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Vegetables and fruits contain non-provitamin A (lycopene, lutein, and zeaxanthin) and provitamin A (β-carotene,
β-cryptoxanthin, and α-carotene) carotenoids. Within these compounds, β-carotene has been extensively studied for its health
benefits, but its supplementation at doses higher than recommended intakes induces adverse effects. β-Carotene is converted to
retinoic acid (RA), a well-known immunomodulatory molecule. Human interventions suggest that β-carotene and lycopene at
pharmacological doses affect immune functions after a depletion period of low carotenoid diet. However, these effects appear
unrelated to carotenoids and retinol levels in plasma. Local production of RA in the gut-associated lymphoid tissue, as well as
the dependency of RA-induced effects on local inflammation, suggests that personalized nutrition/supplementation should be
considered in the future. On the other hand, the differential effect of RA and lycopene on transforming growth factor-beta
suggests that lycopene supplementation could improve immune functions without increasing risk for cancers. However, such
preclinical evidence must be confirmed in human interventions before any recommendations can be made.

1. Introduction

Major dietary non-provitamin A (lycopene, lutein, and
zeaxanthin) and provitamin A (β-carotene, β-cryptox-
anthin, and α-carotene) carotenoids have different biological
activities and efficacy, depending on their food content,
dietary intake, bioavailability, and bioconversion [1]. The
intestine and liver are crucial organs for vitamin A uptake
and liver accounts for the majority of retinoid stores [2, 3].
The provitamin A carotenoid, β-carotene, is a significant
source of vitamin A in the diet. β-Carotene ′ oxygenase-1
(BCO1) and β-carotene 9′,10′ oxygenase-2 (BCO2) are the
two known carotenoid cleavage enzymes in humans [4]. In
rats, both BCO1 and BCO2 are highly expressed in the liver
and intestine, localized in hepatocytes and mucosal epithe-
lium, and BCO1 is also expressed in hepatic stellate cells

[4]. Both enzymes have provitamin A and non-provitamin
A as preferential substrates, respectively, and genetic varia-
tions of these enzymes have been suggested within the factors
affecting carotenoid status in humans [5, 6].

β-Carotene is known as an antioxidant, but its prooxi-
dant activity in some conditions accounts for its adverse
effects [6]. In particular, β-carotene failed to prevent can-
cer in two large clinical trials: the Alpha-Tocopherol,
Beta-Carotene Cancer Prevention Study (ATBC Study; α-
tocopherol 50mg and β-carotene 20mg/d) [7] and the
Beta-Carotene and Retinol Efficacy Trial (CARET; β-caro-
tene 30mg/d and retinyl palmitate 25,000 IU) [8]. Moreover,
β-carotene supplementation increased lung cancer risk in
smokers [9, 10] and the overall mortality [11, 12]. On the
other hand, a safer profile for non-provitamin A carotenoids
(up to 20mg/d for lutein and 75mg/d for lycopene) has been
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suggested [13]. Lycopene has been extensively studied [14],
and encapsulation has been suggested to improve bioavail-
ability for therapeutic use in many conditions, including
immune-mediated diseases [15].

Retinol bound to the retinol-binding protein (RBP) is a
source of retinoic acid (RA) [2, 16], and the latter is metabo-
lized by cytochrome P450 26 (CYP26) [3]. After uptake,
retinol can be oxidized by ubiquitously expressed alcohol
dehydrogenases (ADH) to form retinaldehyde (retinal)
which is then metabolized into RA by retinaldehyde/alde-
hyde dehydrogenases (ALDH) in the liver [3, 17, 18]. ALDH
are also expressed in the gut-associated lymphoid tissue
(GALT) [3]. Although RA is the major active metabolite
affecting the immune system, non-provitamin A carotenoids
are active in immune modulation [19]. Furthermore, it has
been reported that BCO1 could yield acycloretinal from lyco-
pene [20] and that lycopene-derived BCO2metabolites could
mediate in some circumstance signals similar to that induced
by retinoic acid receptor (RAR) ligands [21].

In this review, we aim to discuss the potential role of
carotenoids as immunomodulators, on the light of their
intake and safety.

2. Carotenoid Sources

The major carotenoids present in food products are β-caro-
tene, α-carotene, β-cryptoxanthin, lycopene, lutein, and zea-
xanthin [22] (Table 1). With the exception of egg yolk rich in
lutein, the main sources of these compounds in human diet
are of plant origin; they are widely distributed in the plastids
of flowers, leaves, seeds, and roots. Orange, yellow- and
green-colored vegetables are the rich sources; lycopene is
found abundantly in tomatoes and their related products
and is also present in fruits, such as watermelon and pink
grapefruit [23]. Citrus fruits, papaya, and peaches contain
significant levels of β-cryptoxanthin. The xanthophylls lutein
and zeaxanthin are mainly found in leafy green vegetables,
such as spinach or broccoli [24]. Likewise, an emerging
source of carotenoids is the by-products of industry process-
ing of fruits and vegetables [25].

