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ABSTRACT Increasing utilization of vancomycin due to the high prevalence of
methicillin-resistant Staphylococcus aureus (MRSA) infections has led to the emer-
gence of vancomycin-intermediate S. aureus (VISA) and heterogeneous VISA (hVISA)
strains. In vitro data suggest the potential for potent synergy between several beta-
lactams and vancomycin. The objective of this study is to evaluate the synergy be-
tween beta-lactams and vancomycin against MRSA that is vancomycin susceptible,
vancomycin-susceptible Staphylococcus aureus (VSSA), hVISA, and VISA. Fifty ran-
domly selected clinical MRSA strains with various susceptibility levels to vancomycin
were evaluated for vancomycin alone and vancomycin in combination with various con-
centrations of cefazolin (CFZ), cefepime (FEP), ceftaroline (CPT), and nafcillin (NAF). The
potential for synergy was assessed by 24-h time-kill studies. Beta-lactams reduced van-
comycin MIC values against all strains (4- to 16-fold reduction). In time-kill studies
against MRSA, CFZ, FEP, CPT, and NAF all demonstrated similar degrees of killing at
24 h, and all showed synergistic activity with vancomycin against VSSA, hVISA, and
VISA. Each of these combinations was also superior to any single agent against iso-
lates of all three phenotypes, and each was bactericidal (P � 0.001 for all compari-
sons). All single-agent exposures demonstrated no activity at 24 h. The combination
of vancomycin and beta-lactams significantly improved antibacterial activity against
VSSA, hVISA, and VISA strains compared to the activity of any agent alone, support-
ing the potential use of vancomycin– beta-lactam combination therapy in infections
caused by MRSA. Further clinical research is warranted to investigate the synergy of
vancomycin against these Staphylococcus strains.
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Staphylococcus aureus, especially methicillin-resistant Staphylococcus aureus (MRSA),
remains a major cause of serious infections and is associated with increased health

care costs, morbidity, and mortality (1–6). Vancomycin has been the mainstay of
therapy for MRSA infections. However, decades of selective pressure have led to
mounting concerns regarding the efficacy of vancomycin against MRSA (7, 8). This
necessitates alternative treatment strategies, including combination therapies and dose
optimization as well as newer strategies based on the “seesaw effect,” whereby
beta-lactam susceptibility increases as glycopeptide susceptibility decreases (9–11).

The use of combination antimicrobial therapy is a common treatment option for
infection with MRSA, especially when first-line therapy fails. Beta-lactams are often
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empirical choices for combination use with vancomycin, especially to expand coverage
for potential Gram-negative pathogens (12). Zheng et al. during a 28-day in vitro study
showed that the combination treatment with vancomycin and beta-lactams could
significantly impact the transition to vancomycin-intermediate Staphylococcus aureus
(VISA), thus effectively preventing the emergence of vancomycin nonsusceptibility (13).
Several investigations have reported synergistic effects against Staphylococcus aureus
when beta-lactams and glycopeptides including vancomycin and teicoplanin are com-
bined (9, 14). There are also several investigations that have used pharmacokinetic/
pharmacodynamic models that have reported synergy with vancomycin and nafcillin
(NAF) or cefazolin (CFZ) against MRSA strains, including heterogeneous VISA (hVISA)
strains (15, 16). In addition, there are a number of investigations that have reported an
inverse relationship between glycopeptide and beta-lactam susceptibility, further dem-
onstrating the so-called seesaw effect (9, 17–19).

The mechanisms for the seesaw effect are not well understood; however, researchers
have suggested that beta-lactam exposure alters the surface of VISA but may increase
target-specific vancomycin binding, thereby improving vancomycin-cell wall interactions
and vancomycin activity. Further, data have demonstrated that ceftaroline (CPT) and
nafcillin exposure significantly reduces cell wall thickness in Staphylococcus aureus, pre-
venting vancomycin sequestration and improving vancomycin penetration into the divi-
sion septum, which is the main location for cell wall synthesis and the interaction of
vancomycin with critical membrane-bound precursors (20–22).

