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ABSTRACT Bacteriophage-borne lytic enzymes, also named lysins or enzybiotics,
are efficient agents for the killing of bacterial pathogens. The colonization of the re-
spiratory tract by Streptococcus pneumoniae is a prerequisite for the establishment of
the infection process. Hence, we have evaluated the antibacterial activities of three
different lysins against pneumococcal colonization using human nasopharyngeal and
lung epithelial cells as well as a mouse model of nasopharyngeal colonization. The
lysins tested were the wild-type Cpl-1, the engineered Cpl-7S, and the chimera Cpl-
711. Moreover, we included amoxicillin as a comparator antibiotic. Human epithelial
cells were infected with three different multidrug-resistant clinical isolates of S. pneu-
moniae followed by a single dose of the corresponding lysin. The antimicrobial activ-
ities of these lysins were also evaluated using a mouse nasopharyngeal carriage
model. The exposure of the infected epithelial cells to Cpl-7S did not result in the
killing of any of the pneumococcal strains investigated. However, the treatment with
Cpl-1 or Cpl-711 increased the killing of S. pneumoniae organisms adhered to both
types of human epithelial cells, with Cpl-711 being more effective than Cpl-1, at
subinhibitory concentrations. In addition, a treatment with amoxicillin had no effect
on reducing the carrier state, whereas mice treated by the intranasal route with Cpl-
711 showed significantly reduced nasopharyngeal colonization, with no detection of
bacterial load in 20 to 40% of the mice. This study indicates that Cpl-1 and Cpl-711
lysins might be promising antimicrobial candidates for therapy against pneumococ-
cal colonization.
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Streptococcus pneumoniae is one of the major etiologic agents of acute otitis media,
community-acquired pneumonia, sepsis, and bacterial meningitis, causing high

morbidity and mortality rates worldwide (1, 2). Asymptomatic carriage is the prereq-
uisite for all these infections and is more frequently associated with early childhood (3).
The successful colonization of the upper respiratory tract is critical for the horizontal
spread of genes involved in antibiotic resistance and/or virulence and may lead to the
development of invasive pneumococcal disease (IPD), which is the most severe clinical
manifestation (3, 4). In addition, microbial colonization of the lower respiratory tract is
associated with chronic obstructive pulmonary disease (COPD), in which exacerbations
and airway inflammation are important aspects related to persistence (5).

Purified phage-borne lysins (also known as endolysins and enzybiotics) represent a
promising alternative to current antibacterials, as lysins kill susceptible bacteria much
faster than standard antibiotics (6, 7). Lysins are murein hydrolases that specifically
cleave different bonds of the bacterial peptidoglycan, thereby triggering osmotic lysis.
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These specialized enzymes generally display a modular organization, containing an
N-terminal catalytic domain (CD) and a C-terminal cell wall-binding domain (CWBD),
with a flexible linker region connecting both domains (7). This architecture has enabled
the successful swapping of functional domains to construct new chimeric proteins and
the engineering of wild-type enzymes to improve the catalytic or stability properties,
leading to a modification of the spectrum of susceptible bacteria (8–11).

In the pneumococcal system, several lysins have been characterized, such as Pal
amidase (12) and Cpl-1, Cpl-7, Cpl-7S, and Cpl-711 lysozymes (9, 10). The lysozymes
Cpl-1 and Cpl-7 are harbored by bacteriophages Cp-1 and Cp-7, respectively, and their
CDs belong to the glycosyl hydrolase family 25 (GH_25; PF01183). Cpl-7S is an engi-
neered variant derived from Cpl-7, in which 15 amino acid residues of the CWBD were
changed to enhance its bactericidal activity, and Cpl-711 is a synthetic chimera that
contains the CD from Cpl-7, at the N-terminal region, and the linker and CWBD of Cpl-1,
at the C-terminal region (Fig. 1). In terms of lytic efficacy and specificity, Cpl-1 and
Cpl-711 require the presence of choline residues in the teichoic acids of the pneumo-
coccal cell wall to perform their antibacterial activities, whereas Cpl-7S is choline
independent due to the presence of CW_7 repeats in its CWBD (9). Thus, Cpl-1 and
Cpl-711 show specific antipneumococcal activities against planktonic and biofilm cul-
tures, in contrast with Cpl-7S that has a broader range of susceptible bacteria and was
also capable of killing other relevant pathogens, including Streptococcus pyogenes and
Enterococcus faecalis (9). Moreover, this kind of lysin therapy has been shown to be
effective against a variety of severe pneumococcal infections, including meningitis,
pneumonia, and sepsis, with the advantage of a marked specificity (12–14).