Contents of carotenoids vary widely because their syn-
theses are greatly influenced by a wide variety of factors,
including climate, soil, cultivar, and cultivation [26]. Further,
their profile in berries changes with ripening stage, with
higher levels of α-carotene and lycopene in advanced ripen-
ing [27]. In addition to preharvest factors, their contents
can be affected by all treatments during postharvest because
their highly unsaturated structures with conjugated double
bonds make them very susceptible to oxidative reactions
and dimerization. For example, cutting of vegetables
increases the exposure to oxygen and releases enzymes from
the cell vacuoles of plant parenchyma, which further pro-
mote their degradation. Excessive exposure to sunlight also
decreases the content of carotenoids in harvested products
[28]. Degradation of carotenoids can be diminished by stor-
age at low temperatures, protection from light (packaged in
dark containers), or package under modified atmospheres.
However, the impact of thermal treatments on carotenoids
appearedmixed. For example, nonthermally treated tomatoes

had higher amounts of carotenoids compared to thermally
treated ones and similar results were observed with carrot
[29]. However, home culinary techniques, such as boiling in
hot water, cause partial degradation and isomerization of
both β-carotene and lycopene. Current industrial processing
techniques as high-pressure treatment tend to preserve or
even increase the content of carotenoids [30].

3. Dietary Intake, RDA, and Retinol Equivalents

Dietary data on consumption of carotenoids were in the
past usually expressed as β-carotene, β-carotene equiva-
lents, or retinol equivalents, and only more recently, carot-
enoid food composition databases have been developed.
There is a general consensus regarding that the contribu-
tion of dietary carotenoids from food sources depends
not only on their contents in foods but also on the fre-
quency of their consumptions. Estimated intakes of carot-
enoids vary widely on individual, regional, and national
levels, and significant seasonal variations have also been
reported in some countries [31]. Furthermore, assessment
of carotenoid intake is a complex matter mainly because
of the high variability within and between subjects, the
degree of imprecision in data collection, and discrepancies
in carotenoid food composition databases, which reflect in
different intakes of carotenoids in the literature.

Studies on dietary carotenoids are few, and the main
results of one of the few comparative studies are presented
in Table 2 [32], where the assessment of carotenoid intakes
was carried out by a Food Frequency Questionnaire (FFQ)
at the individual level of five countries. It should be noticed
that the population in this study was a group in a determined
area of each of the five participant countries (ca. per country).
Thus, subjects might not necessarily be representative of the
overall population although it was assumed that they
followed a typical dietary pattern of their countries. More-
over, it should not be ignored that FFQ overestimates carot-
enoid intake [33], especially of lutein and zeaxanthin when
comparing with 3-day food records. Table 2 summarizes
carotenoid intake in some countries from the representative
literature with a larger sample size. The total carotenoid
intakes range between 5.42 and 15.44mg/d; however, com-
parisons should be considered with caution since, as shown,
sample size and methodology differ between studies.

In a review from Maiani et al. [1], a calculation of the rel-
ative contribution of each carotenoid to total carotenoid
intake, according to FAO Food Balance Sheet data from sev-
eral European countries, was performed. Lutein + zeaxanthin
and β-carotene were those most frequently found in Euro-
pean diet (48% and 33%, respectively, on a total carotenoid
intake of 11.8mg/d). No formal dietary recommendation
for carotenoids has yet been established, and the European
Food Safety Authority (2006) had decided that the existing
evidence was insufficient to establish a recommended dietary
allowance (RDA) or adequate intake (AI) for β-carotene and
other carotenoids [34]. In most European countries, the rec-
ommended intake was established based on the assumption
that 4.8mg β-carotene is needed to meet the requirement
of 800 micrograms of vitamin A (conversion factor 6). In
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other countries, for example in USA, a conversion factor of
12 for β-carotene and 24 for other carotenoids such as β-
cryptoxanthin was applied [35]. For very complex matrices
(i.e., spinach), human studies have revealed an even higher
conversion factor for β-carotene such as 1 : 21 for a fruit/veg-
etable mix or 1 : 26 for vegetables [36]. Conclusions of many
epidemiological studies revealed that a plasma level of
0.4μmol/L β-carotene should be aimed at in order to benefit
from the preventive health potential. This concentration can
be achieved with consumption of 2–4mg/d β-carotene [37],
far below the supplemented dose used in the ATBC study
[7] and the CARET study [8], in which an increased risk of
lung cancer was noted in heavy smokers taking high doses
(5 to 10 times the dose previously indicated of 2–4mg/d) of
β-carotene for long periods.

