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Visual Abstract
The brainstem pre-Bötzinger complex (preBötC) generates
inspiratory breathing rhythms, but which neurons comprise
its rhythmogenic core? Dbx1-derived neurons may play the
preeminent role in rhythm generation, an idea well founded
at perinatal stages of development but incompletely evalu-
ated in adulthood. We expressed archaerhodopsin or chan-
nelrhodopsin in Dbx1 preBötC neurons in intact adult
mice to interrogate their function. Prolonged photoinhibition
slowed down or stopped breathing, whereas prolonged
photostimulation sped up breathing. Brief inspiratory-phase

photoinhibition evoked the next breath earlier than expected, whereas brief expiratory-phase photoinhibition delayed
the subsequent breath. Conversely, brief inspiratory-phase photostimulation increased inspiratory duration and
delayed the subsequent breath, whereas brief expiratory-phase photostimulation evoked the next breath earlier than
expected. Because they govern the frequency and precise timing of breaths in awake adult mice with sensorimotor
feedback intact, Dbx1 preBötC neurons constitute an essential core component of the inspiratory oscillator, knowl-
edge directly relevant to human health and physiology.
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Significance Statement

Breathing behavior depends on rhythmic movements. The underlying neural rhythm for inspiration may
originate due to brainstem interneurons defined genetically by expression of the embryonic transcription
factor Dbx1. Dbx1-derived neurons comprise the core oscillator microcircuit in perinatal mice, but they
serve other functions too, and their inspiratory rhythmogenic role has not been conclusively tested in adults.
Optogenetic photostimulation and photoinhibition of Dbx1-derived brainstem neurons in intact adult mice
modulated breathing, either speeding it up, slowing it down to the point of apnea (no breathing), or
perturbing its phase, which are functions consistent with the rhythm generator. These results establish the
cellular point of origin for breathing rhythm, a key physiologic brain function in humans and all mammals.
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Introduction
Inspiratory breathing movements in mammals originate

from neural rhythms in the brainstem pre-Bötzinger com-
plex (preBötC; Smith et al., 1991; Feldman et al., 2013).
Although the preBötC has been identified in a range of
mammals including bats, moles, goats, cats, rabbits, rats,
mice, and humans (Smith et al., 1991; Schwarzacher
et al., 1995, 2011; Mutolo et al., 2002; Wenninger et al.,
2004; Pantaleo et al., 2011; Ruangkittisakul et al., 2011;
Tupal et al., 2014) its neuronal constituents remain impre-
cise. Competing classification schemes emphasize pep-
tide and peptide receptor expression (Gray et al., 1999,
2001; Stornetta et al., 2003a; Tan et al., 2008) as well as
a glutamatergic transmitter phenotype (Funk et al., 1993;
Stornetta et al., 2003b; Wallen-Mackenzie et al., 2006) as
cellular markers that define the preBötC rhythmogenic
core.

Interneurons derived from precursors that express the
homeodomain transcription factor Dbx1 (i.e., Dbx1 neurons)
also express peptides and peptide receptors associated
with respiratory rhythmogenesis and are predominantly glu-
tamatergic. Dbx1 knock-out mice die at birth of asphyxia
and the preBötC never forms (Bouvier et al., 2010; Gray
et al., 2010). In rhythmically active slice preparations from
neonatal Dbx1 reporter mice, Dbx1 preBötC neurons dis-
charge in bursts in phase with inspiration (Picardo et al.,
2013), and their sequential laser ablation slows and then
stops respiratory motor output (Wang et al., 2014). These
results obtained from perinatal mice suggest that Dbx1 neu-
rons comprise the rhythmogenic preBötC core; we refer to
this idea as the Dbx1 core hypothesis.

Nevertheless, in addition to their putatively rhythmo-
genic role, Dbx1 preBötC neurons also govern motor
pattern. Hypoglossal motoneurons that maintain airway
patency receive rhythmic synaptic drive from Dbx1 neu-
rons within the preBötC and adjacent intermediate retic-
ular formation (Wang et al., 2014; Revill et al., 2015; Song
et al., 2016). In anesthetized, vagotomized adult mice,
photostimulation of Dbx1 preBötC neurons modulates
inspiratory timing and its motor pattern, which is mediated
in part by somatostatin-expressing (Sst) preBötC neurons
(Cui et al., 2016), a large fraction of which are derived from
Dbx1-expressing progenitors (Bouvier et al., 2010; Gray
et al., 2010; Koizumi et al., 2016).

In adult animals, Dbx1 preBötC neurons serve non-
respiratory roles as well. A subset that expresses Ca-
dherin-9 (Cdh9) projects to the pontine locus coeruleus to
influence arousal (Yackle et al., 2017). Collectively, the
fractions of motor output-related (Sst-expressing) and
arousal-related (Cdh9-expressing) Dbx1 neurons could
account for 73% of Dbx1 neurons within the preBötC: up
to 17% of Dbx1 preBötC neurons express Sst and 56%

express Cdh9 with no overlap between Sst and Cdh9
expression (Bouvier et al., 2010; Gray et al., 2010; Cui
et al., 2016; Yackle et al., 2017). That accounting would
leave 27% of Dbx1 preBötC neurons exclusively rhyth-
mogenic, if one assumes that all remaining Dbx1 neurons
are dedicated to respiration and that single Dbx1 preBötC
neurons cannot fulfill multiple duties. Therefore, while
their rhythmogenic role is well established at perinatal
stages of development (Bouvier et al., 2010; Gray et al.,
2010), the contemporary studies recapped above from
adult mice indicate that rhythm generation may not be the
principal function of Dbx1 preBötC neurons.

Here, we reevaluate the inspiratory rhythmogenic role
of Dbx1 preBötC neurons in adult mice. We kept senso-
rimotor feedback intact because its removal otherwise
slows the breathing rhythm and lowers preBötC excitabil-
ity, which makes it more susceptible to perturbation.
Thus, we test the role of Dbx1 neurons in the most
realistic context in vivo. Using optogenetic technologies
to photoinhibit or photostimulate Dbx1 neurons, we show
that their perturbation affects breathing frequency and the
precise timing of individual breaths within the breathing
cycle, which are key properties of a core oscillator micro-
circuit. Other respiratory and non-respiratory roles not-
withstanding, these data indicate that Dbx1 preBötC
neurons constitute an essential core oscillator for inspira-
tion.

Materials and Methods
Mice

The Institutional Animal Care and Use Committee at
William & Mary approved these protocols, which conform
to the policies of the Office of Laboratory Animal Welfare
(National Institutes of Health) and the guidelines of the
National Research Council of the US National Academy of
Sciences.

Female mice that express tamoxifen-sensitive Cre recom-
binase in Dbx1-derived progenitor cells, i.e., Dbx1CreERT2

(Ruangkittisakul et al., 2014; RRID:IMSR_JAX:028131) were
mated with males from two different reporter strains. The
first reporter strain expresses an archaerhodopsin-3 tagged
with EGFP fusion protein (ArchT-EGFP) in a Cre-dependent
manner (Allen Institute nomenclature, Ai40D; RRID:IMSR_
JAX:021188). The second reporter strain features Frt- and
LoxP-flanked STOP cassettes followed by a fusion gene
coding for calcium translocating channelrhodopsin and
EYFP (CatCh-EYFP), which is expressed following Cre- and
Flp-mediated recombination (Allen Institute nomenclature,
Ai80D; RRID:IMSR_JAX:025109). We administered tamox-
ifen to pregnant dams (22.5 mg/kg) at embryonic day 9.5 to
maximize neuronal expression and minimize glial expression
(Kottick et al., 2017). Dbx1;ArchT or Dbx1;CatCh mice were
distinguished from wild-type littermates, which lack EGFP or
EYFP, via post hoc histology. Therefore, wild-type litter-
mates formed a control group whose constituent members
were unknown to the experimenter.