It should be noted that although the protection activity of these three lysins against
systemic pneumococcal infection is documented (9, 10, 12–15), evidence demonstrat-
ing their efficacy against nasopharyngeal colonization by S. pneumoniae has not been
reported. In addition, the therapeutic use of enzybiotics against chronic bacterial
respiratory infections is relatively unexplored. This is important since it is generally
thought that nasopharyngeal carriage by S. pneumoniae is essential for the pathogen-
esis process, because it is a prerequisite for invasive disease (16). Although the
introduction of current antipneumococcal conjugate vaccines has decreased nasopha-
ryngeal colonization, more than 30% of children are still asymptomatic carriers of
pneumococci with multiple serotypes (17–19). In addition, S. pneumoniae is one of the
most frequent pathogens causing acute exacerbations and recurrent pneumonia epi-
sodes in COPD patients (5). From the clinical perspective, this situation is even worse,
as multidrug-resistant pneumococcal isolates are a frequent cause of persistent infec-
tions in COPD patients and antibiotic resistance compromises treatment outcome (20,
21). Thus, antimicrobial approaches that utilize phage lysins might be a potential
strategy to diminish the colonization process and even to clear persistent bacteria in

FIG 1 Schematic representations and descriptions of parental Cpl-1, Cpl-7, engineered Cpl-7S, and chimeric
Cpl-711 lysozymes. Cpl-711 contains the CD of Cpl-7S, the linker of Cpl-1, and the CWBD of Cpl-1. CDs belong to
the GH_25 family of glycosyl hydrolases and share 159 of 186 amino acid residues between Cpl-1 (hatched bars)
and Cpl-7 (open bars). Linkers of Cpl-1 (13 amino acid residues) and Cpl-7 (16 amino acid residues) are not depicted
at scale. Nt, N-terminal domain; Ct, C-terminal domain.
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chronic respiratory infections. As phage lysins kill bacteria rapidly on contact, the use
of these lytic enzymes may reduce bacterial attachment to epithelial cells of the upper
and lower respiratory tracts.

In this study, we investigated the antimicrobial activity of Cpl-1, Cpl-7S, and Cpl-711
lysins against multidrug-resistant (MDR) pneumococcal strains attached to human
nasopharyngeal and lung epithelial cells. In addition, we studied their ability to clear
pneumococci from the nasopharynx by using a mouse model of infection. Our results
suggest that Cpl-1 and Cpl-711 can be used as novel therapeutic strategies to fight
persistent colonizations of the respiratory tract by S. pneumoniae.

RESULTS
Determination of MICs for clinical S. pneumoniae isolates. Since the susceptibil-

ity patterns of the three MDR S. pneumoniae clinical isolates to the different lysins were
unknown, we tested them against common antibiotics and Cpl-1, Cpl-7S, and Cpl-711
lysins (Fig. 1 and Table 1). According to EUCAST breakpoints for S. pneumoniae, the
results revealed that the strains selected had different degrees of susceptibility, show-
ing resistance to at least three different antibiotics, including erythromycin (ERY) and
tetracycline (TET) for all the strains. In addition, isolate 48 (serotype 23F) had high MICs
to penicillin (PEN) and amoxicillin (AMX). Isolate 69 (serotype 19F) was resistant to PEN
and AMX, whereas isolate 3498 (serotype 8) showed high resistance to levofloxacin
(LVX). Among the three different lysins, Cpl-7S was the enzyme with lowest antimicro-
bial activity, showing the highest MICs, whereas Cpl-711 had the best activity, showing
the lowest MICs (Table 1).