Consumption of foods rich in β-carotene is highly rec-
ommended since it is associated with a lower risk of
chronic diseases and to ensure the intake of a sufficient
amount of antioxidants. Healthy diet, which realistically
contains 100–500 g/d of fruit and vegetables, shall contain
a high proportion of carotenoid-rich food. On the other
hand, proposed intake recommendations for some non-
provitamin A carotenoids are 10–20mg/d for lutein and
5.7–15mg/d for lycopene [38].

4. Bioavailability and Accessibility

Bioavailability of dietary xanthophylls is varied widely
between individuals and subject to the influence of many
intrinsic and extrinsic factors [51]. Bioavailability is defined
as the portion of the ingested nutrients that are absorbed in
the small intestine, enter in the circulation, and become avail-
able for utilization or storage in organs [52–54]. Before nutri-
ents in foods, beverages, or nutraceuticals are absorbed in the
intestine, they must be made themselves ready for the trans-
portation from the chyme in the lumen to enterocytes, a pro-
cess defined as bioaccessibility. In the case of lipid-soluble
carotenoids, ingested carotenoids must be first released from
the food matrix, transferred into lipid emulsion, incorpo-
rated into the micelles containing pancreatic lipases and bile
salts, and then available for transport into enterocytes
[54–56]. The micelles act as a polar carrier from the hydro-
philic chyme to the mucosal cell surface for the uptake
through passive diffusion [57]. The factors influencing
carotenoid bioaccessibility and bioavailability can be cate-
gorized to carotenoid-related and unrelated groups. The
carotenoid-related includes dosage, chemical structure (iso-
meric forms), and interactions between carotenoids, and
the unrelated includes cooking, nutrient composition of co-
consumed foods, particle size of digested foods, biometrics
of consumers, efficiency of micellarization, and transport
from the enterocytes to the lymph system [36, 57–61]. Thus,
carotenoid contents in foods may not be well correlated with
their bioavailability and the ultimate bioefficacy because of
the interference of negative effectors [62]. Among the unre-
lated factors, presence of dietary fat, heat treatment, and
reduced particle size have a noticeable positive effect whereas
dietary fibers and proteins have a negative effect [62].
Mechanical processing, including chopping and chewing,

help reduce particle size and release carotenoids from chloro-
plasts and tissue for the bioaccessibility [63–65]. The
amounts of naturally occurring lipids are rather low in most
carotenoid-rich fruits and vegetables so that 3–5 g of fat
intake per day is essential for the optimal absorption of carot-
enoids [66, 67]. Further, the presence of dietary fats, particu-
larly long-chain fatty acids, for example, oleic acid, is more
beneficial for the absorption of nonpolar carotenoids (caro-
tenes) than that of polar ones (xanthophylls) [62, 68–70]
because polar carotenoids can be more easily transferred
from emulsified lipid to micelles [71]. Dietary fibers, the
principle components of plant foods, compromise carotenoid
release from food matrixes, and both fibers and proteins
inhibit the incorporation of carotenoids into the micelles
[60, 72]. While heating during cooking can degrade most
nutrients in foods, such a treatment increases the bioavail-
ability of certain nutrients, such as lycopene [73]. Therefore,
understanding factors influencing bioaccessibility and bio-
availability of carotenoids is crucial to achieving their ulti-
mate bioefficacy.

5. Encapsulation

Nutrient bioavailability precedes its bioactivity at target
tissues. In order to obtain the maximum bioefficacy of
any given nutrients whose bioaccessibility and bioavailabil-
ity are not satisfactory, a number of strategies are sought
for their improvements. For example, encapsulation with
food grade or related Generally Recognized As Safe
(GRAS) materials has emerged as a novel strategy to
improve the bioavailability and bioactivity of phytonutri-
ents, including carotenoids. This encapsulation technology
can include, but not limited to, microemulsions, matrix
systems, solid dispersions, reassembled proteins, cross-
linked polysaccharides, and liposomes [74–81]. The encap-
sulation, such as liposomes and emulsions, can stabilize
carotenoids from possible degradation in the harsh gastro-
intestinal environment [82]. Nanoencapsulation is defined
as a technology involving the formation of active loaded
particles with diameters ranging from 1 to 1000 nm [83].
Particularly, polymeric nanoencapsulation has been
adopted as one of preferred methods due to its higher
loading capacity and better stability [84–86] and has been
proven effective to augment bioavailability of carotenoids.
For example, in a feeding study with male Swiss albino
mice, Arunkumar et al. [87] reported that lutein nanoen-
capsulated by chitosan triphosphate was accumulated in
a larger concentration in plasma, liver, and eyes as com-
pared to the control. Furthermore, using an in vitro
Caco-2 cell model, Yi et al. [88] found that solid lipid
nanoentrapment significantly improved cellular uptake of
β-carotene. Vishwanathan et al. [89] found in a small clin-
ical trial that lutein supplemented in a stable hydrophilic
nanoemulsion was 1.3-fold more bioavailable as evidenced
in its serum status compared to lutein delivered in a pill.
Thus, encapsulation can be a promising technology to
enhance carotenoid bioaccessibility and bioavailability
and to navigate precise delivery to target tissues such as
eyes, brain, or/and skin for the maximum health benefits.
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However, clinical data supporting their applications remain
largely lacking.

