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Nucleo-cytoplasmic shuttling of class IIa histone deacety-
lases (i.e. HDAC4, -5, -7, and -9) is a synaptic activity- and
nuclear calcium– dependent mechanism important for epige-
netic regulation of signal-regulated gene expression in hip-
pocampal neurons. HDAC4 in particular has been linked to
the regulation of genes important for both synaptic structure
and plasticity. Here, using a constitutively nuclear-localized,
dominant-active variant of HDAC4 (HDAC4 3SA), we dem-
onstrate that HDAC4 accumulation in the nucleus severely
reduces both the length and complexity of dendrites of cul-
tured mature hippocampal neurons, but does not affect the
number of dendritic spines. This phenomenon appeared to be
specific to HDAC4, as increasing the expression of HDAC3 or
HDAC11, belonging to class I and class IV HDACs, respectively,
did not alter dendritic architecture. We also show that HDAC4
3SA decreases the expression of vascular endothelial growth
factor D (VEGFD), a key protein required for the maintenance of
dendritic arbors. The expression of other members of the VEGF
family and their receptors was not affected by the nuclear accu-
mulation of HDAC4. VEGFD overexpression or administration
of recombinant VEGFD, but not VEGFC, the closest VEGFD
homologue, rescued the impaired dendritic architecture caused
by the nuclear-localized HDAC4 variant. These results iden-
tify HDAC4 as an epigenetic regulator of neuronal morpho-
logy that controls dendritic arborization via the expression of
VEGFD.

Lysine acetylation of histone and non-histone proteins is a
major epigenetic mechanism regulating gene expression and
a large spectrum of cellular functions (1). In neurons,
changes in the balancing of histone acetylation are associ-
ated with induction or repression of the transcription of
many genes implicated in physiological neuronal functions
and in neurodegeneration (2, 3). Histone deacetylases
(HDACs)3 generally act as transcriptional repressors by

either directly interfering with DNA-binding proteins or by
catalyzing the removal of acetyl groups from the N-terminal
tails of histones, resulting in a denser chromatin structure (1,
4, 5). HDACs can be divided into four classes based on their
structural, functional, and phylogenetic properties. Class I
(HDAC1, -2, -3, and -8), class II (class IIa: HDAC4, -5, -7, and
-9/class IIb: HDAC6 and -10), and class IV (HDAC11) are
related to yeast Rpd3, Hda1, and Hos3 proteins, respect-
ively, and constitute the classical family of zinc-dependent
HDACs; class III consists of seven sirtuins, which are NAD�-
dependent yeast Sir2 homologues (6). All members of class
IIa can shuttle between the nucleus and cytoplasm in a
signal-dependent manner, a complex process that is regu-
lated by protein kinases and phosphatases, and takes place in
cells of different types (7, 8). In neurons, the shuttling of class
IIa HDACs is controlled by synaptic activity and nuclear
calcium (9, 10).

In recent years, nuclear calcium has emerged as one of the
main signals governing the expression of genes crucial for
several adaptive processes in the nervous system such as
plasticity, memory formation, acquired neuroprotection,
and dynamics of neuronal morphology (11). Nuclear calcium
also controls the expression of vascular endothelial growth
factor D (VEGFD), a key factor for the maintenance of
proper dendritic arborization (12–14). Mechanistically,
nuclear calcium influences transcription both by regulating
the activity of transcription factors and by modulating epi-
genetic processes, which includes induction of expression of
DNA methyltransferases (15) and the nucleo-cytoplasmic
shuttling of class IIa HDACs (10).

Among class IIa HDACs, HDAC4 is highly expressed in
the rodent hippocampus and forebrain regions (16); under
basal conditions, it is predominantly localized in the cyto-
plasm of neurons (17). Blockade of synaptic activity and/
or nuclear calcium signaling causes an accumulation of
HDAC4 in the nucleus (10), which, in turn, leads to changes
in the rate of transcription of many genes (10, 18). HDAC4
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activity can regulate the expression of synaptic proteins,
alter the shape of synapses, and modulate neuronal survival
(18). However, if and how the subcellular localization of
HDAC4 affects dendritic architecture remains to be eluci-
dated. Here, we used a constitutively nuclear-localized dom-
inant-active mutant of HDAC4 (19) and analyzed its effects
on dendrites in primary cultured mouse hippocampal neu-
rons. The results established HDAC4 as a critical epigenetic
regulator of neuronal architecture and identified VEGFD as
a major mediator of the observed morphological changes.