Killing of S. pneumoniae attached to human lung epithelial cells. We first
studied the effects of Cpl-1, Cpl-7S, and Cpl-711 on the killing of S. pneumoniae
attached to lung epithelial A549 cells. The effect of the treatment at 10 �g/ml with
Cpl-1 or Cpl-711 on the killing of pneumococci attached to the cells was significant,
whereas Cpl-7S showed no detectable effect (Fig. 2A). The chimeric enzyme Cpl-711
was more effective than Cpl-1 against the clinical isolate 69 of serotype 19F (P � 0.05).
On the basis of these data, the effects of lower concentrations of enzybiotics were
evaluated only for Cpl-1 and Cpl-711. The incubation of infected cells with 5 �g/ml of
either compound reduced the viability of S. pneumoniae (Fig. 2B). At this dose, Cpl-711
showed a greater ability to kill attached pneumococci than Cpl-1, being statistically
significant for isolates 48 (P � 0.01) and 3498 (P � 0.001). At the lowest dose tested (1
�g/ml), Cpl-1 was apparently ineffective, whereas the chimera Cpl-711 significantly
reduced the viability of the attached bacteria, showing efficacy at subinhibitory con-
centrations (Fig. 2C). From the antimicrobial perspective, Cpl-1 was active in the killing
of the bacteria attached to lung cells only at concentrations equal to or higher than the
MIC (Fig. 2 and Table 1). Overall, Cpl-711 showed the highest efficacy against all isolates
at all concentrations tested.

To visualize the antimicrobial effect of these enzybiotics, confocal laser scanning
microscopy (CLSM) was used. A549 cells were infected with fluorescent clinical isolates
of S. pneumoniae (strains 48 and 69) and exposed to 10 �g/ml of Cpl-1 or Cpl-711

TABLE 1 Antimicrobial susceptibility of three MDR pneumococcal isolates

Treatment

MIC (�g/ml) of strain (serotype):

48 (23F) 69 (19F) 3498 (8)

PEN 8 2 0.015
ERY �128 �128 �128
LVX 2 1 16
TET 64 4 64
CHL 4 4 4
AMX 16 2 0.06
Cpl-1 4 8 2
Cpl-7S 64 128 64
Cpl-711 1 4 2
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(Fig. 3). Although only few cells were observed having bacteria attached after treat-
ments with the lysins, our results confirmed that the two lysins were effective in killing
the attached bacteria of both isolates, although Cpl-711 was significantly more effective
(P � 0.05) than Cpl-1 in killing isolate 69 (serotype 19F) (Fig. 3C and D).

Antimicrobial activity of lysins against MDR pneumococci attached to human
nasopharyngeal cells. The colonization of the nasopharynx is critical for the patho-
genesis of S. pneumoniae, as this environment is the main reservoir of the pathogen.
The use of antimicrobial agents to kill pneumococci attached to epithelial cells of the
upper respiratory tract may be a suitable strategy to fight this early stage of IPD. Human
nasopharyngeal epithelial cells were infected with MDR pneumococci and treated with
Cpl-1, Cpl-7S, and Cpl-711 as described above. The administration of 10 �g/ml of Cpl-1
and Cpl-711 significantly reduced the survival of all the investigated isolates, being very

FIG 2 Killing by lytic enzymes of MDR isolates of S. pneumoniae attached to human lung epithelial cells. A549 cells colonized with pneumococcal strains
were exposed to PBS (placebo) or to 10 �g/ml (A), 5 �g/ml (B), or 1 �g/ml (C) of either Cpl-1, Cpl-711, or Cpl-7S. Error bars represent the SDs and asterisks
indicate statistical significance of the lytic enzyme investigated compared to the placebo group; asterisks on the horizontal lines indicate significance
when Cpl-1 and Cpl-711 were compared.
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efficient with strains 48 and 3498; a more than 2-log reduction was observed, whereas
Cpl-7S showed no activity (Fig. 4A). The treatment with 5 �g/ml of either Cpl-1 or
Cpl-711 was still capable of reducing pneumococcal viability for strains 48 and 3498,
whereas only Cpl-711 showed efficacy against strain 69 (Fig. 4B). At the lowest dose,
Cpl-711 was effective against strains 48 and 3498 only (Fig. 4C). Overall, lysin Cpl-711
showed the highest activity for killing the pneumococci of the three clinical isolates
attached to nasopharyngeal cells.

