Nazarahari et al. [8] |
2015 |
Wavelet + distances measures |
Multilayer perception |
Normal, PVC, APC, paced, LBBB, RBBB |
97.51 |
— |
— |
Martis et al. [9] |
2013 |
QRS, bispectrum, PCA |
SVM NN |
N, LBBB, RBBB, APC, VPC |
93.48 |
— |
— |
Afkhami et al. [10] |
2016 |
RR interval, HOS, GMM |
Decision trees, ensemble learnes |
AAMI, all classification in MIT-BIH |
99.7 |
100 |
100 |
Javadi et al. [11] |
2013 |
Wavelet + morpho-logical and temporal features |
Mixture of experts, negative correlation learning |
N, PVC, other |
96.02 |
92.27 |
79.4 |
Kamath [12] |
2011 |
Teager energy functions in time and frequency domains |
Neural network |
N, LBBB, RBBB, PVC, paced beats |
100 |
100 |
100 |
Martis et al. [13] |
2013 |
DWT + PCA + ICA + LDA |
SVM, NN, PNN |
AAMI |
99.28 |
— |
— |
Sharma and Ray [14] |
2016 |
Hilbert–Huang transform, statistical features |
SVM |
N, LBBB, RBBB, PVC, paced, APC |
99.51 |
99.36 |
100 |
Banerjee and Mitra [15] |
2014 |
Cross wavelet transform |
Heuristic classification |
Abnormal versus normal |
97.6 |
97.3 |
98.8 |
Oliveira et al. [16] |
2016 |
Dynamic Bayesian networks |
Dynamic threshold |
PVC versus others |
99.88 |
99 |
99 |
Work |
|
FSC, SFE |
QDA |
NB, PVC, OB |
98.3 |
100 |
98 |