There is some clinical evidence that combination therapy with vancomycin and
beta-lactams improved microbiological eradication of MRSA bacteremia compared to
use of vancomycin alone. These clinical data were demonstrated in both randomized
controlled trials and retrospective analyses, supporting the use of beta-lactams with
vancomycin as a potential alternative therapy to combat Gram-positive pathogens and
improve patient outcomes (23, 24).

The objective of this study was to further explore the synergistic effects between
beta-lactams and vancomycin against Staphylococcus strains with various susceptibili-
ties to vancomycin by MIC and time-kill analysis.

RESULTS
Susceptibility testing. The ranges of MICs of vancomycin alone and in combination

with beta-lactams against VSSA, hVISA, and VISA strains are listed in Table 1. The fold
reductions in baseline vancomycin MICs as a result of the combination of vancomycin
with beta-lactams are listed in Table 2. Vancomycin MIC values for 15 VSSA strains and
20 hVISA strains ranged from 0.5 to 2.0 �g/ml. The impact of the addition of the
beta-lactam on the vancomycin MIC is shown in Table 2. The vancomycin MIC for all 15
VISA strains was 4 �g/ml. Vancomycin MIC values were reduced in the presence of
cefazolin, cefepime (FEP), ceftaroline, and nafcillin in all strains. Against 15 VSSA strains,
ceftaroline demonstrated the greatest reduction in vancomycin MIC values of all
antimicrobial agents. In descending order of reduction, cefazolin, nafcillin, and
cefepime provided reduced vancomycin MICs as well. Against the 15 VISA strains,
ceftaroline again demonstrated the greatest fold reduction of the vancomycin MIC.
Against 20 hVISA strains, the reduction in the vancomycin MIC with ceftaroline was

TABLE 1 MIC of vancomycin alone and in combination with beta-lactams against MRSA

Phenotype (n)a

MIC range (�g/ml)b

VAN alone VAN � CPT VAN � FEP VAN � CFZ VAN � NAF

VSSA (15) 0.5–2 0.0625–0.25 0.0625–1 0.0625–0.25 0.125–0.5
hVISA (20) 0.5–2 0.0625–0.5 0.0625–0.5 0.125–0.5 0.125–1
VISA (15) 4c 0.0625–0.25 0.5–2 0.0625–0.5 0.125–1
aVSSA, vancomycin-susceptible S. aureus; VISA, vancomycin-intermediate S. aureus; hVISA, heteroresistant
VISA; n, number of isolates tested.

bVAN, vancomycin; CPT, ceftaroline; FEP, cefepime; CFZ, cefazolin; NAF, nafcillin.
cValue for all tested isolates.
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similar to that of cefazolin and cefepime. Nafcillin provided lower reductions in van-
comycin MIC values against hVISA than other antimicrobial agents and against VSSA
and VISA strains. Three hVISA (R5450, R5483, and R6911), three VSSA (R7534, R5371, and
R6033), and three VISA (R6496, R4404, and R6296) strains selected for time-kill studies
are illustrated graphically in Fig. 1a to c, 2a to c, and 3a to c, respectively.

Time-kill analysis. In time-kill studies against the hVISA strains R5450, 5483, and
6911 (Fig. 1d to f), ceftaroline, cefazolin, cefepime, and nafcillin all demonstrated
synergistic activity with vancomycin. The combination of vancomycin plus ceftaroline
was more active than the combination of vancomycin plus any other tested antimi-
crobial. Against the VSSA strains R7534, 5371, and 6033 (Fig. 2d to f), synergy with
vancomycin was demonstrated for ceftaroline, cefazolin, cefepime, and nafcillin. The
combination of vancomycin and nafcillin was not as active as the combination of
vancomycin and other beta-lactams.

In time-kill studies against the VISA strains, R6496, 4404, and 6296 (Fig. 3d to f), CPT,
CFZ, and FEP all demonstrated similar degrees of killing at 24 h, and all showed
synergistic activity with vancomycin.