FIG 3 Detachment of MDR pneumococcal strains from human lung cells. A549 cells were infected with the indicated pneumococcal strains, and 1 h later,
cells were exposed to PBS (as placebo) or to 10 �g/ml of Cpl-1 or Cpl-711. (A) CLSM images of cells infected with clinical isolate 48. (B) Percentages of
epithelial cells associated with at least one fluorescent bacterial cell. (C) CLSM images of cells infected with clinical isolate 69. (D) Percentages of epithelial
cells associated with at least one fluorescent bacterial cell. DNA was stained by Hoechst, actin cytoskeleton was visualized with rhodamine-phalloidin
staining, and bacterial isolates were fluorescently labeled with FAM-SE. For quantification, at least 100 epithelial cells were counted. Error bars represent
the SDs and asterisks indicate statistical significance of the lytic enzyme investigated compared to the placebo group. Asterisk on the horizontal line
indicates significance when Cpl-1 and Cpl-711 were compared.
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These experiments were repeated using fluorescently labeled bacteria and 10 �g/ml
of Cpl-1 and Cpl-711 to visualize the capacity of these enzymes to decrease the
colonization of the human nasopharynx (Fig. 5). The treatments with 10 �g/ml reduced
the numbers of pneumococci attached to the nasopharyngeal cells, confirming the
antimicrobial efficacy of these compounds (Fig. 5). Among the two lysins investigated,
Cpl-711 showed a higher efficiency than Cpl-1 in reducing the attachment of isolate 69
(serotype 19F) to nasopharyngeal cells (P � 0.05) (Fig. 5D).

�-Lactams are the antibiotics of choice in the treatment of pneumococcal infections.
To check the ability of AMX to fight pneumococcal colonization, lung and nasopha-
ryngeal epithelial cell lines were infected with MDR S. pneumoniae isolates and treated
with different concentrations of AMX (Fig. 6). We did not observe bacterial killing for
clinical isolate 48 (serotype 23F) at any concentration of AMX tested (Fig. 6A). One
possible explanation is that the higher dose used (10 �g/ml) was below the MIC for this

FIG 4 Bacterial killing by lytic enzymes of MDR isolates of S. pneumoniae attached to human nasopharyngeal epithelial cells. Detroit 562 cells were
infected with pneumococcal strains, and 1 h later, cells were exposed to PBS as placebo or to 10 �g/ml (A), 5 �g/ml (B), or 1 �g/ml (C) of either Cpl-1,
Cpl-711, or Cpl-7S. Error bars represent the SDs and asterisks indicate statistical significance of the lytic enzyme investigated compared to the placebo
group; asterisks on the horizontal lines indicate significance when Cpl-1 and Cpl-711 were compared.
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strain (Table 1). The survival of strain 69 (serotype 19F) was only significantly reduced
at the higher concentration tested (10 �g/ml), whereas 5 �g/ml (2.5� MIC) was
unsuccessful (Fig. 6B). Additionally, the effect of AMX was significant for killing the
AMX-susceptible strain 3498 (serotype 8) from the nasopharyngeal cell line, although
no significant effect was shown when tested on lung epithelial cells (Fig. 6C). One