6. Safety and Efficacy of Carotenoids

It is well known that an excess of retinoids induces terato-
genic effects [90, 91] and affects xenobiotic metabolism
[92]. Although β-carotene is not teratogenic [9], high doses
of β-carotene and vitamin E can be prooxidant and toxic
[93, 94] and increase cancer risk. In particular, despite that
high intake of β-carotene reduces the risk of many cancers
(Table 3), the effect on breast cancer risk depends on estrogen
receptor (ER) and progesterone receptor (PR) statuses [95]
(Table 3). In general, the relationships between carotenoids
and cancer risk depend on type of carotenoids and site of
cancer, but the supplementation never confirms the sugges-
tions from intake data (Table 3). Moreover, the increased
risk of lung cancer after β-carotene supplementation had
been reported in smokers and people drinking ≥11 g etha-
nol/d (ATBC study) [7]. The ATBC (20mg/d) and CARET
(30mg/d) studies also showed increased risk for intracerebral
hemorrhage [96], cardiovascular diseases [97, 98], and hyper-
lipidemia (in asbestos-exposed subjects) [98]. On the con-
trary, lycopene supplementation decreased LDL cholesterol
[99] and blood pressure [100], at doses of ≥25 and
> 12mg/d, respectively, and lycopene has been suggested
for preventing the toxic effects of antineoplastic drugs [101].

The overall mortality increased after β-carotene supple-
mentation [102–104] at a dose of >9.6mg/d [104]. On the
contrary, for non-provitamin A carotenoids, an Observed
Safe Level (OSL) of 20mg/d for lutein and 75mg/d for lyco-
pene [13] has been suggested and an acceptable daily intake
(ADI) of 53mg/d has been proposed for zeaxanthin [105].
The positive effect of lutein and zeaxanthin on age-related
macular degeneration is well known [106].

In the ATBC study, an induction of cytochrome P450
enzymes (CYP450) in male smokers supplemented with
β-carotene has been reported [10]. Since CYP450 is the
primary metabolizer of xenobiotics in humans, interac-
tions between medication use and dietary supplements
can occur. In this context, β-carotene supplementation
(25,000 IU twice daily, 28 days) did not affect pharmaco-
kinetics of nelfinavir and its active metabolite M8 in HIV-1-
infected individuals [107], whereas a mixed supplement
(400 IU/d of vitamin E, 500mg/d of vitamin C, and 6mg/d
of β-carotene twice daily, 6 months) decreased cyclosporine
A in renal transplant recipients [108]. Therefore, potential
nutraceutical-drug interactions must be evaluated on the
basis of the pharmacokinetics. Furthermore, interactions
between alcohol and RA precursors are well documented
and the combination of β-carotene with ethanol results in
hepatotoxicity [109].

In particular, competitive inhibition of ADH could
account for this adversity [110] and for the less adverse effects
of non-provitamin A carotenoids (Table 3 and Table 4).

In the CARET study, β-carotene increased from 17 to
210μg/dL after 4 months of supplementation [111], whereas
circulating lycopene concentrations between 2.17 and
85 μg/dL were inversely associated with prostate cancer risk

[112]. It shall be noted that such an association did not exist
at concentrations greater than 85 μg/dL [112]. It has been
reported that circulating lycopene, rather than dietary lyco-
pene, decreases stroke risk [113]. In this context, dietary
guidance should consider upper limits for food-derived bio-
active substances [114]. Also, efficacy should be determined
in order to establish a therapeutic index of non-nutrient phy-
tochemicals in foods and beverages [115].