Results

Nuclear HDAC4 affects neuronal morphology

Given that interfering with nuclear calcium signaling
results in both an alteration of neuronal morphology and a
nuclear accumulation of class IIa HDACs (10, 13, 14), we
sought to investigate if the two events are functionally
linked. We focused our efforts on HDAC4, which is highly
expressed in hippocampal neurons and we made use of
the previously characterized dominant-active mutant of
HDAC4 (HDAC4 3SA) (9, 10). This mutant carries three
mutations in key phosphorylation sites necessary for nuclear
export; as a result it is permanently localized in the nucleus.
Neuronal architecture was visualized by transfecting a con-
struct encoding for hrGFP (humanized Renilla reniformis
GFP) together with constructs encoding for HDAC4 3SA,
HDAC4 WT, and as an additional control, lacZ (Fig. 1A).
HDAC4 3SA, HDAC4 WT, and lacZ constructs all carry an
additional FLAG tag, which allows for detection and verifi-
cation of subcellular localization. Immunolabeling of FLAG-
tagged constructs showed a predominantly cytoplasmic dis-
tribution for HDAC4 WT (10), whereas HDAC4 3SA was
localized in the nucleus as expected (Fig. 1A). We observed a
distinct decline in the size and extent of the dendritic tree in
HDAC4 3SA expressing neurons compared with neurons
expressing HDAC4 WT or lacZ (Fig. 1A). Neurons express-
ing the nuclear localized HDAC4 mutant showed a signifi-
cant reduction in total dendritic length compared with con-
trols (lacZ, 3779 �m � 243 �m; HDAC4 WT, 4037 �m �
264 �m; HDAC4 3SA, 2138 �m � 115 �m; Fig. 1B). This
effect was accompanied by a severe reduction in the com-
plexity of the dendritic tree determined by Sholl analysis (13)
(Fig. 1C) and by computing the total number of intersections
between the analyzed dendrites and the shells used for the
Sholl analysis (lacZ, 583 � 35; HDAC4 WT, 537 � 44;
HDAC4 3SA, 324 � 19; Fig. 1D). In contrast, in agreement
with previous reports (18), dendritic spine density was not
affected by the nuclear HDAC4 mutant (Fig. 1, E and F).
These results show that nuclear accumulation of HDAC4, a
class IIa HDAC, has dramatic effects on the dendritic mor-
phology of hippocampal neurons.

In neuronal cells, HDAC4 is primarily localized in the cyto-
plasm (10, 17, 18) but it can accumulate in the nucleus in con-
ditions of deprived synaptic activity (10, 18) and in neuronal
pathologies (20 –24). In particular, extrasynaptic N-methyl-D-
aspartate receptors (eNMDARs) that trigger excitotoxicity (25)
have been associated with many neurodegenerative diseases

(25–28). We therefore investigated the possibility that eNMDARs
stimulation causes nuclear accumulation of HDAC4, which
would impact neuronal morphology (Fig. 1). Hippocampal neu-
rons were either exposed to bath applied NMDA, which
directly activates eNMDARs, or treated with DL-threo-�-ben-
zyloxyaspartic acid (TBOA). TBOA inhibits glutamate up-take
systems and, as a result, leads to increased levels of glutamate in
the extrasynaptic space and to stimulation of eNMDARs. Both
treatments caused a significant increase in the nuclear content
of endogenous HDAC4, which was prevented by the NMDA
receptor blocker, MK801 (Fig. 2). In line with previous findings,
which showed that reducing synaptic activity also causes an
increase in nuclear content of HDAC4 (10, 18), hippocampal
cultures treated with MK801 only, which blocks synaptic
NMDARs at resting conditions, showed elevated HDAC4
nuclear levels (Fig. 2). These results indicate that activation of
eNMDARs triggers a redistribution of HDAC4 from the cytosol
toward the nucleus.

Next, we investigated if increasing the activity, by means
of overexpression, of HDACs belonging to class I and IV
would also influence dendritic architecture. We transfected
neurons with constructs encoding for HDAC3 (class I),
HDAC11 (class IV), or lacZ as control (Fig. 3). hrGFP was
used for visualization of neuronal morphology. In contrast to
HDAC4, morphometric analyses revealed that overexpres-
sion of HDAC3 or HDAC11 had no effect on the dendritic
length (lacZ, 2499 �m � 144 �m; HDAC3, 2681 � 134 �m;
HDAC11, 2838 � 115 �m; Fig. 3B) or complexity (lacZ,
389 � 21; HDAC3, 424 � 21; HDAC11, 450 � 20; Fig. 3, C
and D) of mature neurons. These results indicate that among
HDACs, class IIa HDAC4 specifically regulates the size and
shape of mature dendritic arborization.

HDAC4 regulates the expression of the neuronal morphology
regulator, VEGFD

Our previous work identified vascular endothelial growth
factor D (VEGFD) as a key regulator of neuronal morphology
(12–14). Similar to class IIa HDACs shuttling, VEGFD
expression is controlled by nuclear calcium signaling and
affected by the calcium buffering capacity of the nucleus (13,
14). We therefore tested whether HDAC4 activity regulates
VEGFD expression. We infected hippocampal neurons with
rAAVs containing an expression cassette for either HDAC4
(rAAV-HDAC4 WT) or for the HDAC4 3SA mutant (rAAV-
HDAC4 3SA). Uninfected cells and neurons infected with
lacZ (rAAV-lacZ) served as controls (Fig. 4A). Quantitative
reverse transcriptase PCR (qRT-PCR) revealed that expres-
sion of the constitutively nuclear and active HDAC4 3SA
results in reduced mRNA levels of VEGFD, whereas the
expression of other VEGF family members (VEGF, VEGFC)
or their cognate receptors (Flt4, Kdr) was not affected by
nuclear HDAC4 (VEGFD: rAAV-HDAC4 3SA, 0.77 � 0.04;
rAAV-HDAC4, WT 1 � 0.04; rAAV-lacZ, 1.13 � 0.13;
Fig. 4A).

