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Abstract

Objective—To review progress in understanding the methods and results concerning the causal 

contribution of body mass index to health and disease.

Method—In the context of conventional evidence focused on the relationship between BMI and 

health, we consider current literature on the the common, population based, genetic contribution to 

body mass index BMI and how this has fed into the developing field of applied epidemiology.

Results—Technological and analytical developments have driven considerable success in 

identifying genetic variants relevant to BMI. This has enabled the implementation of Mendelian 

randomization to address questions of causality. The product of this work has been the implication 

of BMI as a causal agent in a host of health outcomes. Further breakdown of causal pathways by 

integration with other omics technologies promises to deliver additional benefit.

Conclusion—Considerable progress has been made, though gaps remain in our understanding of 

BMI as a risk factor for health and disease. Whilst promising, applied genetic epidemiology 

should be considered alongside alternative methods for assessing the impact of BMI on health and 

in light of potential limitations which relate to inappropriate or nonspecific measures of obesity 

and the improper use of genetic instruments.
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Introduction

The pandemic status of high BMI (obesity) has been attributed to the rise of an “obesogenic” 

environment which tips the balance between energy intake and energy expenditure, driving 

individuals towards increased adiposity along environmentally determined lines (1, 2). 

Despite this it is important to realise that, within the same environment, not all individuals 

become overweight or obese and those that do have differential disease risk. In reality, a 

complex interplay of both genetic and environmental factors must be considered in order to 

better understand BMI and why it appears to have such a great health impact. Focusing on 

BMI specifically, whilst it is absolutely clear that there are strong and replicable associations 

between this risk factor and health, the interpretation of existing associations is not 

straightforward. In reality, a complex interplay of both genetic and environmental factors 

must be considered in order to better understand BMI as a phenotypic proxy for adiposity, 

why it appears to have such a great health impact and how this impact might be mitigated in 

future both at the individual and the population level.

The underlying aetiology of relationships between BMI and health outcomes is clearly 

complex and likely to be heterogeneous across differing populations, apparently healthy 

individuals and those with disease. It is perhaps not surprising that efforts to counter the 

impact of ~2.3billion overweight, >700million obese and ~$100billion per annum care bill 

(including targeted dietary intervention (3), weight loss programmes (4, 5) and 

pharmaceutical interventions (6, 7)) have failed to deliver lasting reductions in BMI (>2yr) 

at least at the level of the population. Currently, the only effective intervention for weight 

reduction is bariatric surgery, which is costly, not favourable for the treatment of moderate 

obesity (8).

Questions therefore remain as to why we continued to focus on BMI when we struggle to 

understand it as a measurement and fail to control or augment it at a policy or population 

level? More so, if we are content that the ease of BMI measurement is a justification for 

continued use, how might we gain insight into how and why BMI appears to be causally 

related to disease? In the context of conventional evidence focused on the relationship 

between BMI and health, this review aims to consider the current literature around the 

common, population based, genetic contribution to BMI/adiposity and how this has fed into 

the developing field of applied epidemiology in an effort to assess if and how the metric 

kg/m2 exerts a causal effect on health. In doing this, we will discuss the complications of 

measurement, complex genetic aetiology and idiosyncrasy of human phenotyping (and its 

effect on analysis and inference) before attempting to suggest likely future moves for BMI 

research.

Conventional approaches to the analysis of BMI and health

More than 1.9 billion adults, 18 years and older, were overweight with over 600 million 

obese in 2014. This represents the worldwide prevalence of obesity more than doubling 

between 1980 and 2014 and the consequences of this are put into morbid focus when one is 

reminded that raised BMI is a substantial risk factor for disease cardiovascular disease 

(which were the world leading cause of death in 2012), diabetes, musculoskeletal disorders 
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and some cancers (endometrial, breast, and colon) (World Health Organisation, 2015). The 

evidence for these relationships comes from a variety of sources, but importantly the relative 

simplicity of height and weight measurement has allowed for the formation and analysis of 

substantial BMI related data sets focused on these relationships.

Examples of this include the Prospective Studies Consortium (able to assess observational 

relationships between baseline BMI and mortality in a collection of 57 studies delivering 

894,576 participants mostly from Western Europe and North America(9) and an equally well 

sized initiative in Asian population based samples (including more than 1.14 million people 

recruited in 20 cohorts in Asia(10)) which have been able to give estimates as to the likely 

contribution of BMI variation to the risk of death and specific disease outcomes. Away from 

population specific differences hinting at the potential importance of body composition in 

BMI related effects, the relationship between BMI and mortality (with a marked 

cardiovascular component) is broadly consistent. Whilst not proven to be fully causal, these 

studies present a compelling illustration of these relationships.