Brainstem slices
Neonatal Dbx1;ArchT mice (0–4 d old) were anesthe-

tized via hypothermia, decerebrated, and then dissected
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in 4°C aCSF containing: 124 mM NaCl, 3 mM KCl, 1.5 mM
CaCl2, 1 mM MgSO4, 25 mM NaHCO3, 0.5 mM NaH2PO4,
and 30 mM dextrose aerated continually with carbogen
(95% O2 and 5% CO2) at pH 7.4. The isolated neuraxes
were glued to an agar block and mounted rostral side up
in the vise of a vibratome. We cut the neuraxes in the
transverse plane to obtain a single 500-�m-thick section
containing the preBötC as well as the hypoglossal (XII)
cranial motor nucleus and its rostral nerve rootlets. The
anatomic criteria for isolating the preBötC in rhythmically
active slices from neonatal Dbx1-reporter mice are de-
tailed in a series of open access atlases (Ruangkittisakul
et al., 2014). Slices were anchored using a silver wire grid
in a recording chamber on a fixed-stage upright physiol-
ogy microscope. We perfused slices with aCSF at 27° C (2
ml/min) and elevated the K� concentration to 9 mM.
Inspiratory motor output was recorded from the XII nerve
rootlets using a differential amplifier (gain 2000�) and a
bandpass filter (300–1000 Hz). Nerve root output was
full-wave rectified and smoothed for display.

We identified Dbx1 neurons under epifluorescence via
EGFP expression and then performed whole-cell patch-
clamp recordings under visual control. Patch pipettes with
tip resistance of 4–6 M� were fabricated from capillary
glass (1.50 mm outer diameter, 0.86 mm inner diameter) and
filled with solution containing: 140 mM potassium gluconate,
5 mM NaCl, 0.1 mM EGTA, 10 mM HEPES, 2 mM Mg-ATP,
and 0.3 mM Na3-GTP. Alexa Fluor 568 hydrazide dye was
added to the patch-pipette solution (50 �M, Invitrogen) as a
color contrast to EGFP following whole-cell dialysis. Mem-
brane potential was amplified (100�) and low-pass filtered (1
kHz) using a patch-clamp amplifier (EPC10, HEKA Elek-
tronic) and digitally acquired at 4 kHz (PowerLab 4/30, AD
Instruments).

Virus injection and fiber optic implantation
We anesthetized adult Dbx1;ArchT and Dbx1;CatCh

(aged 8–20 weeks) mice via intraperitoneal injection of
ketamine (100 mg/kg) and xylazine (10 mg/kg) and per-
formed aseptic surgeries in the prone position using a
stereotaxic frame. After exposing the skull, we performed
either one (Dbx1;CatCh mice) or two (Dbx1;ArchT mice)
0.5 mm diameter craniotomies in the range 6.95–7.07 mm
posterior to bregma and 1.1–1.3 mm lateral to the midline
suture.

In Dbx1;CatCh mice, we unilaterally injected an adeno-
associated virus (AAV) immediately before fiber optic im-
plantation to induce Flp-mediated recombination of Frt
sites. We loaded an ultrafine, microvolume syringe (Neu-
ros series, Hamilton) with 120 �l of AAV-eSyn-FLPo (titer
1013 vg/ml, catalog number VB1126, Vector Biolabs,
RRID:SCR_011010). The syringe was lowered at 10 �m/s
through the cerebellum and the virus was injected at the
target site at �60 nl/min. The syringe remained in place
for 10 min before being retracted at 10 �m/s.

Both Dbx1;ArchT and Dbx1;CatCh mice were equipped
with fiber optic appliances constructed by joining
1.27-mm diameter ceramic ferrules (Precision Fiber Prod-
ucts) with 105-�m diameter 0.22 numerical aperture (NA)
multimode fibers (Thorlabs). We implanted fiber optic ap-

pliances bilaterally in Dbx1;ArchT mice and unilaterally in
Dbx1;CatCh mice at a depth of 5.5–5.9 mm from bregma,
which were secured with a cyanoacrylate adhesive (Loc-
tite 3092, Henkel Corp.). Dbx1;ArchT animals recovered
for a minimum of 10 d before any further experimentation.
Dbx1;CatCh mice recovered for a minimum of 21 d before
further experimentation.

We measured the membrane potential effects of ArchT
activation in slices (Fig. 1). Because CatCh is not yet
expressed at perinatal stages conducive to slice experi-
ments, we were not able to measure CatCh effects on
membrane potential directly. Using laser powers 6.8–10.2
mW (see below), we calculated the expected membrane
depolarization according to measurements in Kleinlogel
et al. (2011). Cultured hippocampal neurons virally trans-
duced to express CatCh depolarized �50 mV in response
to 473-nm light at 9.7 � 1016 photons/s·cm2. Laser power
of 6.8–10.2 mW yields �1.6–2.5 � 1016 photons/s·cm2.
Assuming that Dbx1 preBötC neurons in vivo respond
similarly to hippocampal neurons in culture, the corre-
sponding depolarization of Dbx1 preBötC neurons would
be on the order of 8–15 mV. Two unknown factors may
affect this estimate including how the presence of light-
scattering white matter in vivo would attenuate light de-
livery, and how differences in input resistance between
cultured hippocampal neurons and preBötC interneurons
would impact CatCh-mediated currents’ ability to depo-
larize the different cell types.

Breathing measurements
After anesthetizing mice using 2% isoflurane we con-

nected the ferrules of Dbx1;ArchT mice to a 589-nm laser
(Dragon Lasers). The ferrule of Dbx1;CatCh mice was
connected to a 473-nm laser (Dragon Lasers). Mice re-
covered from isofluorane anesthesia for �1 h, and then,
we measured breathing behavior using a whole-body pl-
ethysmograph (Emka Technologies) that allowed for fiber-
optic illumination in a sealed chamber.

In a separate session, these same mice were lightly
sedated via intraperitoneal ketamine injections (15 mg/kg
minimum dose), which we titrated as needed to reduce
limb movements but retain toe-pinch and blink reflexes.
The maximum aggregate dose was limited to 50 mg/kg.
Mice were fitted with a modified anesthesia mask (Kent
Scientific) to measure breathing.

We applied a circuit of positive pressure, with balanced
vacuum, to continuously flush the plethysmograph with
breathing air. The plethysmograph and the mask were
connected to a 1-l respiratory flow head and differential
pressure transducer that measured airflow; positive air-
flow reflects inspiration in all cases. Analog breathing
signals were digitized at 1 kHz (PowerLab).

Optogenetic protocols
We applied 5-s bouts of light (either 473 or 589 nm) to

Dbx1;ArchT and Dbx1;CatCh mice at graded intensities of
6.8, 8.6, and 10.2 mW. All ferrules were tested with a
power meter before implantation to verify that illumina-
tion intensity did not vary �0.1 mW from the specified
values. Bouts of light application were separated by a
minimum interval of 30 s. Each mouse received a min-
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imum of 10 presentations of each light stimulus (tech-
nical repeats). We also applied 100-ms light pulses at a
fixed intensity of 10.2 mW. We exposed each mouse to
85–200 pulses spaced at random intervals of between 1
and 5 s.

We applied 589-nm light (at the same intensities listed
above) to rhythmically active slices. The fiberoptics were
targeted to selectively illuminate the preBötC bilaterally
but not the adjacent reticular formation.

Data analyses
The airflow signal was bandpass filtered (0.1–20 Hz)

and analyzed using LabChart 8 software (AD Instruments),
which computes airflow (units of ml/s), respiratory rate
(i.e., frequency, ƒ, units of Hz), tidal volume (VT, units of
ml), inspiratory time (Ti, units of ms), and minute ventila-
tion (MV; units of ml/min). We computed statistics using
GraphPad Prism 6 and R: The Project for Statistical Com-
puting (R, The R Foundation) and prepared figures using
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Figure 1. Photoinhibition of preBötC neurons in vitro. A, Membrane trajectory of an ArchT-expressing Dbx1 preBötC neuron (VM, cyan
traces) in a rhythmically active slice preparation from a neonatal Dbx1;ArchT mouse with inspiratory motor output recorded from the
XII nerve rootlet (black traces). B, Membrane trajectory of a non-Dbx1, non-ArchT-expressing preBötC neuron (VM, magenta traces)
with XII motor output. Light pulses (30 s) were applied bilaterally to the preBötC at three intensities (units of mW) in A, B. Yellow line
thickness corresponds to light intensity, which is also annotated above each line. Voltage and time calibrations apply to A, B, including
baseline membrane potential of �60 mV. Action potentials have been truncated for display to emphasize the trajectory around the
baseline membrane potential. C, Membrane hyperpolarization (�VM) evoked by light pulses at three intensities in Dbx1 and non-Dbx1
preBötC neurons in aCSF and in the prsence of 1 �M TTX. Bars show mean and SD. D, Membrane trajectories in response to 30-s
bouts of 10.2-mW illumination in TTX.
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Adobe Illustrator (Adobe Systems Inc.), GraphPad Prism
6, and IGOR Pro 6 (Wavemetrics). We analyzed the ex-
periments in which 5-s light pulses were applied to the
preBötC using paired t tests, specifically comparing mean
ƒ, VT, and MV for control and illumination conditions at
three different light intensity levels (i.e., at each laser
strength tested; the pre-illumination ventilation serves as
its own control). At least five technical repeats were av-
eraged to compute the mean ƒ, VT, and MV for each
animal; the mean value for each animal represents one
data point.