FIG 5 Detachment of MDR pneumococcal strains from nasopharyngeal cells. Detroit 562 cells were infected with the indicated pneumococcal strains,
and 1 h later, cells were exposed to PBS (as placebo) or to 10 �g/ml of Cpl-1 or Cpl-711. (A) CLSM images of cells infected with clinical isolate 48. (B)
Percentages of positive epithelial cells associated with at least one fluorescent bacterial cell. (C) CLSM images of cells infected with clinical isolate 69. (D)
Percentages of positive epithelial cells associated with at least one fluorescent bacterial cell. DNA was stained by Hoechst, actin cytoskeleton was
visualized with rhodamine-phalloidin staining, and bacterial isolates were fluorescently labeled with FAM-SE. For quantification, at least 100 epithelial cells
were counted. Error bars represent the SDs and asterisks indicate statistical significance of the lytic enzyme investigated compared to the placebo group.
Asterisk on the horizontal line indicates significance when Cpl-1 and Cpl-711 were compared.
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possible explanation for the limited effect of AMX in these assays might be the short
exposure of the infected cells to this antibiotic. This possibility might explain the
relatively minor effect observed for AMX, since a 1-h exposure may not be enough time
to induce cell death under these conditions, which would confirm that the lysins kill
bacteria more rapidly than antibiotics. Overall, these results suggest that AMX is only
effective under certain settings and when the concentration administered is at least 5
times higher than the MIC.

In vivo clearance of nasopharyngeal carriage by enzybiotics. Eradication (or
even a significant reduction) of the carrier state is likely to have a critical impact on the
transmission of MDR S. pneumoniae strains and, consequently, on the incidence of IPD.
To test this possibility in a mouse model of colonization, we utilized strain 48 (serotype
23F), which is an MDR clinical isolate of S. pneumoniae with high levels of resistance to
�-lactams and macrolides. Nasopharyngeal colonization with this isolate was estab-
lished in groups of mice, and at 40 h postcolonization, animals were treated by the
intranasal route with phosphate-buffered saline ([PBS] as a placebo) or with 10 �g per
mouse of Cpl-7S, Cpl-1, or Cpl-711 (Fig. 7A). The administration of a single dose of these
enzybiotics significantly reduced colonization, demonstrating the in vivo antimicrobial
activity of all these enzymes. Among the lysins tested, only Cpl-711 was able to

FIG 6 Bacterial killing by AMX of MDR isolates of S. pneumoniae on lung (A549) or nasopharyngeal (D562)
epithelial cells. Cells colonized with pneumococcal strains were exposed to PBS (placebo) or AMX (10
�g/ml, 5 �g/ml, 1 �g/ml). (A) Strain 48; (B) strain 69; (C) strain 3498. Error bars represent the SDs and
asterisks indicate statistical significance of the treatment with AMX compared to the placebo group.
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eradicate nasopharyngeal carriage in up to 20% of the mice, suggesting that this
enzybiotic is the most effective in the clearance of the bacteria colonizing the upper
respiratory tract (Fig. 7A).

To reinforce these findings, nasopharyngeal carriage was repeated using a different
clinical isolate, isolate 69 (serotype 19F), and AMX was included to evaluate the impact
of a common antibiotic in our in vivo model of colonization. The administration of a
single dose (10 �g/ml) of AMX, a dose 5 times higher than the MIC, did not affect the
colonization by this strain (Fig. 7B). However, the administration of either of the three
lytic enzymes reduced the nasopharyngeal colonization, with Cpl-711 being the en-
zyme with the highest activity (P � 0.05 comparing Cpl-711 versus Cpl-7S or Cpl-1), not
only in bacterial killing but also in the nasopharyngeal clearance, as 20% of the mice
had no detectable pneumococci (Fig. 7B). To evaluate the impact of giving repeated
doses on the nasopharyngeal carriage of S. pneumoniae, three doses were adminis-
tered, at 48 h, 72 h, and 96 h after colonization. Here, Cpl-711 was the most effective