This type of work has not been limited to the collection of semi-focused, large-scale 

investigations of mortality and common disease outcome, but also has been undertaken in a 

manner targeting specific disease outcomes. For example, a detailed examination of UK 

Clinical Practice Research Datalink (CPRD, www.cprd.com) was able to characterize the 

observational associations between BMI and cancer risk for the 22 most common cancer 

sites seen in UK medical record data(11). In this work, more than 5 million individual 

records reporting over 160000 cancers were investigated yielding evidence of association 

between BMI and 17 of 22 disease sub-types. Outside of likely confounding events driven 

by smoking, compelling association between BMI and disease risk are evident for cancers of 

the uterus, kidney, thyroid and leukaemia with more complex association signatures seen for 

liver, colon, ovarian breast cancers and together add to the growing range of non-specific 

disease risk alterations that appear linked to population based fluctuations in BMI.

Outside the realm of observational epidemiology, interventional studies in the form of 

randomized control trials (RCTs) have of course been applied. The most commonly 

evaluated interventions for BMI involve modifications to diet and/or physical activity levels 

as implemented in both children (12, 13) and adults (5, 14, 15, 16, 17). There are also RCT 

that have tested the efficacy of pharmacological interventions, most often alongside 

behavioural changes with the most commonly tested agent being Orlistat (4, 18, 19). 

However, the potential for pharmacological intervention is somewhat limited due to a lack of 

suitable drugs with favourable properties (20). Whilst most, although not all (12, 13), 

behavioural and/or pharmacological interventions result in a reduction in adiposity (as 

assessed by BMI or body weight), a major limitation of these studies with respect to 

inferring causality between BMI and health, is the lack of long-term follow-up, with a 12-

month endpoint being typical. Therefore, the conversion of this reduction in BMI to a 

reduced incidence of disease later in life is not well evidenced. Indeed, apparently beneficial 

changes in cardiovascular risk factors, such as lipid profile and blood pressure, have been 

used to bolster conclusions regarding health benefits despite results from at least one longer-

term trial suggesting that the assumed link between these intermediates and cardiovascular 

mortality may not be valid (14).
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In contrast to most behavioural intervention studies, RCTs of surgical intervention have had 

longer followup periods allowing a more direct assessment of the impact of weight reduction 

on mortality. The long-term health impact results of RCTs for surgical intervention have 

been mixed and whilst there is evidence of a reduction in mortality following surgery (21, 

22, 23), concerns have been raised around the potential for differences between surgical 

cases and untreated controls to complicate analyses (22). There is also no assurance that the 

effects seen after these procedures is directly related to BMI/weight reduction, with short 

term impact of surgery being marked and arguably independent of weight(24). Furthermore, 

the cost-effectiveness of surgery depends on the patient’s level of obesity on admittance and 

the relative improvement in quality of life and health achieved subsequently (25).

Taken together, whilst there is a deep literature focused on the examination of associations 

between BMI and common health outcomes within both observational and intervention 

designs, these approaches remain limited in their ability to assess the causal contribution of 

BMI to disease. Observational studies have been undertaken at scale, but retain the 

conventional limitations to inference in confounding, bias and reverse causation and 

although trials of BMI intervention are conceptually more inceptive, limitations to the 

interventions themselves and the ability to alter BMI hamper the interpretation of long term 

health implications.

Genetic contributions to BMI

Common form obesity, assessed simply by BMI level and which does not segregate in 

families, has a multifactorial basis. Individuals may carry any number of common genetic 

variants which contribute to variation in BMI at the level of the population, but most of these 

exert only small effects on adiposity. Genomewide association studies (GWAS) employ a 

hypothesis-free approach to identify variants consistently associated with complex traits (26) 

and use genotyping chips with the ability to score hundreds of thousand to millions of single 

nucleotide polymorphisms (SNPs) positioned across the entire genome. This approach has 

revolutionised the search for genetic associations and the interrogation of the common 

disease/common variant hypothesis specifically (27) and in the case of BMI, the first real 

progress in the application of GWAS approaches came with a study of just under 40,000 

participants and from an initial search for type 2 diabetes loci (28). This work identified a 

locus with common variants reliably associated with BMI where carriers of two copies of 

the minor allele at FTOrs9939609 were on average 3kg heavier than the major allele carriers 

(29). Immediately after this first wave of GWAS analyses, it was acknowledged that 

substantially larger sample sizes, greater genomic coverage through advanced reference 

panel use and imputation (30) and more rigorous discovery and replication phases through 

extensive consortia derived meta-analysis were needed to fully explore the common genetic 

contribution to complex traits like BMI (31, 32). The most recent of these involves 125 

independent cohort studies and totalling nearly 340,000 participants and has brought the list 

of confirmed associated genetic variants to 97 (Figure 1) (33).

