet toward standardization, as the different 

macrophage lines used (rat J774, murine RAW264, and human THP-1) likely explain the 

inconsistent results between research groups, since sterol efflux is regulated by multiple cell-

specific factors such as activation of transcription factors (i.e., SREBP and LXR), synthesis 

and secretion of apoE, and expression of other membrane lipid transporters. Even with all 

these caveats, the sterol efflux method is driving the progress in the field, whereas the anti-

inflammatory and antioxidant functions are yet to be tested and validated in clinical studies 

for CVD risk prediction.

The plasma concentration of HDL particles (HDL-P) and their size distribution can be 

reliably measured using different approaches to identify subspecies with unique functional 

and compositional profiles 13. Currently there is no consensus on the relative value of the 

different methods and on the number, concentration, functional status, and predictive power 

of the different HDL sub-particles. Further, the classic linear view of HDL evolution from 

discoidal, lipid-poor nascent particles to spherical, cholesterol- and phospholipid-rich 

particles packed with a combination of over 100 different proteins has been recently 

challenged by the finding that HDL is secreted directly from hepatocytes in four distinct 

sizes, with little interchange between them, and representing all of the plasma HDL sub-

particle pools14. Efforts to identify the proteomic, lipidomic, and functional fingerprints of 

these subspecies are of critical importance and may open paths to novel pharmacologic 

targets.

However, ongoing attempts to link size and function and to identify the HDL subspecies 

with the best cardio-protective qualities have yet to provide credible leads. Evidence for a 

functional specialization of HDL subspecies is not solid, as smaller particles appear to be 

most efficient at sterol efflux in one study 7 but not in others 12,15.

The elaborate and elegant study by Didichenko et al. in the current issue of the Journal 
describes for the first time a divergence in specific HDL functions according to HDL particle 

size16. The study was carried out to understand how infusion of CSL112, a discoidal particle 

made of human apoAI and phospholipids, which is being developed as treatment for acute 

coronary syndromes, increases both the plasma concentration of small HDL particles and the 

sterol efflux capacity of plasma. Using plasma samples of healthy subjects enrolled in a 

phase I clinical trial of CSL112 infusion, the authors demonstrate the spontaneous fusion of 

CSL112 with native HDL to generate particles of three sizes (lipid poor, small, and large) 

and with size-specific functions. Lipid poor and small HDL displayed both high capacity for 

ABCA1-mediated cholesterol efflux and strong anti-inflammatory action, whereas the larger 

particles showed stronger antioxidant function. This study provides a novel perspective as it 

suggests that subspecies of HDL may be involved in different functions, and thus the right 

mix of multiple HDL particle sizes may be most desirable to maximize cardio-protective 

benefits. Most importantly, the study offers an approach to generate these particles in vivo. 
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One can envision that a possible next step in the development of HDL therapeutics would 

aim at enriching a specific HDL pool to correct a specific dysfunction, such as reduced 

sterol efflux or reduced anti-inflammatory capacity, a rather complex task due to the 

compositional diversity of HDL particles.

The HDL mass is equally distributed between lipid and protein cargo. The HDL lipidome is 

composed mainly of phospholipids, cholesteryl esters, triglycerides and free cholesterol, for 

a total of over 200 individual lipid species in normolipidemic subjects. Some lipid 

components, such as phospholipids, sphingomyelin, and free cholesterol have already been 

investigated as modulators of HDL functions such as sterol efflux, vasodilation, and control 

of oxidation and inflammation17. While phospholipids are linked to SR-B1-mediated sterol 

efflux, less is known about the lipids that modulate ABCA1-mediated sterol efflux. Likely, 

the protein cargo also associates with HDL function and its composition is affected by 

factors such as diet, drug treatment, and inflammatory activation. Experimentally, both a 

high-fat diet and induction of acute inflammation by subcutaneous injection of silver nitrate 

lead to enrichment of HDL particles in acute phase proteins such as PON1, SAA1, and 

SAA2 with subsequent reduction in ABCA1-mediated sterol efflux capacity12,18. HDL 

isolated from statin-treated patients with cardiovascular disease contain increased levels of 

apoE19 and fenofibrate treatment enriches the HDL proteome of diabetic subjects in apoC 

proteins and PON120. Altogether, evidence suggests that the HDL proteome is dynamic and 

responds to metabolic changes, lipid modulating therapy, and disease development.