Next, we infected hippocampal neurons with rAAV-
HDAC3 or rAAV-HDAC11. qRT-PCR revealed that overex-
pression of HDAC3 resulted in the expected reduced mRNA
levels of its target gene cxcr4 (29), whose expression, com-
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pared with uninfected control cultures, was not affected by
HDAC11 overexpression (Fig. 4B). Furthermore, HDAC11
overexpression caused a decrease of mRNA level of the pre-
viously identified HDAC11 target gene fez1 (30), which we

also found was affected by HDAC3 overexpression (Fig. 4B).
Overexpression of HDAC3 or HDAC11, which does not
affect neuronal architecture (Fig. 3), had no effect on VEGFD
expression (Fig. 4B). These results suggest that HDAC4 con-

Figure 1. Nuclear accumulation of HDAC4 results in a deterioration of neuronal morphology. A, representative images of cultured hippocampal neurons
co-transfected with hrGFP and FLAG-tagged constructs HDAC4 WT, HDAC4 3SA, or lacZ. hrGFP fluorescence reveals neuronal architecture. FLAG tags were
used to confirm the subcellular localization of lacZ, HDAC4 WT, and HDAC4 3SA. Nuclei were stained with Hoechst. Scale bar is 40 �m. B, quantification of the
total dendritic length of hippocampal neurons transfected as in A. HDAC4 3SA versus HDAC4 WT, p � 1.65 � 10�5; HDAC4 3SA versus lacZ, p � 1.1 � 10�5; lacZ
versus HDAC4 WT, p � 0.68. C, Sholl analysis of hippocampal neurons transfected as indicated. D, total number of intersections derived from the Sholl analysis
shown in C. HDAC4 3SA versus HDAC4 WT, p � 1 � 10�4; HDAC4 3SA versus lacZ, p � 1 � 10�4; lacZ versus HDAC4 WT, p � 0.61. E, quantification of spine density
transfected as indicated. F, representative images of dendritic spines of hippocampal neurons transfected as in E. Scale bar is 5 �m. In total, 20 neurons (lacZ and
HDAC4 3SA) and 19 neurons (HDAC4 WT) from 5 independent experiments were analyzed for each construct (B–D). For spine density analysis 12 neurons from
3 independent experiments were analyzed for each construct (E). Statistically significant differences were determined by one-way ANOVA (B, D, and E) and
two-way ANOVA (C), followed by Tukey’s post hoc test. ***, p � 0.001; **, p � 0.01. For scatter plots, each point represents a value derived from one neuron.
Graphs represent mean � S.D.
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tributes to the regulation of VEGFD expression in hip-
pocampal neurons.

VEGFD overexpression prevents the impairment of
morphology caused by HDAC4 3SA expression

As nuclear accumulation of HDAC4 negatively affects the
size and complexity of dendritic trees (Fig. 1), as well as the
expression of VEGFD (Fig. 4), we next investigated if overex-
pression of VEGFD could rescue the impaired morphology of
HDAC4 3SA expressing neurons. To this end, we made use of a
construct encoding for VEGFD and carrying an HA tag (13).
Morphometric analyses revealed that, as previously demon-
strated (13), overexpression of VEGFD does not change the
morphology of control hippocampal neurons (total dendritic
length: lacZ, 3130 � 209 �m; lacZ � VEGFD-HA, 2730 � 127
�m; HDAC4 WT, 3026 � 174 �m; HDAC4 WT � VEGFD-
HA, 2925 � 162 �m; Fig. 5, A and C and total number of inter-
sections: lacZ, 460 � 30; lacZ � VEGFD-HA, 382 � 23; HDAC4
WT, 461 � 27; HDAC4 WT � VEGFD-HA, 435 � 27; Fig. 5, A
and B). However, VEGFD overexpression can prevent the loss
of structural integrity induced by HDAC4 3SA expression.
Although total dendritic length of neurons expressing HDAC4
3SA was significantly reduced to an average value of 1746 � 79
�m (Figs. 1 and 5, A and C), the dendrites of HDAC4 3SA �
VEGFD-HA expressing neurons are similar in length
(2466 � 191 �m) to those of control groups analyzed (Fig. 5, A
and C). Moreover, Sholl analysis showed that HDAC4 3SA �
VEGFD-HA expressing cells displayed a higher degree of com-
plexity than HDAC4 3SA expressing neurons, which is close to
control values (HDAC4 3SA, 278 � 14; HDAC4 3SA � VEGFD-
HA, 363 � 32; Fig. 5, A and B). These data show that overex-
pression of VEGFD can compensate for the down-regulation
of endogenous VEGFD induced by nuclear-accumulated
HDAC4 thereby preventing the loss of dendritic structures
of hippocampal neurons.

VEGFD administration to HDAC4 3SA expressing hippocampal
neurons with impaired dendritic architecture can restore
structural integrity

To investigate if VEGFD is capable to restore normal den-
drite morphology when already impaired, we first performed
morphometric analysis on neuronal cells expressing lacZ,
HDAC4 WT, or HDAC4 3SA for 48 h. This is a shorter time
period than our previous experiments where we allowed the
transgenes to be expressed for 5 days before morphological
assessment (Figs. 1 and 5). We observed that HDAC4 3SA
expression impairs morphology even after a shorter expression
time (total dendritic length: lacZ, 2617 � 189 �m; HDAC4 WT,
2693 � 188 �m; HDAC4 3SA, 1667 � 106 �m; Fig. 6A and total
number of intersections: lacZ, 394 � 28; HDAC4 WT, 421 �
32; HDAC4 3SA, 252 � 16; Fig. 6B).