Despite the recent success in identifying and verifying almost 100 loci with confirmed BMI 

association, together they only explain in the region of 2.7% of the phenotypic variance in 

BMI (33). Even with the addition of these new associated genetic variants, it is evident that 
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although each new (bigger) GWMA offers new biological insight through novel gene 

discovery, the newly discovered associations are the product of larger studies and not larger 

effects (Figure 2). Saving the scaling up of population based sequencing initiatives with the 

capacity to score rare variants(34), the next steps are therefore to make use of the variants 

we have to try to understand the effects of BMI. Importantly even small genetic effects are 

potentially useful for this in the correct conditions and the development of MR has given 

utility to the “so what” gene variant associations GWAS is efficient at capturing.

Applied genetic epidemiology and Mendelian randomisation

Developments in the genetics of obesity have opened up a new avenue of investigation to 

researchers interested in dissecting the relationship between BMI and health – Mendelian 

randomisation (MR). In contrast to direct measurement, germline genotypes reliably 

associated with risk factors can act as proxy measurements for risk factors offering several 

advantages: Genotypes are relatively easy to measure, are stable through time, are largely 

immutable and are not correlated with confounding factors as a result of the mechanisms of 

Mendelian inheritance(35, 36). An alternative approach to the analysis of BMI is therefore 

to use genetic predictors to act as proxies of the feature (or exposure) one is concerned with 

in order to help investigate causality(37, 38, 39)(Figure 3A&B). In MR, genetic variation 

fulfils the role of an instrumental variable (40) where the presence of variance in BMI 

explained by genotype is orthogonal to confounding factors and where genotype is assumed 

only to exert effect on health outcome through BMI. Whilst these assumptions are clearly 

open to challenge (through pleiotropy and other phenomena discussed at the end of this 

review), this approach provides an important contribution to the weight of evidence that may 

exist around a given epidemiological association. It is important to note that applied genetic 

epidemiology and MR is just one approach to the assessment of causality outside of 

RCTs(41).

The first application of MR to BMI followed rapidly on from the discovery of 

FTO(rs9939609) and examined 10 metabolic traits. Authors of this study concluded that the 

FTO genotype was associated with metabolic traits to an extent entirely consistent with its 

effect on BMI although power limitations meant causal relationships could only be 

confirmed for fasting insulin, glucose, triglycerides and lower high-density lipoprotein 

cholesterol (HDL-C) (42). By exploiting the ability of genetic variants to model lifetime 

exposure, researchers have also been able to explore the potential long-term effects of 

increased adiposity on health. To date, MR studies using BMI-associated variants have 

provided evidence of a causal effect of greater adiposity on a number of indicators of 

reduced cardiovascular health, including increased blood pressure (43), increased fasting 

glucose and insulin (44), decreased HDL-C (44) and increased systemic inflammation (45). 

Causal inference with respect to complex diseases is challenging however, a causal role for 

increased adiposity has been evidenced for type 2 diabetes T2D) (44) and ischaemic heart 

disease (IHD) (46). There are also examples of MR being applied to outcomes and traits 

beyond the classical cardiometabolic outcomes, including mental health (47, 48), childhood 

asthma (49), bone mass in childhood (50), uric acid (51), cancer (52) and trans-generational 

effects such as foetal over nutrition (40).
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As well as these simple investigations of the causal impact of BMI on health-related factors, 

bidirectional assessments (39) have also been undertaken (Figure 3C). For example, 

exploring the relationship between the acute phase reactant C-reactive protein (CRP) and 

BMI, bidirectional MR has been used to exploit variation at independent BMI and CRP 

associated variants to evaluate whether BMI had a causal effect on CRP and simultaneously 

variation at the CRP loci to assess whether CRP had a causal effect on BMI (53). This work 

has provided evidence implicating BMI as a causal agent in inflammation and asserting 

directionality in an otherwise unclear network of complex phenotypes (45, 54). Other cases 

where causal association is likely to run in both directions or suitable instruments are 

unavailable, results may be less clearly interpreted. Work implicating BMI in the aetiology 

of activity patterns in young participants recently illustrated this point - whilst the impact of 

BMI on activity was marked and likely to be real, the reciprocal relationship (which is likely 

to be present) was not possible to either exclude or describe precisely (55).