We analyzed phase-response relationships of the
breathing cycles perturbed by 100 ms-duration light
pulses. The expected cycle period was measured from
the unperturbed cycle immediately before the light pulse,
which was defined as spanning 0–360° (	Expected). Cycle
times were measured from the start of inspiration in one
breath to the start of inspiration of the subsequent breath.
For perturbed cycles, 100-ms light pulses were applied at
random time points spanning inspiration and expiration to
test for phase shifts. 	Stim marks the phase at which the
light pulse occurred. The induced cycle period (	Induced)
was measured from the perturbed cycle. The perturbation
of breathing phase, 	Shift, was defined as the difference
between 	Induced and 	Expected. We calculated change in
VT and Ti in the perturbed breath compared to the ex-
pected breath normalized to the expected breath (referred
to as, �VT and �Ti, respectively). Further, we calculated
the phase shift of the breath following the perturbed
breath (i.e., the cycle after 	Induced) also with respect to
	Expected; we refer to the phase of the subsequent breath
	N�1. Measurements of 	Shift, �VT, �Ti, and 	N�1 are all
linked to a particular 	Stim within the interval 0-360°. To
analyze group data, we sorted 	Stim into 12 equally sized
30° bins. We computed the mean and SD for 	Shift, �VT,
�Ti, and 	N�1 within each bin, which we then plotted in
phase-response curves along with values calculated from
wild-type littermates. A Tukey’s HSD test was used to
evaluate how unlikely it would have been to obtain mean
	Shift, �VT, �Ti, and 	N�1 for each bin if the optogenetic
perturbations had commensurate effects on Dbx1;ArchT
(or Dbx1;CatCh) mice and wild-type littermates.

Histology
After experimentation we verified in all animals that fiber

optic tips were within 500 �m of the dorsal preBötC
border, which could be identified via well-established an-
atomic criteria in combination with either ArchT-EGFP or
CatCh-EYFP fusion protein expression in reporter mice.
We administered a lethal dose of pentobarbital (100 mg/
kg, i.p.) and then transcardially perfused the mice with 1�
PBS followed by 4% PFA in PBS. The neuraxes were
removed and postfixed overnight in 4% PFA and later
sliced in 50-�m contiguous transverse sections using a
vibratome. Free-floating sections were stained using Neu-
roTrace 530/615 red fluorescent Nissl stain (Invitrogen)
for 1 h, rinsed in PBS, and then cover-slipped using
Vectashield (RRID:AB_2336789). Tissue sections were vi-
sualized using bright-field and confocal microscopy. Im-
ages were arranged as mosaics and brightness and

contrast were adjusted uniformly across the entire en-
semble image using the public domain software package
ImageJ (RRID:SCR_003070). Images were not manipu-
lated in any other way.

Results
ArchT activation hyperpolarizes Dbx1 preBötC
neurons postsynaptically

We illuminated the preBötC in transverse medullary
slices from neonatal Dbx1;ArchT mice that spontaneously
generate inspiratory rhythm and airway-related hypoglos-
sal (XII) motor output. Light application (589 nm) to the
preBötC bilaterally stopped rhythm and motor output at
all light intensities (Fig. 1A,B, black traces). Dbx1 preBötC
neurons recorded in whole-cell patch-clamp hyperpolar-
ized 6.5 
 1.0, 8.1 
 1.1, and 11.0 
 2.5 mV in response
to light of increasing intensity (Fig. 1A,C, cyan). We reap-
plied the highest intensity light in the presence of TTX,
which hyperpolarized Dbx1 preBötC neurons by 8.6 
 1.4
mV (Fig. 1C,D, cyan). Light-evoked hyperpolarization was
commensurate before and after TTX (Mann–Whitney U,
p � 0.3a), which suggests that ArchT hyperpolarizes Dbx1
preBötC neurons via direct postsynaptic effects.

In the same slices from neonatal Dbx1;ArchT mice, we
illuminated the preBötC bilaterally while patch recording
neighboring non-Dbx1 preBötC neurons. Baseline mem-
brane potential in non-Dbx1 preBötC neurons responded
negligibly to light, hyperpolarizing 0.7 
 0.3, 1.1 
 0.5,
and 1.1 
 0.6 mV in response to light of increasing
intensity (Fig. 1B,C, magenta). In TTX, light at the highest
intensity hyperpolarized non-Dbx1 neurons by 0.3 
 0.8
mV (Fig. 1C, magenta), which was indistinguishable from
light-evoked hyperpolarization before TTX application
(Mann–Whitney U, p � 0.2b). These results suggest that
light-evoked cessation of inspiratory rhythm and motor
output in vitro is largely attributable to direct postsynaptic
effects on Dbx1 preBötC neurons rather than network
disfacilitation, which would comparably affect Dbx1 as
well as non-Dbx1 neurons in the preBötC and would be
eliminated by TTX.

Photoinhibition of Dbx1 preBötC neurons attenuates
breathing and resets inspiration

Next, we illuminated the preBötC bilaterally using fiber-
optic implants (Fig. 2A shows tracks of fiberoptics in post
hoc histology) in sedated adult Dbx1;ArchT mice, which
reduced breathing in all instances (Fig. 3A,B). In control
conditions breathing frequency (ƒ) was typically �3.5 Hz,
tidal volume (VT) was �0.1 ml, and MV was �50 ml/min.
The lowest intensity light (6.8 mW) decreased ƒ by 0.3 Hz
(t test, p � 0.0499c), did not change VT (t test, p � 0.07d),
and decreased MV by 9 ml/min (t test, p � 0.01e; Fig. 3B).

ƒ, VT, and MV decreased to a greater extent in response
to 8.6 and 10.2 mW intensity illumination (Fig. 3A,B). ƒ
decreased by 1.2 and 2.0 Hz, respectively (t test, p �
0.0006f and p � 0.0003g). Apnea, no inspiratory effort,
resulted in more than one-third of all trials at 10.2 mW (i.e.,
11 of 30 bouts; Fig. 3A, bottom). VT decreased in re-
sponse to 8.6 and 10.2 mW light in both cases by 0.03 ml
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(t test, p � 0.04h and p � 0.02i). MV decreased by 11 and
20 ml/min, respectively (t test, both p � 0.02j; Fig. 3B).

In comparison, sedated wild-type littermates subjected
to the same protocol showed no light-evoked changes in
breathing (Fig. 4A,B).

We repeated these experiments in Dbx1;ArchT mice
while awake and unrestrained (Fig. 3C,D). The lowest
intensity light (6.8 mW) had no statistically significant
effect on ƒ and VT (t test, p � 0.06k and 0.06l) but their
product MV decreased significantly by 7.4 ml/min (t test,
p � 0.04m; Fig. 3D).

The effects on breathing were more profound when we
illuminated at 8.6 and 10.2 mW (Fig. 3C,D). ƒ decreased
by 1.1 and 1.2 Hz, respectively (t test, p � 0.002n and p �
0.02°) and MV decreased by 22 and 32 ml/min, respec-
tively (t test, p � 0.02p and p � 0.04q). One animal
stopped breathing for �4 s (i.e., apnea; Fig. 3C, bottom
trace). Statistical hypothesis testing did not detect signif-
icant light-induced changes in VT (t test, p � 0.3r and p �
0.09s), probably due to the high variability of VT in awake
animals (Fig. 3D).