For the rescue experiments we used recombinant VEGFD
(rVEGFD). We first allowed the neurons to express lacZ,
HDAC4 WT, or HDAC4 3SA for 48 h, which is a sufficient
period of time to impair morphology (Fig. 6, A and B), and later
we applied rVEGFD (100 ng/ml) to the culturing medium. After
3 days, morphometric analysis showed that, as expected (Figs. 1
and 5), HDAC4 3SA expressing neurons showed a lower total
dendritic length compared with lacZ and HDAC4 WT express-
ing neurons (lacZ, 2095 � 134 �m; HDAC4 WT, 2399 � 245
�m; HDAC4 3SA, 1194 � 88 �m; Fig. 6, C and D). rVEGFD
administration was sufficient to restore the total dendritic
length of HDAC4 3SA expressing neurons back to control lev-
els. As shown for the overexpression experiments (Fig. 5) and as
previously observed (13, 14), rVEGFD treatment did not have
any effect on control neurons (HDAC4 3SA � rVEGFD, 1822 �
116 �m; lacZ � rVEGFD, 2320 � 168 �m; HDAC4 WT �
rVEGFD, 2138 � 123 �m; Fig. 6, C and D). Sholl analysis
revealed that rVEGFD treatment also restores the complexity
of the previously impaired dendritic arborization without
affecting control neurons (total number of intersections: lacZ,
335 � 24; HDAC4 WT, 384 � 43; HDAC4 3SA, 185 � 15;
lacZ � rVEGFD, 363 � 29; HDAC4 WT � rVEGFD, 336 � 20;

Figure 2. Stimulation of extrasynaptic NMDA receptors induces nuclear accumulation of endogenous HDAC4. A, representative images of cultured
hippocampal neurons immunostained for endogenous HDAC4 either left untreated (vehicle) or treated with NMDA (20 �M), TBOA (50 �M), and/or MK801 (10
�M) as indicated, for 1 h. Scale bar is 40 �m. B, quantitative measurements of the relative fluorescent intensity of the HDAC4 signal in the nucleus normalized
to the respective untreated control. Vehicle versus NMDA, p � 1 � 10�4; vehicle versus NMDA � MK801, p � 0.12; vehicle versus TBOA, p � 1 � 10�4; vehicle
versus TBOA � MK801, p � 0.79; vehicle versus MK801, p � 5.1 � 10�3; NMDA versus NMDA � MK801, p � 8.8 � 10�3; TBOA versus TBOA � MK801, p � 1 �
10�4. For each condition, 3 independent experiments were analyzed. Statistically significant differences were determined by one-way ANOVA followed by
Tukey’s post hoc test. ***, p � 0.001; **, p � 0.01; bars represent mean � S.D.
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HDAC4 3SA � rVEGFD, 280 � 18; Fig. 6, C, E, and F). Taken
together, these results show that VEGFD can restore dendritic
morphology when this is already impaired as a result of HDAC4
nuclear accumulation.

VEGFC fails to restore the morphology of HDAC4 3SA
expressing neurons

The closest homologue to VEGFD is VEGFC. The two fac-
tors belong to the same family of growth factors and have been
reported to possibly activate the same tyrosine kinase receptors
(31). Although expression of VEGFC in hippocampal neurons
is not affected by HDAC4 3SA (see Fig. 4), we investigated the
potential of VEGFC to counteract the loss of the dendritic
structure induced by HDAC4 3SA. rVEGFC (100 ng/ml) was
added to the culture medium over a period of 3 days, starting at
2 days after neurons had been transfected with hrGFP, lacZ,
HDAC4 WT, or HDAC4 3SA. All neurons expressing HDAC4
3SA, with or without rVEGFC treatment, exhibited severely

impaired morphological features compared with lacZ- or
HDAC4 WT-transfected cells (total dendritic length: lacZ,
2797 � 211 �m; HDAC4 WT, 2676 � 150 �m; HDAC4 3SA,
1593 � 101 �m; lacZ � rVEGFC, 2944 � 150 �m; HDAC4
WT � rVEGFC, 2726 � 151 �m; HDAC4 3SA � rVEGFC,
1546 � 105 �m; Fig. 7, A and B). Likewise, VEGFC failed to
restore dendrite complexity assessed by Sholl analysis (total
number of intersections: lacZ, 421 � 29; HDAC4 WT, 404 �
24; HDAC4 3SA, 230 � 15; lacZ � rVEGFC, 451 � 22; HDAC4
WT � rVEGFC, 424 � 22; HDAC4 3SA � rVEGFC, 233 � 16;
Fig. 7, A, C, and D). These results indicate that different from
VEGFD, VEGFC cannot rescue the impairment of dendrite
architecture caused by nuclear-localized HDAC4.

In conclusion, nuclear-localized HDAC4 leads to suppres-
sion of VEGFD expression and subsequent loss of structural
integrity of the dendritic arbor. Supplementation of VEGFD
prevents this impairment and, moreover, can restore a nor-

Figure 3. HDACs of class I and IV do not affect dendritic architecture. A, representative images of cultured hippocampal neurons co-transfected with hrGFP
and HA-tagged constructs HDAC3 and HDAC11, or lacZ. hrGFP fluorescence reveals neuronal architecture. Epitope tags were used to confirm the subcellular
localization of lacZ, HDAC3, and HDAC11. Nuclei were stained with Hoechst. Scale bar is 40 �m. B, quantification of the total dendritic length of hippocampal
neurons transfected as in A. lacZ versus HDAC3, p � 0.59; lacZ versus HDAC11, p � 0.17; HDAC3 versus HDAC11, p � 0.68. C, total number of intersections derived
from the Sholl analysis shown in D. lacZ versus HDAC3, p � 0.46; lacZ versus HDAC11, p � 0.11; HDAC3 versus HDAC11, p � 0.66. D, Sholl analysis of hippocampal
neurons transfected as indicated. In total, 16 neurons from 4 independent experiments were analyzed for each construct. Statistically significant differences
were determined by one-way ANOVA (B and C) and two-way ANOVA (D), followed by Tukey’s post hoc test. For scatter plots, each point represents a value
derived from one neuron. Graphs represent mean � S.D.
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mal morphology even after neuronal structures have been
lost.