7. Carotenoids and the Immune System

It is widely recognized that vitamin A deficiency decreases
both humoral and cellular immune responses [16, 139] and
that RA regulates innate immune response [140]. Vitamin
A deficiency was associated with incidence of tuberculosis
in human immunodeficiency virus- (HIV-) negative subjects
[141] and in HIV-infected patients after antiretroviral ther-
apy [142]. In addition, carotenoid concentrations were
lower in tuberculosis cases before antiretroviral therapy
[142]. However, in the ATBC study, β-carotene (20mg/
d) increased the risk of pneumonia in those who had ini-
tiated smoking at 21 years or later age [143] and the inci-
dence of common cold in people undertaking strenuous
exercise [144]. On the other hand, vitamins (vitamin C
120mg, β-carotene 6mg, and α-tocopherol 15mg) with
zinc (20mg) and selenium (100μg) decreased the infec-
tious events in elderly subjects [145]. However, low levels
of vitamin A and carotenoids are associated not only with
immunodeficiency but also with inflammation and auto-
immunity and both systemic and GALT immune dysfunc-
tions [18]. Patients with rheumatoid arthritis [146, 147],
systemic lupus erythematosus [146], celiac disease [148],
and/or Crohn’s disease [149] had lower serum concentra-
tions of carotenoids [149], β-carotene [146, 147], and/or
retinol [146, 148]. Concerning non-provitamin A caroten-
oids, in the Third National Health and Nutrition Exami-
nation Survey (NHANES III), high serum lycopene
concentrations were associated with lower mortality in
patients with systemic lupus erythematosus [150].

Despite the potential concerted modulation of redox
and inflammatory status, in a review of studies that inves-
tigated the effect of supplementation with antioxidant-rich
foods or nutraceuticals on combined markers of redox and
inflammatory status in humans, overall improvement in both
markers of redox and inflammatory status was observed only
in 27 studies of the 88 studies analyzed and only 28.6% (2/7)
of the interventions with carrot, tomato, or lycopene-derived
tomato (Lyc-O-mato) improved at least one marker of redox
or inflammatory status [151]. Some serum inflammatory
cytokines, such as tumor necrosis factor- (TNF-) α and inter-
leukin- (IL-) 6, are also called adipomyokines [152] and are
not specific markers of immune function, whereas their
ex vivo production from peripheral blood mononuclear cells
can be an index of immune response.

Table 5 describes major findings of human intervention
studies [153–173] that investigated the effect of β-carotene,
lycopene, mixed supplements, or carotenoid-rich juices and
diet (fruits/vegetables) on immune function assays, including
the in vivo test of cell-mediated immune response delayed-
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type hypersensitivity (DTH) and/or ex vivo assays of innate
(i.e., natural killer (NK) activity and oxidative burst) and
adaptive immunity (i.e., lymphocyte proliferation and cyto-
kine production).

Increased levels of β-carotene [155, 156, 158–160, 163–
165, 167–169, 172], lycopene [159, 161, 162, 167–169, 172],
and lutein [167, 168] as well as of antioxidant vitamins (vita-
min E and/or C) in the case of mixed supplements (Table 5)
were found in response to treatment. Furthermore, increases
in plasma carotenoid from 2.03 to 3.05μM were reported
after 8 weeks of a consumption of 8 servings/d of vegetables
and fruits, including carrots, green beans, peas, broccoli,
zucchini, tomatoes, kohlrabi, Brussels sprouts, red cabbage,
cauliflower, spinach, lettuce, radishes, cucumbers, fennel,
apples, pears, kiwis, bananas, peaches, nectarines, cherries,
strawberries, and red currants [173].

β-Carotene inhibited the ultraviolet light- (UV-) induced
immunosuppression, evaluated with a DHT test in both
healthy and elderly subjects, whereas contrasting results were
reported on DHT when lycopene, β-carotene, or mixed sup-
plements were used without UV irradiation (Table 5).

Data from ex vivo markers of adaptive immunity do not
support an effect of lymphocytes’ proliferation, whereas
results concerning cytokine production are of difficult inter-
pretation due to the differences in the dosage and duration
of carotenoid supplementation and the use of carotenoid
depletion periods (Table 5). In a longitudinal study of four
periods, each lasting 2 weeks (weeks 1–2: low-carotenoid
period; weeks 3–4: 330mL tomato juice; weeks 5–6: 330mL
carrot juice; weeks 7–8 : 10 g dried spinach powder),
tomato juice consumption increased IL-2 and IL-4 secre-
tion compared with that at the end of the depletion
period, whereas no effects were observed after carrot juice
and spinach powder [170] (Table 5).

The same group [169] observed, in a crossover design,
that ex vivo IL-2 production increased after carrot juice
only in the arm depletion-carrot juice-depletion-tomato
juice. TNF-α increased after the first supplementation
(both juices) but only with carrot juice after the second

supplementation [169]. Moreover, IL-2 further increased
after supplementation and lymphocyte proliferation
increased in both groups after the end of the first juice
supplementation period despite that it did not change after
carrot or tomato juice consumption comparedwith that at the
end of the first low-carotenoid period [170]. Authors reported
that this immunomodulation could not be explained by
changes in the plasma carotenoid concentrations [170] and
that provitamin A effect can be excluded because plasma ret-
inol levels did not change after juice supplementation.