In comparison, awake unrestrained wild-type litter-
mates showed no changes in breathing in response to
light of any intensity (Fig. 4C,D).

Therefore, these data collectively show that ArchT-
mediated Dbx1 preBötC neuron hyperpolarization re-
duces breathing up to and including apnea in sedated and
awake intact mice.

Next, we applied brief (100 ms) light pulses randomly
during the breathing cycle, which we defined as spanning
0–360° (see Materials and Methods; Fig. 5A, inset). Brief
photoinhibition of the preBötC early during inspiration
(	Stim of 0–30°) caused a phase advance such that the
subsequent inspiration occurred earlier than expected
(	Shift � �147 
 23°, p � 1e-6t) while shortening inspira-
tory time (Ti) by almost half (�Ti � 45 
 5%, p � 1e-6u;
Fig. 5A1,A2,A3, top trace). Brief photoinhibition also
evoked significant phase advances and reduced Ti during

the rest of inspiration (	Stim of 30–120°), but the magni-
tude of those changes monotonically decreased as 	Stim

approached the inspiratory-expiratory transition.
Brief photoinhibition did not perturb the system during

the inspiratory-expiratory transition (	Stim of 120–180°).
During early expiration (	Stim of 180–210°), which is often
referred to as postinspiration (Dutschmann et al., 2014;
Anderson et al., 2016), we observed the first significant
phase delay such that the subsequent inspiration oc-
curred later than expected in response to brief photoinhi-
bition (	Shift � 32 
 7°, p � 0.006v; Fig. 5A1,A3, bottom
trace). Phase delays were consistently evoked during ex-
piration (	Stim of 210–360°) with a maximum phase delay
during late expiration (	Stim of 300–330°; 	Shift � 78 

10°, p � 1e-6w). Brief photoinhibition during expiration did
not affect Ti, which is a straightforward result because the
inspiratory period had ended (Fig. 5A2). Note, that �Ti was
statistically significant at 	Stim of 210–240°) but that
change is not physiologically meaningful because the
magnitude of the change is small and not part of a con-
sistent trend in the phase-response curve.

The relationship between 	Stim and the phase of the
subsequent breath [	N�1 (Fig. 6A1) or 	N�2 (data not
shown)] closely resembled the relationship between 	Stim

and 	Shift (Fig. 5A1), which suggests that brief photoinhi-
bition resets the phase of the oscillator.

In contrast to its effects on breathing phase (	Shift and
	N�1), brief photoinhibition had little effect on VT through-
out most of the respiratory cycle with changes of �10%
across the entire respiratory cycle, except during early
inspiration (	Stim of 0–30°, in which VT decreased by 23 

8%, p � 0.002x) and early expiration (	Stim of 150–180°,
in which VT increased by 16 
 11%, p � 0.02y; Fig. 6A2).
Despite the fact that two out of 12 measurements pass
the threshold for statistical significance, these data do not
convincingly demonstrate that brief photoinhibition of
Dbx1 preBötC neurons systematically influences VT in
sedated mice.

A
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Nissl

IOloop

scNA
preBötC

500 μm

VIIpreBötC BötC

D
or
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l

Rostral

CatCh Nissl 500 μm

B

Figure 2 . A, Bright field image of a transverse section from an adult Dbx1;ArchT mouse at the level the preBötC, as indicated by the
loop of the inferior olive (IOloop) and the semi-compact division of the nucleus ambiguus (scNA). Parallel tracks of implanted fiber
optics are visible from the dorsal border of the tissue section into the intermediate reticular formation dorsal to the preBötC. The
selection box was imaged using fluorescence microscopy to show ArchT (cyan) protein expression in the preBötC in detail, Nissl
staining (magenta) included for contrast. B, Parasagittal section from an adult Dbx1;CatCh mouse. Nissl (magenta) shows anatomic
landmarks including the facial (VII) cranial nucleus, Bötzinger complex (BötC), and the preBötC. CatCh (cyan) expression is limited to
the preBötC.
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We repeated brief photoinhibition experiments in awake
unrestrained Dbx1;ArchT mice. The plots of 	Shift, �Ti,
	N�1, and �VT versus 	Stim were qualitatively similar to
the experiments in sedated mice (Figs. 5 compare A, B, 6
compare A, B). Photoinhibition during early inspiration
(	Stim of 0–30°) caused a phase advance (	Shift � �86 

16°, p � 1e-5z). The first significant phase delay in the
awake animal occurred when brief photoinhibition was
applied during peak expiration (	Stim of 210 –240°,
	Shift � 68 
 15°, p � 1e-6aa). 	Shift tended to increase
as brief photoinhibition was applied at later points dur-
ing the expiratory phase. The maximum phase delay
occurred during late expiration (	Stim of 330 –360°,
	Shift � 118 
 25°, p � 4e-5bb; Fig. 5B1,B3). Brief
photoinhibition decreased Ti by nearly one-third (�Ti �
28 
 9%, p � 1e-5cc) during early inspiration (	Stim of

0 –30°) but had no significant effect at any other time
during the cycle.

Photostimulation of Dbx1 preBötC neurons
enhances breathing and modifies the timing and
magnitude of breaths

We illuminated the preBötC unilaterally in sedated adult
Dbx1;CatCh mice following viral transduction in the pre-
BötC with a synapsin-driven Flp recombinase. This
double-stop intersectional approach limited CatCh-EYFP
expression to the preBötC (Fig. 2B). In control conditions
ƒ was typically �3 Hz, VT was �0.1 ml, and MV was �50
ml/min. Bouts of blue light (473 nm) at three intensities
significantly increased ƒ by 0.8, 1.1, and 1.3 Hz, respec-
tively (t test, p � 0.03dd, 0.005ee, and 0.03ff). There were

A

B D

C

Figure 3. Photoinhibition of Dbx1 preBötC neurons depresses breathing in adult Dbx1;ArchT mice. A, Airflow traces from a sedated
mouse exposed to 5-s bouts of bilateral preBötC illumination at three intensities (units of mW). Yellow line thickness corresponds to
light intensity, which is also annotated above each line. B, Group data from experiments in A quantifying light-evoked changes in ƒ,
VT, and MV. Symbols show the mean ƒ, VT, and MV measured in each mouse. Bars show the mean and SD for all animals tested
(n � 6). Control measurements are labeled ctl; numerals indicate light intensity. C, Airflow traces from an awake unrestrained mouse
exposed to 5-s bouts of bilateral preBötC illumination at three intensities. Yellow line thickness corresponds to light intensity;
annotations match those in A. D, Group data from experiments in C quantifying light-evoked changes in ƒ, VT, and MV. Symbols show
the mean ƒ, VT, and MV measured in each mouse. Bars show the mean and SD for all animals tested (n � 5). Control measurements
are labeled ctl; numerals indicate light intensity. Asterisks represent statistical significance at p � 0.05; the double asterisk represents
p � 0.01; and triple asterisks represent p � 0.001.
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no significant effects on VT or MV at any light intensity
(Fig. 7A,B).

We repeated these unilateral photostimulation experi-
ments in Dbx1;CatCh mice while awake and unrestrained.
Frequency increased by 1.6 Hz in response to light at the
highest intensity (t test, p � 0.04gg; Fig. 7C,D). There were
no other notable changes in ƒ, VT, or MV at any light
intensity.

In wild-type littermates, we observed no effects on
breathing in either sedated or awake mice in response to
light at any intensity (Fig. 8).

Therefore, these data collectively show that CatCh-
mediated photostimulation of Dbx1 preBötC neurons se-
lectively enhances breathing frequency in sedated and, to
a limited extent, awake mice.