Discussion

In this study, we demonstrated that nuclear accumulation of
HDAC4, a class IIa HDAC, impairs dendritic architecture by
down-regulating the expression of VEGFD, a key factor for den-
drite maintenance.

Effects of nuclear localization of HDAC4 in neuronal cells

Our data show that nuclear accumulation of HDAC4 causes
a simplification of dendritic arborization. In neurons, at resting
conditions, HDAC4 is predominantly localized in the cyto-
plasm (17), where it appears to promote neuroprotective gene
expression (32, 33). Indeed, synaptic activity-induced nuclear
calcium-signaling, known for its survival-enhancing effects

(34 –37), has been shown to promote HDAC4 nuclear export
(10). In contrast, toxic insults promote HDAC4 nuclear accu-
mulation (9). Our data indicate that the eNMDAR, a key player
in neurodegenerative processes (25–28), is responsible for exci-
totoxicity-associated nuclear accumulation of HDAC4 (Fig. 2).
Increased levels of HDAC4 in the nucleus of neuronal cells have
been observed in several neurodegenerative disorders includ-
ing stroke, Parkinson’s disease, Alzheimer’s disease, and ataxia
telangiectasia and are linked to disease progression and neuro-
nal death (20 –24). Thus, HDAC4 nuclear localization might
represent an intermediate event on the road to neuronal death:
downstream of the initiating signals but preceding and possibly
facilitating progression toward full-blown degeneration. Our
results demonstrate that HDAC4 nuclear localization is detri-
mental to the maintenance of dendrite integrity. Indeed, the

Figure 4. HDAC4 regulates expression of VEGFD. A, quantitative RT-PCR analysis of VEGFD (n � 5), Flt4 (n � 5), Kdr (n � 3), VEGFC (n � 3), and VEGF (n �
3) mRNA levels in uninfected hippocampal neurons and in hippocampal neurons infected with rAAV-lacZ, rAAV-HDAC4 WT, or rAAV-HDAC4 3SA. VEGFD,
rAAV-HDAC4 3SA versus rAAV-HDAC4 WT, p � 0.03; rAAV-HDAC4 3SA versus rAAV-lacZ, p � 0.04; rAAV-HDAC4 3SA versus uninfected, p � 4 � 10�4;
rAAV-lacZ versus uninfected, p � 0.78; rAAV-HDAC4 wt versus uninfected, p � 0.99; rAAV-lacZ versus rAAV-HDAC4 WT, p � 0.6. B, quantitative RT-PCR
analysis of VEGFD (n � 3), fez1 (n � 3), and cxcr4 (n � 3) mRNA levels in uninfected hippocampal neurons and in hippocampal neurons infected with
rAAV-HDAC3 or rAAV-HDAC11. VEGFD, uninfected versus rAAV-HDAC3, p � 0.93; uninfected versus rAAV-HDAC11, p � 0.99. fez1, uninfected versus
rAAV-HDAC3, p � 0.01; uninfected versus rAAV-HDAC11, p � 1.6 � 10�3. cxcr4, uninfected versus rAAV-HDAC3, p � 0.04; uninfected versus rAAV-
HDAC11, p � 0.3. Statistically significant differences were determined by one-way ANOVA followed by Tukey’s post hoc test. ***, p � 0.001; **, p � 0.01;
*, p � 0.05. Bars represent mean � S.D.
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neurodegenerative disorders mentioned above often exhibit
aberrations in neuronal morphology in addition to a patholog-
ical HDAC4 nuclear accumulation (38, 39), suggesting that the
two events may be causally linked. Future work needs to extend
our cell culture experiments to in vivo studies of HDAC4-me-
diated regulation of neuronal morphology, considering in par-
ticular that depending on the brain region, transcriptional
response to neuronal calcium signals can differentially regulate
dendritic architecture (40).

Histone deacetylases and neuronal morphology

Different classes of HDACs have been implicated in the
development of neuronal architecture both at the synaptic and
dendritic levels. HDAC1 and HDAC2, which belong to class I,
negatively regulate the formation and maturation of excitatory
synapses in immature neurons (41, 42), and expression of

HDAC4 mutants can lead to changes in the strength and inter-
nal structural organization of synapses without affecting their
number (18). Here, we confirm that the number of spines of
hippocampal neurons is not affected by the expression of
HDAC4 3SA. HDAC6, HDAC5, and HDAC9 activity are
thought to be involved in dendritogenesis specifically during
the early stages of neurodevelopment (43–45). Our experi-
ments uncovered that HDAC4 influences the structure of an
established, complex dendritic tree at a developmental stage
when most of dendritogenesis has taken place and the neurons
are mature and have formed functional synaptically connected
networks. Hippocampal neurons, cultured under our experi-
mental settings, do not extend their dendritic connections in
the analyzed timeframe (data not shown). Boosting either class
I- or class IV-HDACs signaling by means of overexpression
does not seem to influence mature dendritic arborization (see