Concerning innate immunity, conflicting results were
reported for oxidative burst-induced reactive oxygen species
(ROS) production, whereas NK activity resulted to be
increased in the majority of the studies (Table 5). However,
the maximal increase in NK activity has been observed 1
week after juice supplementations had been stopped and
the increase in NK cell activity is not associated to increase
in NK percentage [157].

Accordingly, results on lymphocyte subsets are conflict-
ing. Despite that in older subjects β-carotene (30mg/d, 2
months) increased plasma β-carotene and the percentage of
NK, without affecting plasma retinol [174], many studies
did not observe any effect on lymphocyte subsets after β-car-
otene supplementation [153, 158, 159, 165–167, 172, 173,
175]. Moreover, in a randomized controlled trial (RCT), β-
carotene (30mg/d) supplementation for 3 months in subjects
with colonic polyps or colon cancers increased CD4 count
only in cancer patients who had a lower percentage of CD4
than in patients with polyps and in controls [176]. On the
other hand, β-carotene (60mg/d) increased CD4+ cell counts
only in patients with AIDS who have greater than 10 cells/
microliters [177]. In HIV patients, β-carotene (60mg/d, 3
months) increased NK, but not CD4 [178]. On the contrary,
others reported that in HIV patients, β-carotene (60mg/d
orally three times daily and at 1 month and 3 months) did
not change T cell subsets and NK, despite the increase in
serum β-carotene [175]. Contrasting results came from
supplementation with β-carotene in doses ranging from
60mg/d to 180mg/d on CD4 count in HIV patients

Table 4: Effects of lycopene and β-carotene supplementation on cardiometabolic outcomes.

Lycopene Lutein β-Carotene

Blood lipids
↓ Cholesterol [99]

↔ [135]
↑ Cholesterol and triglycerides (asbestos-exposed)

[98]↔ Cholesterol
[136]

Diabetes/insulin resistance
↔ Insulin resistance

[135]
↔ Type 2 diabetes [137]

Diabetic macrovascular disease ↔ [138]

Metabolic syndrome ↓ [135]

Blood pressure ↓ [100, 136] ↔ [135]

CVD and nonfatal myocardial
infarction

↑ [97, 98]

Stroke ↓ [113]

Intracerebral hemorrhage ↑ [96]

CV death ↑ [103]

↓: decrease; ↑: increase; ↔: no change; CVD: cardiovascular disease; CV: cardiovascular.
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[175, 177, 179–183], and data from a recent meta-analysis
does not support β-carotene supplementation for increased
CD4 cell count in patients with HIV [184]. However, GALT
resulted to be depleted of CD4 also after restoration of blood
CD4 by combined antiretroviral therapy (cART) [185]. In
particular, it has been reported that HIV patients had defec-
tive gut homing of C-C chemokine receptor 9 (CCR9) and
gut-homing β7 integrin on T helper cells producing IL-17
(Th17) [185]. In this context, it is well known that RA
induces the gut-homing molecules α4β7 integrin and CCR9
in B and T (CD4 and CD8) cells [2, 3, 139] (Figure 1). RA
can also induce α4β7 integrin and CCR9 on type 1 and 3
innate lymphoid cells (ILCs), but does not lead to CCR9
expression on type 2 ILCs [3, 18]. In terms of cytokine pro-
duction, ILC1, ILC2, and ILC3 cells are Th1-like, Th2-like,
and Th17-like cells, respectively [186] (Figure 1). Although
plasticity has been suggested between ILC2/ILC1 and
between ILC3/ILC1, ILC2 has been involved in asthma, lung

fibrosis, esophagitis, and atopic dermatitis; ILC1 in chronic
obstructive pulmonary disease and Crohn’s disease; and
ILC3 in psoriasis and obesity-associated inflammation
[187]. Furthermore, ILC1 and ILC3 induce the polarization
of inflammatory macrophages M1 [139]. Therefore, innate
immunity can affect local inflammation.

In addition to the enterocytes’ production, RA is also
produced by stromal cells in the lamina propria (LP) and
mesenteric lymph nodes (MLN), as well as by dendritic cells
(DC) and macrophages [3] in the GALT. DC are major RA
producers in LP, Peyer’s patch, and MLN [188] (Figure 1).
Preclinical studies suggest that the expression of gut-
homing molecules by DC precursors in marrow is regulated
by RA [18] (Figure 1). These cells migrate in the gut and
induce oral tolerance by inducing regulatory T cells (Treg)
[18]. RA induces also RA-producing CCR7+ DC that migrate
to the MLN and induce gut homing in T cells [18] (Figure 1).
RA production by DC is regulated by many local signals.
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Figure 1: Immunomodulatory effects of carotenoids and retinoic acid. α4β7: α4β7 integrin; APO10LA: Apo-10′-lycopenoic acid; ASC:
antibody-secreting cells; BCO2: β-carotene 9′,10′ oxygenase-2; CCR9: C-C chemokine receptor 9; CYP26: cytochrome P450 26; DC:
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nodes; NK: natural killer; RA: retinoic acid; TGF: transforming growth factor; Th: T helper; TLR: Toll-like receptor; TNF: tumor necrosis
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Microbial-derived signals, by Toll-like receptor (TLR) 2
and TLR5, as well as butyrate produced by commensal
bacteria, induce ALDH expression in DC [3, 18]. Besides
IL-4 from ILC2 and Th2 cells, transforming growth factor
beta (TGF-β) may also induce ALDH expression [3, 18].
The effects of RA on Th subsets depend on the local
microenvironment [2, 3, 139].