Next, we applied brief (100 ms) light pulses at different
time points during the breathing cycle. Unilateral illumina-
tion of the preBötC during inspiration caused a phase

delay and increased Ti. The maximum phase delay oc-
curred during peak inspiration (	Stim of 60–90°, 	Shift �
125 
 18°, p � 1e-6hh; Fig. 9A1) and coincided with the
maximum �Ti (29 
 7%, p � 1e-6ii; Fig. 9A2). Brief
photostimulation caused a phase advance during the
inspiratory-expiratory transition (	Stim of 120–150°) and
throughout expiration (	Stim � 150°) without affecting Ti

(Fig. 9A1,A2,A3). The maximum phase advance occurred
during early expiration (	Stim of 150–180°, 	Shift � �128

 4°, p � 1e-6jj). The relationship between 	Stim and the
phase of the subsequent breath [	N�1 (Fig. 10A1) or 	N�2

(data not shown)] mimicked the relationship between
	Stim and 	Shift (Fig. 9A1), which suggests that brief pho-
tostimulation resets the phase of the oscillator. We ob-
served no effects of brief photostimulation on VT (Fig.
10A2).

We repeated brief photostimulation experiments in
awake intact Dbx1;CatCh mice. The plots of 	Shift and �Ti

A

B D

C

Figure 4. Light application to the preBötC does not affect breathing in wild-type Dbx1;ArchT littermates. A, Airflow traces from a
sedated mouse exposed to 5-s bouts of bilateral preBötC illumination at three intensities (units of mW). Yellow line thickness
corresponds to light intensity, which is also annotated above each line. B, Group data from experiments in A quantifying ƒ, VT, and
MV in response to light application. Symbols show mean ƒ, VT, and MV in each mouse. Bars show the mean and SD for all animals
tested (n � 6). Control measurements are labeled ctl; numerals indicate light intensity. C, Airflow traces from an awake unrestrained
mouse exposed to 5-s bouts of unilateral preBötC illumination at three intensities (units of mW). Yellow line thickness corresponds
to light intensity; annotations match those in A. D, Group data from experiments in C quantifying ƒ, VT, and MV in response to light
application. Symbols show mean ƒ, VT, and MV in each mouse. Bars show the mean and SD for all animals tested (n � 6). Control
measurements are labeled ctl; numerals indicate light intensity.
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versus 	Stim were qualitatively similar to those recorded in
sedated mice (Figs. 9 compare A, B, 10 compare A, B).
Brief photostimulation during early and mid-inspiration
(	Stim of 0–60°) caused a phase delay (maximum 	Shift �
147 
 52, p � 1e-5kk; Fig. 9B1). We measured no phase
shift for late inspiration (	Stim of 60–90°). The phasic
effect of brief photostimulation changed sign around the
inspiratory-expiratory transition (	Stim � 90°); brief pho-
tostimulation subsequently evoked breaths earlier than

expected. We measured the maximum phase advance
during early expiration (	Stim of 120–150°, 	Shift � �159

 9°, p � 1e-5ll; Fig. 9B1). The last statistically significant
phase delay occurred during late expiration (	Stim of 270–
300°, 	Shift � �52 
 3°, p � 0.0499mm).

Brief photostimulation of Dbx1 preBötC neurons in
awake intact mice also extended Ti during inspiration (Fig.
9B2); the effect was even more pronounced than in se-
dated mice (Fig. 9A2). The maximum �Ti occurred during

Figure 5. Effects of brief photoinhibition on the breathing phase and inspiratory duration in Dbx1;ArchT mice (n � 6 in A, n � 5 in B,
cyan) and wild-type littermates (n � 6, magenta). A1, Phase-response curve plotting 	Shift following 100-ms photoinhibition at 	Stim
throughout the breathing cycle in sedated mice. 	Stim was partitioned into 12 equally sized bins (30°) in A, B. A2, Phase-response
curve showing changes in Ti following brief photoinhibition (i.e., the perturbed breath) in the same cohort of sedated mice. The
abscissa marks the inspiratory (I, 0–150°) and expiratory (E, 150–360°) phases of the breathing cycle (0–360°), which applies to A1,
A2. A3, Sample airflow traces from a representative sedated mouse (	Stim is indicated by an orange bar and numeral value). Time
calibration is shown. Inset shows 	Stim, 	expected, 	induced, and 	Shift as explained in the main text, where the change in phase is
determined by the difference between the stimulated and induced phases. B1, Phase-response curve plotting 	Shift following brief
photoinhibition at 	Stim throughout the breathing cycle in awake unrestrained mice. B2, Phase-response curve showing changes in
Ti following brief photoinhibition (i.e., the perturbed breath) in the same cohort of awake unrestrained mice. The abscissa marks the
inspiratory (I, 0–110°) and expiratory (E, 110–360°) phases of the breathing cycle (0–360°), which applies to B1, B2. B3, Sample airflow
traces from a representative awake unrestrained mouse (	Stim is indicated by an orange bar and numeral value). Time calibration is
shown.
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early inspiration (	Stim of 0–30°) in which Ti increased by
over half (56 
 14%, p � 1e-6nn). The ability of brief
photostimulation to extend Ti decreased during the in-
spiratory phase (Fig. 9B2) such that no significant effects
occurred after 	Stim exceeded 90°. The relationship be-
tween 	Stim and 	N�1 (or 	N�2; data not shown) illus-
trated a phase delay evoked by brief photostimulation
during mid-inspiration (	Stim of 30–60°; Fig. 10B1), which
partially recaps the relationship that was more pro-
nounced in the plot of 	Shift versus 	Stim (Fig. 9B1). We
observed no relationship for �VT versus 	Stim (Fig. 10B2),
as in the sedated mouse (Fig. 10A2).

These data are consistent photostimulus-induced re-
setting of the inspiratory oscillator, although the data are
noisier in the awake adult, freely behaving mouse.

Discussion
Role diversity challenges the Dbx1 core hypothesis

The idea that Dbx1 preBötC neurons are inspiratory
rhythmogenic has become generally well accepted, but it
must be reevaluated given the expanding spectrum of
non-rhythmogenic and non-respiratory functions attrib-
uted to this neuron class, particularly in adult animals.

Perinatally Dbx1 preBötC neurons generate rhythm and
pattern. Dbx1 knock-out mice do not breathe and form no
recognizable preBötC (Bouvier et al., 2010; Gray et al.,
2010), the site of inspiratory rhythmogenesis (Smith et al.,
1991; Feldman and Del Negro, 2006; Feldman et al., 2013;
Ramirez et al., 2016; Del Negro et al., 2018). Their selec-
tive destruction in a slice model of breathing (Funk and
Greer, 2013) slows and then stops the rhythm, evidence
of their rhythmogenic role, while also attenuating airway-
related XII motor output (Wang et al., 2014) because of
Dbx1 premotor neurons in the preBötC that drive XII

(Wang et al., 2014; Revill et al., 2015) as well as phrenic
motoneurons (Wu et al., 2017).

This theme continues in adult mice. Sst-expressing
preBötC neurons, �17% of the Dbx1-derived population,
appear to lack rhythmogenic function but rather shape
motor output pattern (Cui et al., 2016; but see Koizumi
et al., 2016). More than half (56%) of Dbx1 preBötC
neurons characterized by Cdh9 expression lack respira-
tory rhythmicity but project to the locus coeruleus and
putatively influence arousal (Yackle et al., 2017). If we
assume that non-Sst and non-Cdh9 Dbx1 neurons have
respiratory functions, and that individual neurons do not
fulfill multiple duties, then these statistics suggest that not
�27% of Dbx1 preBötC neurons in adult mice are exclu-
sively rhythmogenic.

Photoinhibition and photostimulation demonstrate
Dbx1 preBötC neurons influence rhythm and pattern

Sustained photoinhibition caused graded frequency
decreases including apnea, which are evidence that Dbx1
neurons form the core oscillator. However, photoinhibition
also decreased VT, indicating that Dbx1 neurons also
govern breath size, i.e., motor pattern. We previously
reported qualitatively similar data (Vann et al., 2016), but
the effects were milder because of the weaker archaer-
hodopsin variant available at the time. Dbx1 neurons that
influence airway muscles and the diaphragm have been
analyzed in detail (Wang et al., 2014; Revill et al., 2015;
Cui et al., 2016; Wu et al., 2017). Here, we limit our
comments to acknowledging those motor-related roles,
and we concentrate on analyzing the role of Dbx1 pre-
BötC neurons in rhythmogenesis.