FIG 7 Antimicrobial activity of lytic enzymes Cpl-1, Cpl-711, and Cpl-7S administered by the intranasal
route against nasopharyngeal colonization in mice. (A) Colonization with isolate 48 and a single dose of
10 �g/ml of the different lytic enzymes (or PBS as placebo) administered at 40 h postinfection (pi). (B)
Colonization with isolate 69 and a single dose of 10 �g/ml of the different lytic enzymes, AMX, or PBS
(as placebo) administered at 40 h postinfection (pi). (C) Colonization with isolate 69 and administration
of 10 �g/ml of the different lytic enzymes, AMX, or PBS (as placebo) at 48 h, 72 h, and 96 h postinfection
(pi). Results are expressed as bacterial counts obtained from the nasopharyngeal lavage fluid. Error bars
represent the SDs and asterisks indicate statistical significance of the lytic enzyme investigated compared
to the placebo group (Student’s t tests). Analysis using Kruskal-Wallis test showed P values of �0.001 for
panels A, B, and C. Asterisks on the horizontal lines indicate significance between Cpl-711 and lysins, and
dotted lines represent the limit of bacterial detection.
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enzybiotic investigated, showing complete eradication of the carrier state in 40% of the
mice (Fig. 7C). The overall log reduction for the three lysins was compared using the
Kruskal-Wallis test (P � 0.001), showing significant effects of the different lysins on the
killing of S. pneumoniae attached to the nasopharynx, with Cpl-711 being the most
effective (Fig. 7).

DISCUSSION

The use of purified bacteriophage-borne lytic enzymes is an alternative therapeutic
strategy for the prevention and control of diseases caused by Gram-positive bacteria,
including S. pneumoniae (6, 12–14, 22). The majority of the studies reporting the
therapeutic potential of phage lysins are focused on the treatment of severe invasive
infections, such as sepsis or meningitis (9, 10, 12, 13, 15), as well as surface-associated
infections, including those from biofilms (23–26). An alternative application of phage
lysins could be for diminishing the colonization process by bacterial pathogens. The use
of lytic enzymes to remove bacterial colonization of the vagina by group B streptococci
(24) or the oropharynx by S. pyogenes (27) has been proposed, but to our knowledge,
there is only one report showing efficacy of a lysin (i.e., Pal amidase) against nasopha-
ryngeal colonization by S. pneumoniae (25). Furthermore, the bacterial killing activity of
phage lysins against pneumococcal isolates attached to epithelial cells located in the
upper and lower respiratory tracts and their potential as decolonizing drugs were
unknown.

Since nasopharyngeal colonization by pneumococcus is a prerequisite for develop-
ing IPD (3, 16), the use of certain antibiotics to reduce (or even eliminate) carriage has
been proposed, although the long-term use of this prophylactic strategy might con-
tribute to an increased carriage of nonsusceptible pneumococcal isolates (28–32). The
administration of 10 �g of AMX (0.5 mg/kg) by the intranasal route did not reduce
pneumococcal colonization in our mouse model. The lack of activity of AMX was not
unexpected given the dose and route used, as previous studies have shown that
treatment with 100 �g of penicillin by the intranasal route was insufficient to decrease
nasopharyngeal colonization by pneumococcal resistant strains (33).

The major advantages of using phage lysins are the high degree of specificity of
these compounds, their effectiveness against MDR pathogens, their low toxicity, and
the low probability of resistance development (6, 22, 25). Our study shows that Cpl-1
and, in particular, Cpl-711, are promising enzybiotics to reduce nasopharyngeal carriage
by antibiotic-susceptible and nonsusceptible pneumococci. The chimera Cpl-711 was
the most efficient lysin, reducing the colonization by S. pneumoniae not only of
nasopharyngeal cells but also of lung cells. This is of great relevance in terms of public
health, as the clearance of the pneumococcal carrier state might be beneficial for
certain groups at risk of suffering recurrent IPD episodes (31, 34–37). The results of the
present study demonstrate that the local administration of enzybiotics successfully kills
the bacteria attached to nasopharyngeal and lung epithelial cells, being effective in the
reduction of colonization of cell tissues and mucous sites, which might be very
important from a prophylactic perspective.