In physiological conditions, RA produced by DC
inhibits the differentiation of naïve T cells to Th17 cells
by blocking IL-6, IL-21, and IL-23 signaling in naïve T
cells [3]. RA-primed DC induce the production of the
anti-inflammatory cytokine IL-10 in Tregs [3], and RA
itself promotes TGF-β-mediated Treg conversion of naïve
T cells [2, 3] (Figure 1). TGF-β is also involved in IgA
class switching [189], and RA induces the expression of
α4β7-integrin and CCR9 on B cells and antibody-
secreting cells (ASC) [2, 189] (Figure 1). Furthermore,
DC-derived RA, plus IL-5, IL-6, or TLR signals, has a
primary role in the polarization of B cells in favor of
IgA-producing ASC, by inducing IgA class switching in
B cells [3, 18, 139, 189], and it has been suggested that
oral RA administration before vaccine can increase the
secretion of IgA into gut secretions [91]. Concerning pro-
vitamin A carotenoids, some preclinical studies suggest an
effect on humoral immunity (Figure 1). In mice, 50mg/kg
β-carotene for 21 d increased the concentrations of IgA
and the numbers of ASC in the jejunum [190]. Also, β-
cryptoxanthin (5–10mg/kg, 14 and 21 d) in rabbit
increased the blood CD4, IL-4, and humoral immunity
(IgG, IgM, and IgA) [191].

During inflammation, IL-1 enhances an IL-6-induced
shift of the Treg/Th17 balance towards Th17 cells [3], and
RA promotes, in the presence of IL-15, the secretion of IL-
12 and IL-23 by DC, inducing the IFN-γ-producing Th1
and Th17 cells, and enhances the IL-4-mediated induction
of Th2 [3, 18, 140]. On the other hand, in deficiency state,
there are marked increases of ILC2 cell proliferation and
cytokine (IL-4, IL-5, IL-6, IL-9, and IL-13) production, and,
at the same time, the proliferation and function of ILC3 sub-
set are suppressed [139].

It has been also suggested that RA has a dose-
dependent effect: at pharmacological or high doses
(10 nM and higher), RA inhibits Th17 and Th1 cells and
induces Treg, whereas at physiological low doses (1 nM),
RA favors Th17 cell differentiation [3, 16] (Figure 1).
Th17 is involved in Crohn’s disease [192], and the anti-
α4β7 integrin therapeutic antibody (vedolizumab) targets
gut-homing Th17 [193]. Although a reduced Treg/Th17
balance is often associated with inflammatory bowel dis-
ease, rheumatoid arthritis, systemic lupus erythematosus,
and multiple sclerosis, the potential role of vitamin A or
RA treatments is controversial [3].

IL-6 has a primary role in Th17 induction (Figure 1), and
a recent meta-analysis reported that tomato supplementation
was associated with significant reductions in IL-6 [136]. In a
study using an animal model of ulcerative colitis (dextran
sulfate sodium), β-carotene decreased colon IL-6 (5, 10,
and 20mg/kg), TNF-α (10 and 20mg/kg), and IL-17
(20mg/kg) and reduced plasma lipopolysaccharide [194].

On the other hand, intragastric lycopene administration
(5mg/kg [195]; 1, 2, and 4mg/kg [196]) reduced TNF-α,
IL-1β, IL-6, and/or TGF-β in a rat model of Alzheimer’s
disease and inhibited the β-amyloid-induced upregulation
of TLR4 in the choroid plexus [195]. The effect on TGF-
β has implication also in cancer (Figure 1). Lycopene
inhibited TGF-β-induced migration, invasion, and adhe-
sion activity of human liver adenocarcinoma SK-Hep-1
cells (2.5μM) [197] and decreased TGF-β1 mRNA levels
in fibroblasts [198]. On the contrary, the role of RA in
cancer is controversial.