Each of these combinations was also superior to any single agent against isolates of
all three of these phenotypes, and each was bactericidal as well (P � 0.001 for all
comparisons). All single-agent exposures demonstrated no activity at 24 h. The activity
of vancomycin combined with any of the beta-lactams was superior (P � 0.001) to that
of any agent alone.

DISCUSSION

In this investigation, we evaluated a large group of beta-lactams combined with
vancomycin to evaluate the potential for synergy against MRSA strains with various
susceptibilities to vancomycin. We demonstrated that, when combined with vanco-
mycin, several beta-lactams, namely, ceftaroline, cefazolin, cefepime, and nafcillin,
all lowered the vancomycin MIC value and provided synergistic activity via time-kill
analysis against VSSA, hVISA, and VISA strains.

Based on combination susceptibility and time-kill curve analysis, ceftaroline had the
most beneficial effect when it was combined with vancomycin. It is of interest that a
similar effect was observed for all tested beta-lactam agents in combination with
vancomycin even though only ceftaroline had anti-MRSA activity.

One potential explanation for this observation is the hindrance of peptidoglycan

TABLE 2 MIC reductions of vancomycin in combinations with beta-lactams against MRSAa

Phenotype (n)b

VAN MIC reduction (fold change from baseline)

Mean SD Median Range

VSSA (15)
VAN � CPT 8.00 2.62 8 4–16
VAN � FEP 3.60 2.03 4 2–8
VAN � CFZ 7.47 1.41 8 4–8
VAN � NAF 4.13 1.19 4 2–8

hVISA (20)
VAN � CPT 4.90 2.19 4 2–8
VAN � FEP 4.00 1.95 4 2–8
VAN � CFZ 4.30 2.08 4 2–8
VAN � NAF 2.60 0.94 2 2–4

VISA (15)
VAN � CPT 35.20 16.21 32 16–64
VAN � FEP 4.13 1.77 4 2–8
VAN � CFZ 18.67 14.71 16 8–64
VAN � NAF 12.00 6.93 8 4–32

aMRSA, methicillin-resistant S. aureus.
bVAN, vancomycin; CPT, ceftaroline; FEP, cefepime; CFZ, cefazolin; NAF, nafcillin; VSSA, vancomycin-
susceptible S. aureus; VISA, vancomycin-intermediate S. aureus; hVISA, heteroresistant VISA; n, number of
isolates tested.
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biosynthesis, in this case by vancomycin, which leads to reduced beta-lactam resistance
and decreases the potential for unwanted antibacterial resistance. MRSA strains contain
an extra penicillin binding protein (PBP), PBP2a, in addition to the four PBPs found in
all staphylococcal strains. In the presence of beta-lactams, PBP2a is assumed to be a
transpeptidase essential for continued cell wall synthesis and growth, performing all
cross-linking of the pentaglycine cross-bridges by transpeptidation of the terminal
D-Ala (25, 26). Another potential explanation is that vancomycin and beta-lactams
inhibit peptidoglycan polymerization through distinct mechanisms at different stages
of cell wall synthesis and thus potentiate each other’s effects (17, 24, 27). While there
has been some data to suggest that beta-lactam specificity for PBP1 may be important

FIG 1 (a to c) Vancomycin (VAN) MIC values in the presence of several beta-lactam agents against VSSA strains R7534, R5371,
and R6033. No combo, vancomycin MIC values in Mueller-Hinton broth without the presence of beta-lactams. (d to f)
Twenty-four-hour time-kill curves against strains R7534, R5371, and R6033. CPT, ceftaroline; FEP, cefepime; CFZ, cefazolin; NAF,
nafcillin. GC, drug-free growth control. Vancomycin was used at 0.5x the MIC in each experiment. Concentrations of CFZ, CPT,
FEP, and NAF were performed at 0.5x the MIC or the biological free peak concentration, whichever was lower. Color
identification: maroon solid line, growth control; black solid line, VAN; pink solid line, CFZ; pink dashed line, VAN�CFZ; red
solid line, CPT; red dashed line, VAN�CPT; blue solid line, FEP; blue dashed line, VAN�FEP; green solid line, NAF; green dashed
line, VAN�NAF.
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for synergy between daptomycin and beta-lactams, the same specificity has not been
shown with vancomycin and beta-lactams to our knowledge (28). In fact, we were able
to demonstrate an advantage only with ceftaroline, which clearly has increased affinity
for PBP2a.