Sustained photostimulation approximately doubled the
breathing rate from �3.5–7 Hz. In contrast, Baertsch et al.
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Figure 6. Effects of brief photoinhibition on VT and 	N�1 in Dbx1;ArchT mice (n � 5 in A, n � 6 in B, cyan) and wild-type littermates
(n � 6, magenta). A1, Phase-response curve plotting 	N�1 versus 	Stim throughout the breathing cycle in sedated mice. A2,
Phase-response curve for changes in VT following brief photoinhibition (i.e., the perturbed breath) in the same cohort of sedated mice.
The abscissa marks the inspiratory (I, 0–150°) and expiratory (E, 150–360°) phases of the breathing cycle (0–360°), which applies to
A1, A2. B1, Phase-response curve plotting 	N�1 versus 	Stim in awake unrestrained mice. B2, Phase-response curve for �VT versus
	Stim in the same cohort of awake unrestrained mice. The abscissa marks the inspiratory (I, 0–110°) and expiratory (E, 110–360°)
phases of the complete breathing cycle (0–360°), which applies to B1, B2.
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(2018) reported minor (�10%) frequency changes in va-
gus intact mice in response to sustained photostimula-
tion. These two results are not discrepant, even if they
appear to be at face value. We were able to evoke higher
frequencies in our experiments most likely due to the
accelerated response time, enhanced light sensitivity,
larger voltage responses evoked by photoactivated
CatCh compared to ChR2 (Kleinlogel et al., 2011), and the
fact that we applied laser strengths up to 10.2 mW,
whereas Baertsch et al. (2018) purposely limited their
pulses to 7 mW or less. Those authors showed that phasic
synaptic inhibition critically influences breathing fre-
quency and we do not disagree. We purposely did not
vagotomize our mice to preserve phasic synaptic inhibi-
tion and thus high breathing frequencies are possible
during photostimulation.

Phase-response experiments demonstrate that Dbx1
preBötC neurons are rhythmogenic

If Dbx1 preBötC neurons are inspiratory rhythmogenic,
then transiently stimulating them should evoke inspiratory
breaths at any point in the breathing cycle except, poten-
tially, during the postinspiratory (early expiratory) refrac-
tory period identified in vitro (Guerrier et al., 2015; Kottick
and Del Negro, 2015) and in vagotomized mice in vivo
(Baertsch et al., 2018). We evoked inspiratory breaths at
all points during the respiratory cycle without evidence of
a refractory period. Brief photostimulation during inspira-
tion prolonged it (i.e., increased Ti) and delayed the next
cycle (i.e., a phase delay). The straightforward interpreta-
tion is that CatCh-mediated inward current augments
recurrent excitation thus prolonging inspiratory burst du-
ration. Overexcited rhythmogenic neurons require more

A

B D

C

Figure 7. Photostimulation of Dbx1 preBötC neurons speeds-up breathing in adult Dbx1;CatCh mice. A, Airflow traces from a sedated
mouse exposed to 5-s bouts of unilateral preBötC illumination at three intensities (units of mW). Cyan line thickness corresponds to
light intensity, which is also annotated above each line. B, Group data from experiments in A quantifying light-evoked changes in ƒ,
VT, and MV. Symbols show the mean ƒ, VT, and MV measured in each mouse. Bars show the mean and SD for all animals tested
(n � 4). Control measurements are labeled ctl; numerals indicate light intensity. C, Airflow traces from an awake unrestrained mouse
exposed to 5-s bouts of bilateral preBötC illumination at three intensities. Cyan line thickness corresponds to light intensity;
annotations match those in A. D, Group data from experiments in C quantifying light-evoked changes in ƒ, VT, and MV. Symbols show
the mean ƒ, VT, and MV measured in each mouse. Bars show the mean and SD for all animals tested (n � 4). Control measurements
are labeled ctl; numerals indicate light intensity. Asterisks represent statistical significance at p � 0.05; the double asterisk represents
p � 0.01.
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time to recover, which lengthens cycle time and delays
the subsequent inspiration.

We observed that photostimulation at any other point
in the cycle evoked inspiration earlier than expected, a
phase advance, but did not otherwise modify inspira-
tion. Our present results contrast a prior report in which
brief photostimulation did not evoke phase advances
during early expiration (Alsahafi et al., 2015). But in
that experimental context, a synapsin promoter drove
channelrhodopsin expression in both excitatory and
inhibitory preBötC neurons. Because preBötC rhythmo-
genesis depends on recurrent excitation, and the net-
work is at the nadir of its excitability during early
expiration (Feldman and Kam, 2015; Ramirez et al.,
2016; Del Negro et al., 2018), photostimulation of in-
hibitory neurons in concert with excitatory neurons
would be less effective to evoke inspiratory bursts
during early expiration.

Selective photostimulation of excitatory Dbx1-derived
preBötC neurons should evoke phase advances during
early expiration, and it does. Cui et al. (2016) photostimu-
lated excitatory Dbx1 neurons and evoked phase ad-
vances of up to �72° during most of expiratory phase,
except during the inspiratory-expiratory transition. We
evoked more substantial phase advances of 90–150°
during the early expiration. These results are not in con-
flict, but key methodological differences may explain the
discrepancy. Cui et al., anesthetized their mice and ap-
plied a maximum laser power of 7 mW to activate chan-
nelrhodopsin, whereas we used awake or lightly sedated
mice and applied a maximum laser power of 10.2 mW to
activate the channelrhodopsin variant CatCh. Assuming
that the fiber-optic appliances in both studies equally
attenuate laser power from box to preBötC, then the
larger phase advances we evoked during early expiration
could be attributable to a higher excitability level of the

A
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C

Figure 8. Light application to the preBötC does not affect breathing in wild-type Dbx1;CatCh littermates. A, Airflow traces from a
sedated mouse exposed to 5-s bouts of unilateral preBötC illumination at three intensities (units of mW). Cyan line thickness
corresponds to light intensity, which is also annotated above each line. B, Group data from experiments in A quantifying ƒ, VT, and
MV in response to light application. Symbols show mean ƒ, VT, and MV in each mouse. Bars show the mean and SD for all animals
tested (n � 4). Control measurements are labeled ctl. C, Traces from an awake unrestrained mouse exposed to 5-s bouts of unilateral
preBötC illumination at three intensities. Cyan line thickness corresponds to light intensity; annotations match those in A. D, Group
data from experiments in C quantifying ƒ, VT, and MV in response to light application. Symbols show mean ƒ, VT, and MV in each
mouse. Bars show the mean and SD for all animals tested (n � 4). Control measurements are labeled ctl; numerals indicate light
intensity.
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preBötC in the unanesthetized (or lightly sedated) mice,
higher laser power, as well as the accelerated response
time, enhanced light sensitivity, and larger voltage re-
sponses evoked by photoactivated CatCh compared to
ChR2 (Kleinlogel et al., 2011).

Brief photoinhibition of Dbx1 preBötC neurons during
inspiration shortened it (i.e., decreased Ti) and initiated
the next cycle earlier than expected, a phase advance. We
infer that hyperpolarizing rhythmogenic neurons checks
the recurrent excitation process, which impedes but does

not prevent inspiration. Nevertheless, the evoked breath
is shorter in duration. preBötC neurons do not overexcite
or become refractory, which facilitates the onset of the
next cycle, hence the phase advance. That mechanism,
here evoked by ArchT, mirrors the role of endogenous
phasic synaptic inhibition, which curbs recurrent excita-
tion to limit inspiratory activity and facilitate inspiratory-
expiratory phase transition (Baertsch et al., 2018). We
found that photoinhibition during expiration consistently
caused a phase delay, which indicates hyperpolarization

Figure 9. Effects of brief photostimulation on the breathing phase and inspiratory duration from Dbx1;CatCh mice (n � 4, cyan) and
wild-type littermates (n � 4, magenta). A1, Phase-response curve plotting 	Shift following 100-ms photostimulation at 	Stim
throughout the breathing cycle in sedated mice. 	Stim was partitioned into 12 equally sized bins (30°) in A, B. A2, Phase-response
curve for changes in Ti following photostimulation (i.e., the perturbed breath) in the same cohort of sedated mice. The abscissa marks
the inspiratory (I, 0–150°) and expiratory (E, 150–360°) phases of the breathing cycle (0–360°), which applies to A1, A2. A3, Sample
airflow traces from a representative sedated mouse (	Stim is indicated by an orange bar and numeral value). Time calibration as
shown. B1, Phase-response curve plotting 	Shift following brief photostimulation at 	Stim throughout the breathing cycle in awake
unrestrained mice. B2, Phase-response curve for changes in Ti following brief photostimulation (i.e., the perturbed breath) in the same
cohort of awake unrestrained mice. The abscissa marks the inspiratory (I, 0–110°) and expiratory (E, 110–360°) phases of the
complete breathing cycle (0–360°), which applies to B1, B2. B3, Sample airflow traces from a representative awake unrestrained
mouse (	Stim is indicated by an orange bar and numeral value). Time calibration is shown.
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of Dbx1 preBötC neurons impedes recurrent excitation
and thus prolongs the interval until the next inspiration.