Despite that RA is required for the expansion of tumor-
reactive CD8 T cells, the induction of the TGF-β-producing
Treg may inhibit tumor immunosurveillance [188]. In this
context, TGF-β reduced the expression of CYP26, inhibiting
the breakdown of RA [3] (Figure 1). Therefore, non-
provitamin A carotenoids could have anti-inflammatory
properties without compromising cancer immunosurveil-
lance and could not increase cancer risk as observed after
β-carotene supplementation (Table 3). However, although
the activity of β-carotene on immune function could be due
to its conversion to vitamin A and RA [19], it has been sug-
gested that apo-10′-lycopenoic acid (apo10LA), a BCO2
metabolite of lycopene, activates the RAR, reducing IL-6
and IL-1β [199]. In mice, APO10LA at 10mg/kg diet for 24
weeks reduced diethylnitrosamine-initiated, high-fat diet-
(HFD-) promoted hepatic tumorigenesis, lung tumor inci-
dence, and hepatic TNF-α and IL-6 concentrations [200].
Data from BCO2-knockout (BCO2-KO) and wild-type mice
suggest that IL-6 inhibition and chemoprevention could
depend on BCO2 expression [201]. Therefore, the role of
metabolites from non-provitamin A carotenoids deserves
future investigation.

8. Conclusion

From the reviewed data, the total carotenoid intakes range
from 5.42 to 15.44mg/d (Table 2) and the suggested recom-
mended intake range are 2–4.8mg/d for β-carotene [34, 37],
10–20mg/d for lutein, and 5.7–15mg/d for lycopene [38].
Higher intakes from foods rather than supplementation with
β-carotene have been associated with healthy effects (Table 3
and Table 4), whereas more promising results came from
lycopene supplementations (Table 4). However, the majority
of the available data came from epidemiological studies and
meta-analysis that include few RCT (<15) [99, 100, 136],
with a small sample size (<100), and no supplementation
data on cancer risk is available. Therefore, large-scale inter-
vention studies are warranted to substantiate the health
effects of lycopene.

Despite the antioxidant activity of β-carotene, the major
provitamin A carotenoid, its prooxidant activity in smokers
and alcohol drinkers justifies its adverse effects in doses rang-
ing from 20mg/d to 30mg/d [96–98, 143]. The overall mor-
tality increased after β-carotene supplementation at doses
>9.6mg/d [104], and potential food/drug or supplements/
alcohol interactions can be also taken into account due to
competition for and/or induction of metabolism enzymes
[10, 108–110].
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On the contrary, non-provitamin A carotenoids could
have a safer profile (20mg/d for lutein, 75mg/d for lycopene,
and 53mg/d for zeaxanthin) [13, 105] than β-carotene.
The latter is converted to RA with immunomodulatory
effects (Figure 1).

Human intervention studies that investigated the effects
of carotenoids on immune function involve β-carotene, lyco-
pene, or food sources and suggest that carotenoids affect
immune function only after a depletion period and at doses
(≥30 mg/d β-carotene and lycopene) (Table 5) higher than
recommended intakes. Some effects, unrelated to carotenoids
and retinol plasma levels, have been observed after the end of
the supplementation period. Furthermore, results on lym-
phocyte subsets are conflicting. In this context, local produc-
tion of RA can affect the GALT and lymphocyte gut homing.
The effect of RA on T-helper subsets depends on local micro-
environment and inflammatory status. In this context,
although RA is the major active metabolite affecting the
immune system, preclinical data suggest that lycopene
metabolites derived from BCO2 can modulate immune func-
tion by reducing the inflammatory cytokine IL-6 (Figure 1).
In this context, there is a growing interest in BCO2 metabo-
lites [202] and it is well known that based on genetic poly-
morphisms of BCO1 it is possible to cluster subjects as
strong responders or weak responders to carotenoids [203,
204]. BCO1 polymorphisms also affect non-provitamin A
carotenoids, such as lutein [205, 206] and lycopene [206].
This body of evidence suggests that personalized nutrition/
supplementation should be considered in the future.

On the other hand, preclinical studies suggest that the
differential effect of RA and lycopene on TGF-β can
account for the safer profile of lycopene in the context
of cancer incidence (Figure 1).

However, on the light of the different effects of RA at
physiological and pharmacological doses [3, 16] (Figure 1),
more studies are needed in order to establish the therapeutic
index for lycopene and caution must be taken to extrapolate
preclinical data to clinical uses. Furthermore, the majority of
human interventions report the effects of lycopene on
immune function administering mixed supplements or
tomato products with lycopene ranging from 15 to 47.1mg
(Table 5). These doses are near or over the higher value of
the suggested recommended intake (5.7–15mg/d) [38], rais-
ing a safety concern.

In conclusion, although lycopene supplementation for
immune-regulation seems more promising than β-carotene,
human studies with adequate power and duration are needed
in order to confirm this hypothesis.
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