One of the key parts of the MR process is the referral of evidence for causal relationships 

generated through the use of genetic data back to the existing observational estimates. A 

good example of this and the potential impact of MR analyses can be seen in that of C-

reactive protein and the marked differences in effect estimates that have been generated from 

observational and MR analyses with respect to effects on cardiovascular health outcomes(56, 

57, 58, 59, 60). In this case, it is the contrast between MR derived and observational 

estimates which provides information given a lack of support for strong observational 

effects. In contrast to this, one of the paradoxically dissatisfying observations from MR 

analyses of BMI as a risk factor is the breadth of apparenlty causal associations (bar perhaps 

dental caries and depression and foetal overnutrition(61, 62, 63, 64).

Blood pressure and cardiovascular health outcomes serve to illustrate this welll with both 

within study (Figure 4) and between studies(9, 43), however this is the case elswhere. Bone 

health(50), cancer(52), asthma(49), T2D(27, 44), osteoarthritis(65) have all shown some 

level of agreement in the associations delivered by the best available observational studies 

and MR. Indeed a novel approach to the examination of BMI as a causal risk factor(66) 

looking across a large number of possible intermediate phenotypes was able to chart a broad 

spread of BMI related effects. This highlights one of the key problems in the analysis of 

BMI in that, unlike others so far, there seems to be an underlying causal contribution to a 

large number of health related outcomes. This therefore leaves questions as to what are the 

underlying pathways and mechanisms responsible for these apparently causal relationships 

flagged by the broad exposure “BMI” and also as to the validity of these MR tests.

BMI effects: breaking down pathways

Despite the demonstration of the likely causal relationships between BMI and IHD, it is 

possible that weight itself is not the causal agent in disease, rather that there are a suite of 

intermediate phenotypes between BMI and outcome that deliver risk. Work not dissimilar to 

that originally published exploring the downstream impact of genetic variation at the FTO 
locus on cardiometabolic traits (42) used multiple intermediate phenotypes and also the 

health outcomes T2D and CHD (44) to try and unpick the pathways of BMI effect. In a 

relatively large collection of European participants (4,407 T2D, 6,073 CHD, and 3,813 
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stroke cases) the causal effect of a change in BMI of 1kg/m2 on fasting glucose, fasting 

insulin, interleukin-6, systolic blood pressure, reduced HDL-C and low-density lipoprotein 

cholesterol (LDL-C) was estimated alongside the change in odds for disease outcome given 

the same exposure. This work was able to identify a host of intermediate risk factor 

associations and related this to the strongest health outcome effects (T2D), although 

additional power was needed to obtain precise estimates of BMI effect on CHD.

Coming from a similar methodological approach, MR can be employed in network analyses 

to identify causal risk factors in efforts to locate refined targets for therapeutic intervention 

(67). Any network of observational associations can be explored by the use genetic variants 

that independently predict the nodes of that network. A simple exposition of this network 

MR approach has been applied to break down the association between BMI and IHD 

(believed to be causal from previous MR analysis (46)) through the use of available 

intermediate risk factors measured in a population and novel instruments for each of them 

that have come from new GWAS studies. In an example of this, the Copenhagen General 

Population Study (N=71,407) and the Copenhagen City Heart Study (N=10,314) and a case-

control study, the Copenhagen Ischemic Heart Disease Study (N=5,262), have been used to 

attempt to further dissect the BMI/IHD association using MR and causal mediation analyses 

(68) (Figure 5). This work suggests that it is likely that BMI driven elevations of non-fasting 

remnant cholesterol and LDL-C, elevated blood pressure and possibly elevated non-fasting 

glucose levels may contribute causally to risk of IHD.

Intermediate phenotype and the “omics” revolution

Mendelian randomization studies have generally focused on a limited number of 

intermediate phenotypes, but recent applications of omic technologies into large scale 

population-based studies present new opportunities for identifying predictive biomarkers and 

causal links between established phenotypes and disease outcomes (69, 70, 71, 72, 73, 74). 