In terms of chronic respiratory infections, patients with COPD are at a high risk of
developing recurrent IPD (38, 39). The importance of pneumococcal infections affecting
patients with chronic medical conditions resides in the difficulty of clearing persistent
pneumococcal strains from their lower respiratory tracts (40, 41). In this sense, it would
be reasonable that, in a future work and by following an approach similar to that of
conventional inhalers for human use, the administration of Cpl-711 or Cpl-1 by the
intranasal route could effectively decrease the attachment of S. pneumoniae to human
lungs. This hypothetical therapeutic approach might be useful with regard to the
outcome of the infection in patients suffering recurrent pneumonia episodes associ-
ated with COPD or other chronic respiratory conditions in which S. pneumoniae is one
of the major etiologic agents (42, 43). This is in agreement with previous observations
showing that phage therapy may be an attractive strategy to fight pulmonary infec-
tions (44). As Cpl-711 and Cpl-1 were the most effective lytic enzymes against pneu-
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mococcal infections associated with cell surfaces, they might be promising candidates
against airway colonizations by clinical isolates of S. pneumoniae.

Antimicrobial alternatives using phage lysins may also be useful to reduce the
spread of MDR pneumococcal strains, as their emergence is of great concern world-
wide. In addition, the use of lysins may be a promising therapy to avoid transmission
between children, who are the main carrier of S. pneumoniae and can have several
serotypes colonizing their nasopharynges simultaneously (17–19). Furthermore, the use
of these enzymes might be important for abolishing persistent and recurrent pneu-
mococcal respiratory infections affecting patients with chronic underlying diseases.

MATERIALS AND METHODS
Bacterial strains, culture conditions, and susceptibility testing. The S. pneumoniae MDR clinical

isolates used in this study included strain 48 (serotype 23F), strain 69 (serotype 19F), and strain 3498
(serotype 8). Pneumococcal isolates were cultured at 37°C under 5% CO2 on reconstituted tryptose blood
agar base (TSA) plates (Difco Laboratories) supplemented with 5% defibrinated sheep blood (Thermo
Scientific, Hampshire, UK) or in Todd-Hewitt broth supplemented with 0.5% yeast extract to an optical
density at 580 nm (OD580) of 0.4 (�108 CFU/ml) and stored at �80°C in 10% glycerol as single-use
aliquots. Escherichia coli strains, used for gene cloning and producing recombinant proteins, were grown
in LB medium with shaking at 37°C. Susceptibility tests to antibiotics PEN, ERY, LVX, TET, chloramphenicol
(CHL), and AMX were assessed three times by using the agar dilution technique (45) according to the
criteria of the Clinical and Laboratory Standards Institute (CLSI). MICs of Cpl-1, Cpl-7S, and Cpl-711were
determined by the microdilution method approved by the CLSI using cation-adjusted Mueller-Hinton
broth supplemented with 5% lysed horse blood, as previously described (10).

Production and purification of lysins. Overproduction and purification of lysin proteins were
performed as previously described (9, 10). The purity of the isolated proteins was checked using 10%
SDS-PAGE and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis. Protein
concentrations were determined spectrophotometrically using the corresponding molar absorption
coefficients at 280 nm. Before use, all proteins were equilibrated by dialysis in 20 mM sodium phosphate
buffer (pH 6.0).

Interaction of S. pneumoniae with human epithelial cells. Experimental procedures with human
epithelial cells were performed using Detroit 562 (D562) nasopharyngeal cells (CCL-138; ATCC) and A549
lung cells (CCL-185; ATCC), as previously described (46, 47). Monolayers were cultured to 90 to 95%
confluence in tissue culture flasks containing RPMI 1640 medium supplemented with 1 mM sodium
pyruvate or 1% HEPES for D562 or A549, respectively (46, 47). For adhesion assays, 105 cells (D562 or
A549) seeded in 24-well plates were infected with 2 � 106 CFU and incubated at 37°C in a 5% CO2

atmosphere for 1 h. For killing activity mediated by the enzybiotics of the study or AMX as a comparator
antibiotic, cells previously infected for 1 h were washed five times with PBS and incubated for an
additional hour in tissue culture medium containing PBS (as placebo) or different concentrations of Cpl-1,
Cpl-7S, or Cpl-711 as enzybiotics or AMX as an antibiotic to kill attached bacteria. The concentrations of
the lytic enzymes assayed and AMX were 10 �g/ml, 5 �g/ml, and 1 �g/ml. Finally, the cells were washed
five times with PBS and lysed with 300 �l of a solution containing 0.025% saponin-PBS for 10 min (48).
The viable bacteria recovered from infected cells were obtained by plating serial dilutions on blood agar
plates.