The phase advances and phase delays induced by
transient photoinhibition and photostimulation were reca-
pitulated in phase plots of subsequent cycles (	N�1,
	N�2). Those data indicate that transient optogenetic per-
turbation acts on, and resets, the phase of the core
oscillator.

Our interpretations of the phase-response and reset-
ting experiments, both photostimulation and photoinhi-
bition, are consistent with Dbx1 preBötC neurons
having direct temporal control over inspiration as well
as postinspiration and the expiratory interval. That con-
clusion may seem overly broad considering, first, that
the preBötC is the acknowledged inspiratory oscillator
and, second, that oscillator microcircuits for postinspi-
ration (Anderson et al., 2016) and expiration (Pagliardini
et al., 2011; Huckstepp et al., 2015, 2016) also exist.
Nevertheless, the preBötC plays a dominant role in
organizing all phases of breathing by entraining the
other oscillators in intact mice, and in reduced prepa-
rations that retain PiCo and pFL (Moore et al., 2013;
Ramirez et al., 2016; Del Negro et al., 2018). Therefore,
the present data are consistent with Dbx1 preBötC
interneurons constituting the oscillator core for inspira-
tion and the central organizer for breathing.

Could optogenetic perturbation of inputs to the
preBötC modulate breathing?

The intersectional mouse genetics in Dbx1;ArchT mice
leads to fusion protein expression in Dbx1-derived cells
throughout the neuraxis. Therefore, preBötC illumination
inhibits constituent interneurons but also axons of pas-
sage and the axon terminals of Dbx1 neurons from remote
locations (Ruangkittisakul et al., 2014) that could disfacili-
tate the preBötC. If disfacilitation were primarily modulat-

ing preBötC activity in Dbx1;ArchT mice, then light-
evoked hyperpolarization should be commensurate in
non-Dbx1 neurons (which do not express ArchT) and
Dbx1 neurons; and, TTX should block it in both cases.
However, non-Dbx1 neurons hyperpolarized �1 mV in
response to maximum illumination whereas Dbx1 neurons
hyperpolarized �11 mV, and TTX did not notably affect
either response. We conclude that direct postsynaptic
hyperpolarization of Dbx1 preBötC neurons, rather than a
reduction of tonic excitatory drive, is the predominant
effect of preBötC illumination in Dbx1;ArchT mice.

Light-evoked breathing changes in Dbx1;CatCh mice
cannot be explained by photostimulation of axon termi-
nals and axons of passage that originate outside of, but
synapse within, the preBötC. We used double-stop tech-
nology to limit CatCh expression to Dbx1-derived neurons
(not glia, see below), whose somas reside in the preBötC
or directly adjacent sites including the Bötzinger complex
of inhibitory neurons (Ezure et al., 2003; Tanaka et al.,
2003), and the rostral ventral respiratory group (Ellen-
berger and Feldman, 1990; Dobbins and Feldman, 1994;
Gaytán et al., 2002) of excitatory phrenic premotor neu-
rons. If Dbx1-derived expiratory neurons in the Bötzinger
complex exist (which has not been demonstrated), then
their photostimulation would depress breathing (Jancze-
wski et al., 2013; Marchenko et al., 2016), the opposite of
what we measured. If photostimulation affected Dbx1
phrenic premotor neurons in the rostral ventral respiratory
group (Wu et al., 2017), then that would enhance the
magnitude of inspiratory breaths, but not the inspiratory
timing circuits in the preBötC. Sustained photostimulation
experiments only enhanced breathing frequency and
never VT, which diminishes the likelihood that our proto-
cols influenced Dbx1-derived phrenic premotoneurons.
Therefore, this caveat, the potential expression of CatCh
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Figure 10. Effects of brief photostimulation on VT and 	N�1 in Dbx1;CatCh mice (n � 4, cyan) or wild-type littermates (n � 4,
magenta). A1, Phase-response curve plotting 	N�1 versus 	Stim throughout the breathing cycle in sedated mice. A2, Phase-response
curve for changes in VT following photostimulation (i.e., the perturbed breath) in the same cohort of sedated mice (n � 4). The abscissa
marks the inspiratory (I, 0–150°) and expiratory (E, 150–360°) phases of the breathing cycle (0–360°), which applies to A1, A2. B1,
Phase-response curve plotting 	N�1 versus 	Stim in awake unrestrained mice. B2, Phase-response curve for �VT versus 	Stim in the
same cohort of awake unrestrained mice. The abscissa marks the inspiratory (I, 0–110°) and expiratory (E, 110–360°) phases of the
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in regions bordering the preBötC, is unlikely to affect our
primary conclusions regarding rhythmogenesis.

Effects on Dbx1-derived glia in the preBötC
Dbx1-expressing precursor cells develop into neurons

and glia (Bouvier et al., 2010; Gray et al., 2010; Ruangkit-
tisakul et al., 2014; Kottick et al., 2017), but optogenetic
perturbation of glia is unlikely to have influenced the
present results. First consider photoinhibition. Astrocytes
support excitatory synaptic function in the preBötC (Hül-
smann et al., 2000), but that role is metabolic in nature
and light-evoked hyperpolarization would not preclude it.
Calcium excitability and gliotransmission, which could be
affected by photoinhibition, pertain to purinergic modula-
tion and hypoxic challenges to the preBötC (Huxtable
et al., 2010; Angelova et al., 2015; Funk et al., 2015; Rajani
et al., 2017) but are less relevant factors governing the
basal breathing state, which is the baseline for our exper-
iments.

Photostimulation experiments unambiguously identify
Dbx1 neurons (not glia) as the cellular population that
forms the core inspiratory oscillator. CatCh expression
was induced following Cre/Lox and Frt/Flp recombina-
tion. We used a synapsin promoter to express Flp locally
in the preBötC so only Dbx1 neurons would be trans-
duced and express CatCh.

ArchT expression is selectively (but not exclusively) limited
to neurons by the timing of tamoxifen administration. Induc-
ing Cre/lox recombination in pregnant Dbx1CreERT2 mice at
E9.5 reduces ArchT expression in glia to �40%, whereas
ArchT expression in neurons remains above 90% (Kottick
et al., 2017), which increases our confidence that photoin-
hibition largely affects neurons (not glia) and that neurons are
the predominate rhythmogenic constituents and most par-
simonious explanation for the light-induced changes in
breathing.