Figure 5. Overexpression of VEGFD can rescue impaired morphology of neurons caused by nuclear HDAC4. A, representative images of cultured
hippocampal neurons co-transfected with hrGFP, FLAG-tagged constructs HDAC4 WT, HDAC4 3SA, lacZ with or without HA-tagged VEGFD as indicated.
Epitope tags were detected with Alexa 594 (FLAG) and Alexa 633 (HA). Scale bar is 40 �m. B, total number of intersections derived from Sholl analysis of
hippocampal neurons transfected as in A. lacZ versus lacZ � VEGFD-HA, p � 0.24; HDAC4 WT versus HDAC4 WT � VEGFD-HA, p � 0.98; HDAC4 3SA � VEGFD-HA
versus HDAC4 3SA, p � 0.02; HDAC4 3SA � VEGFD-HA versus lacZ, p � 0.14; HDAC4 3SA � VEGFD-HA versus lacZ � VEGFD-HA, p � 0.99; HDAC4 3SA �
VEGFD-HA versus HDAC4 WT, p � 0.13; HDAC4 3SA � VEGFD-HA versus HDAC4 WT � VEGFD-HA, p � 0.43. C, quantification of the total dendritic length of
hippocampal neurons transfected as in A. lacZ versus lacZ � VEGFD-HA, p � 0.48; HDAC4 WT versus HDAC4 WT � VEGFD-HA, p � 0.99; HDAC4 3SA versus lacZ,
p � 1 � 10�4; HDAC4 3SA versus lacZ � VEGFD-HA, p � 3 � 10�4; HDAC4 3SA versus HDAC4 WT, p � 1 � 10�4; HDAC4 3SA versus HDAC4 WT � VEGFD-HA,
p � 1 � 10�4; HDAC4 3SA versus HDAC4 3SA � VEGFD-HA, p � 0.03; HDAC4 3SA � VEGFD-HA versus lacZ, p � 0.06; HDAC4 3SA � VEGFD-HA versus lacZ �
VEGFD-HA, p � 0.87; HDAC4 3SA � VEGFD-HA versus HDAC4 WT, p � 0.18; HDAC4 3SA � VEGFD-HA versus HDAC4 WT � VEGFD-HA, p � 0.36. In total, 19
neurons (lacZ and lacz � VEGFD-HA), 18 neurons (HDAC4 wt), 20 neurons (HDAC4 WT � VEGFD-HA and HDAC4 3SA), and 16 neurons (HDAC4 3SA �
VEGFD-HA) from 5 independent experiments were analyzed for each condition. Statistically significant differences were determined by one-way ANOVA
followed by Tukey’s post hoc test. ***, p � 0.001; *, p � 0.05. For scatter plot, each point represents a value derived from one neuron. Graphs represent mean �
S.D.
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Figure 6. VEGFD treatment prevents the simplification of dendritic morphology promoted by nuclear HDAC4. A, quantification of the total dendritic
length of hippocampal neurons at DIV10. Cells were co-transfected with hrGFP and FLAG-tagged constructs lacZ, HDAC4 WT, and HDAC4 3SA at DIV8. HDAC4
3SA versus HDAC4 WT, p � 3 � 10�4; HDAC4 3SA versus lacZ, p � 1 � 10�3; lacZ versus HDAC4 WT, p � 0.94. B, total number of intersections derived from Sholl
analysis at DIV10. HDAC4 3SA versus HDAC4 WT, p � 2 � 10�4; HDAC4 3SA versus lacZ, p � 2.1 � 10�3; lacZ versus HDAC4 WT, p � 0.76. C, representative images
of cultured hippocampal neurons transfected as in A and treated or not with rVEGFD (100 ng/ml) for 3 days. FLAG tags were stained with Alexa 594. Scale bar
is 40 �m. D, quantification of the total dendritic length of hippocampal neurons transfected as indicated, with or without treatment for 3 days with rVEGFD.
HDAC4 3SA versus lacZ, p � 1.9 � 10�3; HDAC4 3SA versus HDAC4 WT, p � 1 � 10�4; HDAC4 3SA versus HDAC4 3SA � rVEGFD, p � 0.03; HDAC4 3SA � rVEGFD
versus lacZ � rVEGFD, p � 0.14; HDAC4 3SA � rVEGFD versus HDAC4 WT � rVEGFD, p � 0.61. E, total number of intersections derived from the Sholl analysis
shown in F. HDAC4 3SA versus lacZ, p � 2.2 � 10�3; HDAC4 3SA versus HDAC4 WT, p � 1 � 10�4; HDAC4 3SA � rVEGFD versus lacZ, p � 0.69; HDAC4 3SA �
rVEGFD versus lacZ � rVEGFD, p � 0.15; HDAC4 3SA � rVEGFD versus HDAC4 WT, p � 0.06; HDAC4 3SA � rVEGFD versus HDAC4 WT � rVEGFD p � 0.57; lacZ
versus lacZ � rVEGFD, p � 0.98; HDAC4 WT versus HDAC4 WT � rVEGFD, p � 0.76. F, Sholl analysis of hippocampal neurons transfected as indicated, with or
without treatment for 3 days with rVEGFD. In total, 8 (lacZ), 9 (HDAC4 WT), and 12 neurons (lacZ � rVEGFD, HDAC4 WT � rVEGFD, HDAC4 3SA, HDAC4 3SA �
rVEGFD) from 3 independent experiments were analyzed for each construct (D, E, and F). At DIV10, 12 (lacZ and HDAC4 3SA) and 13 (HDAC4 WT) neurons from
3 independent experiments were analyzed for each construct (A and B). Statistically significant differences were determined by one-way ANOVA (A, B, D, and
E) and two-way ANOVA (F) followed by Tukey’s post hoc test. ***, p � 0.001; **, p � 0.01; *, p � 0.05. For scatter plots, each point represents a value derived from
one neuron. Graphs represent mean � S.D.
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Fig. 3) or VEGFD expression (Fig. 4), suggesting that primarily
the synaptic activity-regulated nucleo-cytoplasmic shuttling of
class IIa HDACs controls dendrite architecture. Consistent
with this hypothesis is the observation that blockade of synaptic
activity causes accumulation of HDAC4 in the cell nucleus, but
not of the other HDAC classes (10), and dendrite impairments
(46). Expression of VEGFD, which is negatively regulated by
nuclear HDAC4 (see Fig. 4), is also strongly decreased in con-
ditions of lowered synaptic activity (13). Thus, basal synaptic
activity ensures proper maintenance of dendritic arborization
by promoting HDAC4 nuclear export thereby allowing for suf-
ficiently high levels of VEGFD.