Additionally, previous studies have demonstrated that beta-lactam exposure in-
creases vancomycin activity as well. It has been shown that a thickened cell wall is
one of the primary mechanisms responsible for vancomycin nonsusceptibility of
Staphylococcus aureus (29). The thickened cell wall not only traps vancomycin
molecules but also significantly reduces the time that vancomycin completely
inhibits peptidoglycan synthesis (27, 30). Therefore, the decrease in cell wall thickness
by beta-lactams facilitates vancomycin activity. Beta-lactams also appear to chemically

FIG 2 (a to c) Vancomycin (VAN) MIC values in the presence of several beta-lactam agents against hVISA strains R5450, R5483,
and R6911. No combo, vancomycin MIC values in Mueller-Hinton broth without the presence of beta-lactams. (d to f)
Twenty-four-hour time-kill curves against strains R5450, R5483, and R6911. CPT, ceftaroline; FEP, cefepime; CFZ, cefazolin; NAF,
nafcillin. GC, drug-free growth control. Vancomycin was used at 0.5x the MIC in each experiment. Concentrations of CFZ, CPT,
FEP, and NAF were performed at 0.5x the MIC or the biologic free peak, whichever was lower. Color identification: maroon solid
line, growth control; black solid line, VAN; pink solid line, CFZ; pink dashed line, VAN�CFZ; red solid line, CPT; red dashed line,
VAN�CPT; blue solid line, FEP; blue dashed line, VAN�FEP; green solid line, NAF; green dashed line, VAN�NAF.
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and morphologically alter the surface of S. aureus, increasing target-specific vancomy-
cin binding (27). As shown in these previous studies, it appears that as the MIC of
vancomycin increases, the MIC of beta-lactams decreases due to the seesaw effect
(9–11).

There are some limitations to the current study as the data presented here are from
short-duration experiments and demonstrate only in vitro efficacy. Although the com-
bination MIC values obtained from this study may not translate directly into clinical
benefit, the results serve to provide further evidence of the beneficial effects of using
beta-lactams in combination with vancomycin against VSSA, hVISA, and VISA. Addi-
tional research is warranted to determine the clinical utility of this novel combination.

FIG 3 (a to c) Vancomycin (VAN) MIC values in the presence of several beta-lactam agents against VISA strains R6496, R4404,
and R6296. No combo, vancomycin MIC values in Mueller-Hinton broth without the presence of beta-lactams. (d to f)
Twenty-four-hour time-kill curves against strains R6496, R4404, and R6296. Broken lines, single agents; continuous lines,
combination regimens. CPT, ceftaroline; FEP, cefepime; CFZ, cefazolin; NAF, nafcillin. GC, drug-free growth control. Vancomycin
was used at 0.5x the MIC in each experiment. Concentrations of CFZ, CPT, FEP, and NAF were performed at 0.5x the MIC or
the biologic free peak, which ever was lower. Color identification: maroon solid line, growth control; black solid line, VAN; pink
solid line, CFZ; pink dashed line, VAN�CFZ; red solid line, CPT; red dashed line, VAN�CPT; blue solid line, FEP; blue dashed
line, VAN�FEP; green solid line, NAF; green dashed line, VAN�NAF.

Tran and Rybak Antimicrobial Agents and Chemotherapy

June 2018 Volume 62 Issue 6 e00157-18 aac.asm.org 6

http://aac.asm.org


In conclusion, the results of our study demonstrate the ability of several beta-
lactams to provide synergistic activity with vancomycin. Our study provides evidence
for the use of vancomycin in combination with a beta-lactam against recurrent or
difficult-to-treat MRSA infections. Further research is warranted to elucidate the mech-
anisms of synergy between beta-lactams and vancomycin as well as to clarify the
potential role of the novel combinations in clinical settings.