Confocal laser scanning microscopy. The S. pneumoniae strains described above were fluorescently
labeled by incubation with 6-carboxyfluorescein-succinimidyl ester ([FAM-SE] Molecular Probes), as
previously explained (48, 49). D562 and A549 cells infected with FAM-SE-labeled bacteria were seeded
on 12-mm circular coverslips for immunofluorescence staining. The coverslips containing the infected
cells were washed twice in PBS containing 0.1% saponin (in PBS) and once in PBS and were later
incubated for 30 min with staining solution containing Hoechst (Invitrogen) diluted 1/2,500 for DNA
staining and rhodamine-phalloidin (Invitrogen) diluted 1:200 for actin cytoskeleton detection. Finally, the
coverslips were washed twice in PBS containing 0.1% saponin, once in PBS, and once more in H2O and
were mounted with Aqua-poly/mount (Polysciences) and analyzed with a Leica spectral SP5 confocal
microscope using the Leica LAS-AF software.

Animal experiments. All the experiments involving the use of animals were performed in accor-
dance with the guidelines of the Bioethical and Animal Welfare Committee of Instituto de Salud Carlos
III (ISCIII) that reviewed and approved protocols CBA PA 52-2011-v2 and PROEX 218/15. The animals were
bred at the ISCIII animal facility in accordance with institutional guidelines for animal use and care. The
infection experiments conformed to the Spanish legislation (RD 53/2013) and European Union regula-
tions (2010/63/EU). C57BL/6 mice (8 to 16 weeks old) were used for the carriage model. To investigate
nasopharyngeal colonization, groups of at least five mice under anesthesia with isoflurane were
inoculated intranasally with 107 CFU (in a volume of 10 �l) of the pneumococcal strain 48 (serotype 23F),
as previously described (46). The administration of PBS or 10 �g per mouse of Cpl-1, Cpl-7S, or Cpl-711
by the intranasal route was initiated as a single dose 40 h after the induction of pneumococcal
colonization according to the schedule described previously (25). Five hours after the treatment, all
animals were killed, and the nasopharyngeal lavage fluid was collected, diluted, and plated for the
determination of viable bacteria (25, 46). To extend the results to a different pneumococcal strain, the
infection model described above was repeated using the clinical isolate 69 (serotype 19F), including an
extra group of mice treated with AMX (10 �g per mouse). To investigate the possibility of enhanced
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activity by treating with different doses of the different compounds, groups of 5 mice were colonized for
40 h with 10 �l of a bacterial suspension containing 107 CFU of strain 69. The administration of PBS or
10 �g per mouse of AMX, Cpl-1, Cpl-7S, or Cpl-711 by the intranasal route was initiated at 48 h, 72 h, and
96 h after bacterial colonization. Mice were killed after 120 h, and bacterial counts in the nasopharyngeal
lavage fluid were determined.

Statistical analysis. Data are representative of results obtained from repeated independent exper-
iments, and each data point represents the mean and standard deviation (SD) from 3 to 5 replicates.
Statistical analyses were performed by using two-tailed Student’s t tests (for two groups), and Kruskal-
Wallis tests were also used for the mouse model data. For statistical analysis, GraphPad InStat version 7.02
(GraphPad Software, San Diego, CA, USA) was used. Differences of the various treatments in comparison
to placebo or between the different lysins were considered statistically significant at a P value of �0.05
(*) and highly significant at P values of �0.01 (**) or �0.001 (***).
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