To define the intricate relationship between HDL protein and lipid cargo, function, and 

particle size, the compositional signatures of HDL subparticle pools need to be defined. 

Studies examining the proteomic and lipid remodeling of HDL subspecies in response to 

drug treatment, diet, and disease are needed to identify the cardio-protective HDL sub-

particles hiding among the vast population of HDL particles with no role or even possibly a 

negative role in cardiovascular health. Bringing this concept back to the subject of this 

editorial, identification of the proteomic signatures of the HDL subspecies produced by 

fusion with CSL112 will provide clues on the complex architecture of the HDL 

compartment and the structural underpinning of novel metrics such as function, particle 

concentration, lipidome, and proteome.

Plasma lipids and lipoproteins are complex but highly heritable traits. The traditional metric 

of plasma HDL cholesterol (HDL-C) levels has a heritability estimate between 40% and 

60%. The hereditary basis of novel HDL metrics, such as function, particle distribution, and 

protein or lipid cargo is unknown. Evidence from five inbred mouse strains suggests that 

sterol efflux function and proteome are genetically regulated, and that the HDL proteome is 

inherited and predicts the genetic lineage21. Further efforts are needed to identify the 

heritability of novel HDL metrics independent of HDL-C in humans. Since HDL-C levels 

are not strongly associated with measures of HDL function, we predict that the gene loci 

controlling HDL function will be different from those regulating plasma HDL-C levels. 

Therefore, efforts to map quantitative trait loci for novel HDL metrics are extremely 

valuable to the field and likely to bring about the anticipated revolution of our diagnostic and 

management approach to patient with low HDL, the patient with severe combined 
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dyslipidemia, the patient with unexplained family history of CVD, and the patient with early 

and progressive coronary ischemia.

The intriguing complexity and clarity of the results obtained with the infusion of CSL112, a 

tiny recombinant HDL, opens the path to a better understanding of the structure-function 

correlates of HDL sub-particles, and encourages the further use of new generation HDL 

metrics as fertile ground to identify additional diagnostic and therapeutic checkpoints in the 

HDL pathway. The Figure summarizes the known and suspected interactions between 

traditional and novel HDL metrics and highlights potential therapeutic targets. The 

relationship between genetic regulation of HDL protein, HDL biogenesis, and plasma HDL-

C levels is well described. For example, mutations in ABCA1, a gene involved in HDL 

biogenesis, reduce cholesterol efflux from cells and nearly abolish plasma HDL to cause the 

inherited condition called Tangier disease. The metabolic clearance of HDL occurs primarily 

by SR-B1-mediated hepatic uptake, the end step of reverse cholesterol transport. On the 

other hand, the molecular pathways linking HDL biogenesis to function, particle size 

variation, and cargo signature are not well defined and their genetic control is unknown.

It is possible that inheritance controls the production of HDL particles of a certain size and 

protein and lipid composition and with different sterol efflux capacities. Acquired factors 

may then rearrange the distribution of these particles and either increase or decrease 

genetically determined functionality. We lack a model for the assembly of HDL protein and 

lipid cargo and know very little about its genetic regulation. Characterization of the genetic 

pathways regulating HDL function, composition, and particle sizes will bring us closer to 

the next breakthrough in this troubled but still promising field.
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Figure 1. 
Overview of the regulation and interaction of traditional and novel HDL measures. Dotted 

lines: Suspected interactions. Straight lines: Established interactions; Red box: Possible 

targets for diagnostic or therapeutic development.
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