MATERIALS AND METHODS
Bacterial strains. Fifty unique clinical MRSA strains with various susceptibilities to vancomycin,

including 15 VSSA, 20 hVISA, and 15 VISA strains, were utilized for MIC testing. VISA strains were
confirmed by MIC testing. All hVISA or VSSA strains utilized in this study were proven to be hVISA or VSSA
by the population analysis profile-area under curve (PAP-AUC) ratio using Mu3 as a positive control
(provided by the Anti-Infective Research Laboratory, Detroit, MI) (31, 32). Isolates were collected from
several hospitals throughout metropolitan Detroit, MI, and from the Anti-Infective Research Laboratory
strain library. Nine representative strains were randomly selected from the group of MRSA isolates for
time-kill analysis.

Antimicrobials agents. Vancomycin, nafcillin, and cefazolin were purchased from a commercial
source (Sigma Chemical Company, St. Louis, MO, and Sandoz, Inc., Princeton, NJ). Ceftaroline was
obtained from its manufacturer (Allergan, Parsippany, NJ). Cefepime was purchased from its manufac-
turer (Hospira, Lake Forest, IL).

Media. In vitro experiments were performed in Mueller-Hinton broth (MHB; Difco, Detroit, MI)
supplemented with 25-mg/liter calcium and 12.5-mg/liter magnesium. According to recent CLSI guide-
lines, MHB used for experiments related to nafcillin was supplemented with 2% sodium chloride (SMHB);
MHB used for experiments related to ceftaroline was supplemented with dimethyl sulfoxide (DMSO) to
30% total volume; and MHB used for experiments related to cefazolin was supplemented with phosphate
buffer (pH 6.0, 0.1 mol/liter) (33). Brain heart infusion agar (BHIA; Difco Laboratories, San Jose, CA)
supplemented with 1 mg/liter vancomycin was used to subculture VISA strains in order to maintain the
phenotype. Colony counts were determined using tryptic soy agar (TSA; Difco, Detroit, MI) plates for
other MRSA strains. BHIA or Mueller-Hinton agar (MHA; Difco, Detroit, MI) supplemented with 3� the MIC
was used to test for the emergence of resistance from the time-kill curve experiments.

Susceptibility testing. MIC values of the study antimicrobial agents were determined in duplicate
by broth microdilution at approximately 106 CFU/ml according to guidelines of the Clinical and
Laboratory Standards Institute (CLSI). All samples were incubated at 35°C for 24 h before being read (34).

Time-kill analysis. The potential for synergy with vancomycin plus nafcillin, cefazolin, or ceftaroline
was determined by time-kill methods in MHB as the growth medium at an initial bacterial inoculum of
106 to 107 log10 CFU/ml. Time-kill experiments were performed at 0.5� the MIC of respective antibiotics
and in triplicate for all antibiotic regimens to ensure reproducibility. Each antimicrobial agent was
analyzed alone and in combination with vancomycin. Time-kill curve sampling and quantification of
CFU/ml were performed as previously described (9, 35). Bactericidal activity was defined as a �3-log10

CFU/ml reduction from baseline. Synergy was defined as a �2-log10 CFU/ml increase in killing at 24 h
with the combination in comparison to killing by the most active single drug. Combinations that resulted
in �1-log10 bacterial growth in comparison to the least active single agent were considered antagonistic.
All combinations not meeting the definition of synergy or antagonism were considered indifferent.

Statistical analysis. Time-kill curve changes in the number of CFU/milliliter were compared by
one-way analysis of variance (ANOVA) with Tukey’s post hoc test. All statistical analyses were done with
IBM SPSS Statistical Software (release 25; SPSS, Inc., Chicago, IL). A P value of �0.05 was considered
significant.
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