VEGFD is a key regulator of proper connectivity

VEGFD is a key factor for the maintenance of mature den-
dritic structure of pyramidal neurons (13, 14), and as such cru-
cial for memory formation as well as consolidation and extinc-
tion of fear memory (12, 13). Several disorders of the nervous
system are characterized by both aberrations of morphology
and HDAC4 nuclear localization. It would be of interest to
determine neuronal VEGFD expression levels in such patho-
logical conditions since our present work links nuclear accu-

mulation of HDAC4 to a decrease of neuronal complexity and
VEGFD expression. However, HDAC4 nuclear localization
might affect morphology by influencing additional genes
besides VEGFD, and, moreover, the observed down-regulation
of VEGFD expression may not be directly caused by HDAC4.

In this study we show that overexpression of VEGFD or treat-
ment with recombinant VEGFD, but not with that of its homo-
logue VEGFC, prevents the loss of dendrites caused by nuclear
HDAC4. Moreover, using administration of recombinant VEGFD
we succeeded in restoring dendritic architecture to control levels
even at a stage where the loss of structural integrity had already
taken place. Thus, VEGFD has the potential to prevent structural
disintegration of neurons associated with neurodegenerative dis-
eases and may even restore functional dendritic arbors.

Experimental procedures

Expression constructs

Expression vectors for HDAC3, HDAC11, HDAC4, HDAC4
3SA, VEGFD, and lacZ were used for co-transfection with
hrGFP. All constructs were C-terminal epitope-tagged and pre-
viously described (10, 13). LacZ, HDAC4, and HDAC4 3SA

Figure 7. VEGFC has no influence on the dendritic architecture of HDAC4 3SA expressing neurons. A, representative images of cultured hippocampal
neurons co-transfected with hrGFP and FLAG-tagged constructs lacZ, HDAC4 WT, and HDAC4 3SA, treated or not with rVEGFC (100 ng/ml) for 3 days. FLAG tags
were detected with Alexa 594. Scale bar is 40 �m. B, quantification of the total dendritic length of hippocampal neurons transfected as indicated, with or
without treatment for 3 days with rVEGFC. HDAC4 3SA versus lacZ, p � 1 � 10�4; HDAC4 3SA versus lacZ � rVEGFC, p � 1 � 10�4; HDAC4 3SA versus HDAC4
WT, p � 1 � 10�4; HDAC4 3SA versus HDAC4 WT � rVEGFC, p � 1 � 10�4; HDAC4 3SA � rVEGFC versus lacZ, p � 1 � 10�4; HDAC4 3SA � rVEGFC versus
lacZ � rVEGFC, p � 1 � 10�4; HDAC4 3SA � rVEGFC versus HDAC4 WT, p � 1 � 10�4; HDAC4 3SA � rVEGFC versus HDAC4 WT � rVEGFC, p � 1 � 10�4;
lacZ versus lacZ � rVEGFC, p � 0.98; HDAC4 WT versus HDAC4 wt � rVEGFC, p � 0.99. C, total number of intersections derived from the Sholl analysis
shown in D. HDAC4 3SA versus lacZ, p � 1 � 10�4; HDAC4 3SA versus lacZ � rVEGFC, p � 1 � 10�4; HDAC4 3SA versus HDAC4 WT, p � 1 � 10�4; HDAC4
3SA versus HDAC4 WT � rVEGFC, p � 1 � 10�4; HDAC4 3SA � rVEGFC versus lacZ, p � 1 � 10�4; HDAC4 3SA � rVEGFC versus lacZ � rVEGFC, p � 1 �
10�4; HDAC4 3SA � rVEGFC versus HDAC4 WT, p � 1 � 10�4; HDAC4 3SA � rVEGFC versus HDAC4 WT � rVEGFC, p � 1 � 10�4; lacZ versus lacZ � rVEGFC,
p � 0.94; HDAC4 WT versus HDAC4 WT � rVEGFC, p � 0.99. D, Sholl analysis of hippocampal neurons transfected as indicated, with or without treatment
for 3 days with rVEGFC. In total, 12 neurons from 3 independent experiments were analyzed for each construct. Statistically significant differences were
determined by one-way ANOVA (B and C) and two-way ANOVA (D) followed by Tukey’s post hoc test. ***, p � 0.001; **, p � 0.01. For the scatter plot, each
point represents a value derived from one neuron. Graphs represent mean � S.D.
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carry a FLAG tag, whereas VEGFD, HDAC3, and HDAC11 con-
structs contain a HA tag.