Nevertheless, we are left with this disparity: ArchT ac-
tivation is able to suppress breathing frequency more than

Table 1. Summary of statistics from figures

Figure Data structure Type of test p value
a 1C Undefined Mann–Whitney U test (n1 � 8, n2 � 3) 0.286
b 1C Undefined Mann–Whitney U test (n1 � 8, n2 � 4) 0.2321
c 3B Normally distributed Student’s t test (n � 6) 0.0499
d 3B Normally distributed Student’s t test (n � 6) 0.0684
e 3B Normally distributed Student’s t test (n � 6) 0.0126
f 3B Normally distributed Student’s t test (n � 6) 0.0006
g 3B Normally distributed Student’s t test (n � 6) 0.0003
h 3B Normally distributed Student’s t test (n � 6) 0.0379
i 3B Normally distributed Student’s t test (n � 6) 0.0236
j 3B Normally distributed Student’s t test (n � 6) 0.0190, 0.0177
k 3D Normally distributed Student’s t test (n � 5) 0.0594
l 3D Normally distributed Student’s t test (n � 5) 0.0611
m 3D Normally distributed Student’s t test (n � 5) 0.0361
n 3D Normally distributed Student’s t test (n � 5) 0.0015
o 3D Normally distributed Student’s t test (n � 5) 0.0207
p 3D Normally distributed Student’s t test (n � 5) 0.0206
q 3D Normally distributed Student’s t test (n � 5) 0.0360
r 3D Normally distributed Student’s t test (n � 5) 0.2610
s 3D Normally distributed Student’s t test (n � 5) 0.0873
t 5A1 Normally distributed Tukey’s HSD (n � 4) 1e-6
u 5A2 Normally distributed Tukey’s HSD (n � 4) 1e-6
v 5A1 Normally distributed Tukey’s HSD (n � 4) 0.006
w 5A2 Normally distributed Tukey’s HSD (n � 4) 1e-6
x 6A2 Normally distributed Tukey’s HSD (n � 4) 0.00217
y 6A2 Normally distributed Tukey’s HSD (n � 4) 0.0173
z 5B1 Normally distributed Tukey’s HSD (n � 4) 1e-5
aa 5B1 Normally distributed Tukey’s HSD (n � 4) 1e-6
bb 5B1 Normally distributed Tukey’s HSD (n � 4) 4e-5
cc 5B1 Normally distributed Tukey’s HSD (n � 4) 1e-5
dd 7B Normally distributed Student’s t test (n � 4) 0.0273
ee 7B Normally distributed Student’s t test (n � 4) 0.0048
ff 7B Normally distributed Student’s t test (n � 4) 0.0273
gg 7D Normally distributed Student’s t test (n � 4) 0.0389
hh 9A1 Normally distributed Tukey’s HSD (n � 4) 1e-6
ii 9A2 Normally distributed Tukey’s HSD (n � 4) 1e-6
jj 9A1 Normally distributed Tukey’s HSD (n � 4) 1e-6
kk 9B1 Normally distributed Tukey’s HSD (n � 4) 1e-6
ll 9B1 Normally distributed Tukey’s HSD (n � 4) 1e-5
mm 9B1 Normally distributed Tukey’s HSD (n � 4) 0.0499
nn 9B2 Normally distributed Tukey’s HSD (n � 4) 1e-6

New Research 15 of 18

May/June 2018, 5(3) e0130-18.2018 eNeuro.org



CatCh activation is able to augment it. From baseline breath-
ing rates in vivo, photoinhibition of Dbx1 excitatory neurons
appears to have a more profound effect on frequency by
slowing the recurrent excitation process, although we can-
not negate that ArchT-mediated photoinhibition of Dbx1-
derived glia removes gliotransmitter (perhaps purinergic)
drive to the preBötC rhythmogenic network as well, which
also diminishes frequency. In contrast, CatCh-mediated de-
polarization of Dbx1 neurons probably has a less profound
frequency effect because elevating breathing rate above
basal rates in vivo depends to a far greater extent on phasic
synaptic inhibition rather than excitatory drive (Cregg et al.,
2017; Baertsch et al., 2018), although the lack of photo-
stimulation of gliotransmission could contribute to the dimin-
ished frequency effect too.

Size of the Dbx1 core oscillator
Up to 73% of Dbx1 preBötC neurons serve non-

rhythmogenic functions: 56% influence arousal (Yackle
et al., 2017) and 17% influence motor pattern (Cui et al.,
2016), which accounts nearly three-quarters of the Dbx1
population in the preBötC. What implications does that
have for the composition and size of the inspiratory core
oscillator whose constituent interneurons are Dbx1-
derived too?

Dbx1-Cdh9 preBötC neurons were certainly photoin-
hibited and photostimulated in our experiments. However,
those neurons influence behavioral state (e.g., eupnea,
grooming, exploring, sniffing, etc.) rather than cycle-to-
cycle breathing dynamics. We applied optogenetic per-
turbations only during eupnea, not during grooming or
active movement, to control for behavioral shifts. Given
that Dbx1-Cdh9 neurons are either weakly or not rhythmic
(Yackle et al., 2017), briefly perturbing them would not
influence the phase-response relationships, and thus
would not confound our interpretation that Dbx1 preBötC
neurons (even if a limited fraction of them) comprise the
core oscillator.

Illumination of Sst-expressing Dbx1 neurons could be
responsible for the decreases in VT and apneas we report
during sustained photoinhibition. In general, perturbations
of Sst-expressing preBötC neurons affect breathing mo-
tor pattern in vagotomized and non-vagotomized adult
mice and reduced in situ preparations (Cui et al., 2016;
Koizumi et al., 2016); the depression of Sst-expressing
preBötC neurons is strong enough to completely stop
breathing movements in intact adult rats (Tan et al., 2008).
Our experiments would only impact neurons that are both
Dbx1-dervied and Sst-expressing, thus a smaller popula-
tion than Tan et al. (2008) manipulated. Nevertheless, to
the extent that photoinhibition decreased breath magnti-
due and caused apnea, we attribute that in part to direct
effects on pattern-related Sst-expressing Dbx1-derived
preBötC neurons that are either premotor part of a larger
pattern-generating system (Revill et al., 2015; Cui et al.,
2016; Wu et al., 2017).

If Cdh9 and Sst subpopulations of Dbx1 preBötC neu-
rons are independent of the core respiratory oscillator,
then only a small fraction (�27%) of Dbx1 neurons are
available for rhythmogenesis. Dbx1 neurons that com-

prise the preBötC core number �600 (Wang et al., 2014;
Kottick et al., 2017). If one excludes Cdh9 and Sst neu-
rons from this estimation, then as few as 160 Dbx1 pre-
BötC neurons would remain for rhythmogenesis (we
assume subpopulations serve one function). Can such a
small number of interneurons comprise the inspiratory
core oscillator?

Holographic photolysis of caged glutamate onto four to
nine preBötC neurons evokes inspiratory motor output in
vitro (Kam et al., 2013). This type of stimulation would
affect Dbx1-Cdh9 neurons that are weakly or non-
rhythmic (Kam et al., 2013; Yackle et al., 2017) as well as
inhibitory preBötC neurons (Kuwana et al., 2006; Winter
et al., 2009; Morgado-Valle et al., 2010) so it may over-
estimate the minimum number of activated preBötC neu-
rons needed to evoke inspiratory bursts. Regardless, a
reasonable conclusion is that stimulating relatively small
numbers of preBötC neurons are capable of inducing
inspiratory burst cycles, which lends credence to the
notion that a small subfraction of Dbx1 preBötC neurons
could be rhythmogenic in the midst of a potentially larger
population of non-rhythmogenic (both pattern-generating
and non-respiratory) preBötC neurons.

Glutamatergic preBötC neurons not derived from Dbx1-
expressing precursors may also comprise part of the core
oscillator (Koizumi et al., 2016; Baertsch et al., 2018). We
cannot precisely estimate the size of that subpopulation
but we expect that it will be small based on the small
fraction of preBötC neurons that express Vglut2 but not
Dbx1 (Bouvier et al., 2010; Gray et al., 2010).

Dbx1 core hypothesis
The rhythmogenic subset of Dbx1 preBötC interneu-

rons may be small, perhaps as little as 27% of the total
Dbx1 population, but its outsize contribution to rhythmo-
genesis is unmistakable given the robust effects of sus-
tained and transient photoinhibition and photostimulation
demonstrated here, and by prior reports (Alsahafi et al.,
2015; Cui et al., 2016; Koizumi et al., 2016). Therefore,
whatever else Dbx1 preBötC neurons do, influence motor
pattern and behavioral state, they certainly comprise the
inspiratory core oscillator. Two key challenges going for-
ward will be, first, to quantify the proportion of the rhyth-
mogenic preBötC core that is non-Dbx1-derived, and
second, to discriminate either on the basis of genetic or
other markers, rhythmogenic from non-rhythmogenic
Dbx1 neurons.
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