Skip to main content
. Author manuscript; available in PMC: 2018 May 28.
Published in final edited form as: J Chem Inf Model. 2017 Oct 13;57(11):2657–2671. doi: 10.1021/acs.jcim.7b00216

Table 3.

The performance of the predictive network models by three independent external validation network sets.

Network sets Substructure P (L=20) R (L=20) eP (L=20) eR (L=20) AUC
Validation set A FP4 0.021 0.126 3.62 4.73 0.671
KR 0.023 0.152 3.88 5.71 0.661
MACCS 0.020 0.122 3.45 4.57 0.667
PubChem 0.020 0.119 3.36 4.46 0.668
Validation set B FP4 0.011 0.083 2.77 3.11 0.664
KR 0.014 0.128 3.35 4.82 0.654
MACCS 0.010 0.069 2.35 2.60 0.659
PubChem 0.010 0.071 2.45 2.68 0.668
Validation set C FP4 0.043 0.119 3.37 4.45 0.669
KR 0.043 0.113 3.37 4.24 0.670
MACCS 0.043 0.117 3.37 4.40 0.669
PubChem 0.042 0.112 3.27 4.19 0.672

P: precision, R: recall, eP: precision enhancement, eR: recall enhancement, AUC: area under the receiver operating characteristic curve. L: the length of the newly predicted target list for each natural product.