Recombinant adeno-associated viruses

The method used to construct, package, and purify recombi-
nant adeno-associated viruses (rAAVs) has been previously
described (36). For viral infection, cultured hippocampal neurons
were infected on day in vitro 3 (DIV) and harvested on DIV10.

Hippocampal neuronal cultures and treatments

Hippocampal neurons from newborn C57BL/6 mice were
isolated and cultured as described before (47). DNA transfec-
tion was done after a culturing period of 8 days in vitro using
Lipofectamine. Experiments were done at DIV10. Transfected
cells were treated with 100 ng/ml of recombinant mouse
VEGFD (R&D Systems GmbH) or 100 ng/ml of recombinant
mouse VEGFC (Biocat) over a period of 3 days until analysis.

Immunocytochemistry

Following transfection and/or treatments, cells were fixed
on DIV13 (or DIV10 when indicated in the text) for 20 min at
room temperature with paraformaldehyde (4% paraformal-
dehyde, 4% sucrose in phosphate-buffered saline (PBS), pH
7.4). Antibodies were diluted in GDB (0.1% gelatin, 0.3% Tri-
ton X-100, 15 mM Na2HPO4, 400 mM NaCl) and cells were
incubated overnight with primary antibodies and 45 min
with secondary antibodies. Hoechst staining (1:6000) was
used for visualization of nuclei. Coverslips were mounted
with Mowiol 4-88 (Calbiochem).

Antibodies

Mouse monoclonal anti-FLAG-M2 (1:200, Sigma), rabbit
monoclonal anti-HDAC4 (1:200, Cell Signaling), rabbit poly-
clonal anti-HA (1:200, Santa Cruz), and Alexa 594 goat anti-
mouse and Alexa 633 goat anti-rabbit (1:400, Life Technolo-
gies) were used.

RNA extraction and cDNA synthesis

Total RNA was isolated at DIV10 from hippocampal primary
neuron cultures with an RNeasy Mini Kit (Qiagen) including an
optional DNase I treatment at room temperature for 15 min
according to the manufacturer’s instructions (Qiagen). 1.2 �g
of extracted RNA was reverse transcribed into first strand
cDNA using High Capacity cDNA Reverse Transcription kit
(Applied Biosystems).

Real-time quantitative PCR

qRT-PCR was done on StepOne plus Real-Time PCR
using TaqMan Gene Expression Assays for the indicated genes
(Applied Biosystems). The following TaqMan Gene Expression
Assays were used in this study: Gusb (Mm00446953_m1),
VEGFD (Mm00438965_m1), VEGFC (Mm01202432_m1),
VEGF (Mm01281449_m1), VEGFR3/Flt4 (Mm01292618_m1),
VEGFR2/Kdr (Mm00440099_m1), fez1 (Mm00805945_m1), and
cxcr4 (Mm01292123_m1). Expression of target genes was nor-
malized against the expression of Gusb as the endogenous con-
trol gene. Data were derived from 3 to 7 independent
experiments.

Morphometric analyses

For morphometric analyses, neurons were analyzed 2 or 5
days after transfection, as indicated under “Results,” using a
Leica TCS SP2 confocal microscope or a Nikon A1R confocal
microscope. Total dendritic length and complexity were calcu-
lated using Fiji (48). Briefly, a z-stack acquisition was imported,
calibrated, and manually traced using the simple neurite tracer
plugin (49). Total dendritic length was then computed. For
three-dimensional Sholl analysis (50), the shell interval was set
to 5 �m using a plugin available for Fiji. Total number of inter-
sections was defined by the sum of all intersections between the
traced dendrites and the shells used for Sholl analysis up to a
radius of 185 �m. Dendritic spine density over randomly cho-
sen 20-�m dendrite portions was manually computed. All anal-
yses were performed blind. For each experimental condition,
8 –20 neurons from 3 to 5 independent preparations were ana-
lyzed; details are always indicated in the respective figure
legends.

Quantification of nuclear HDAC4

Cells were either treated with 20 �M NMDA, 50 �M DL-threo-
�-benzyloxyaspartic acid, and/or 10 �M dizocilpine (MK 801)
for 1 h. After fixation, cultures were immunostained with an
antibody directed against HDAC4, nuclei were visualized using
Hoechst. Up to 8 random pictures from each treated condition
were acquired using a Nikon Ni-E upright fluorescence micro-
scope. Fluorescent intensity of HDAC4 nuclear signal has been
analyzed by defining the nuclei in the Hoechst channel as the
region of interest in ImageJ. The average integrated density was
measured, and the relative intensity of the nuclei compared
with the untreated control cells was calculated.

Data analysis

Data are presented as mean � S.D. Unless otherwise stated,
statistical analysis has been done using one-way analysis of vari-
ance (ANOVA) with Tukey’s post hoc test. Results were con-
sidered to be statistically significant for significance levels of
p � 0.05 (*), p � 0.01 (**), or p � 0.001 (***). Exact p values are
displayed in the relative figure legends.
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