This has particular gravity for the types of network analysis being proposed above where, 

the combination of large-scale genetics data (and successful associations) are able to provide 

genetic proxy measures for an equally large collection of pathway specific intermediate risk 

factors. There is of course no guarantee that use of multi-omic phenotype data will avoid any 

of the problems encountered in observational epidemiology, but in combination with MR 

approaches, there is an opportunity to undertake network MR at scale. Omic technologies 

are now generating phenotypic data at a staggering rate and the use of these data in large 

scale population-based studies is presenting new opportunity for identifying novel predictive 

biomarkers and causal links between established phenotypes and disease outcomes (75, 76, 

77, 78, 79, 80).

As an example of this, it is known that metabolite profiles are useful in the prediction of 

cardiometabolic disease (81, 82), but that their role as modifiable targets for intervention or 

causal mediators of disease risk remains unclear. It is also known that many metabolites 

have substantial heritability and that it is possible to find robust associations between genetic 

genetic variation and the same metabolite features (83, 84). Together, it is then possible to 

examine the causal role of risk factors (in this case BMI) in the formation of metabolomics 

profiles(85) and then in a second stage (currently not applied to BMI systematically) to 
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consider the causal role of those BMI driven metabolites in disease outcomes. This is a 

process termed two-step MR(69) and when applied across multiple collections with 

measurements of BMI, intermediate phenotypes (such as metabolites) and health outcomes, 

has the potential to informatively reduce the omics measure data space (to a set of anchoring 

genetic variants(39)) and to breakdown causal pathways to disease.

Challenges and limitations in the causal analysis of BMI

(i) Measurement – the idiosyncrasy of human phenotyping

The options available to both clinicians and researchers for measuring adiposity are many 

and varied. They range from simple indices of body weight for stature (e.g. BMI as focused 

on here) to detailed imaging protocols using magnetic resonance imaging (MRI), computed 

tomography (CT), ultrasound, DXA and electron microscopy. As well as permitting the 

differentiation of body fat compartments relevant to health, such as subcutaneous versus 

visceral fat, such advanced technologies as combined positron emission tomography (PET)-

CT, allow even finer resolution such that quantities of brown fat (containing mitochondria-

rich brown adipocytes) can be measured.

The statistical construct that is BMI (weight(kg)/height(m)2) was first proposed as an index 

of relative bodyweight by Adolphe Quetelet in 1842 (86). Promoted more formally in 1972, 

BMI was suggested to be the optimum derivation for weight given stature based on the fact 

that, in a population of healthy men aged 18 to 60 years this index had lowest correlation 

with height and the highest correlation with measures of body fatness(87). Perhaps 

surprisingly, considering the technological advances of recent years, a recent commentary on 

the evolution of BMI came to much the same conclusion as that of Keys over forty years ago 

– that BMI is “a robust, useful and surprisingly accurate measure of fatness in ‘healthy’ 
adults” (88).

However, there remain two serious limitations of BMI as a measure of adiposity that are 

likely to hinder causal analyses. Firstly, there is the apparent inability of BMI to adequately 

describe body composition and related to the specific characteristics of different subgroups 

of the population. Comparisons of BMI both with alternative indices of body weight such as 

waist circumference, and with MRI and DXA derived measures of body composition have 

shown that BMI fails to discriminate well between major contributors to body composition. 

For example, studies have shown that short and tall individuals and those from different 

ethnicities have similar but not identical body compositions (89, 90). This type of limitation 

has a bearing on the generalisability of BMI as a measure and has driven the development of 

both alternative measures of adiposity, such as a body shape index (ABSI)(91) and 

modifications to BMI itself, for example, by optimising the power term for height to 

minimise its influence (92).

Secondly, BMI is clearly not specific. Whilst the correlation of BMI with health outcomes is 

undeniable, the biological interpretation of these relationships is complex. This problem was 

rather eloquently described by Wells who stated “Paradoxically, it seems that the various 
limitations of BMI as a specific index of adiposity may also be its strengths as a composite 
index of cardio-metabolic risk” (88). But this concept of BMI as a “composite index of risk” 
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is what makes its use in causal analyses so challenging. It is of course not impossible to 

consider the utility of specific genetic variants or collections thereof to help dissect more 

specific components of BMI, though this has not been systematically undertaken to date.

(ii) Undertaking MR - don’t trust your genetic proxies

Statistical power, correlation between genetic variants (linkage disequilibrium (LD)), the 

non-specificity of genetic effects (pleiotropy), developmental plasticity (or “canalization”

(93)) and population stratification have all been recognised as potential limitations to the 

MR approach(38). However, it has become possible to assess and overcome issues of 

statistical power, LD and population stratification through the combination of large data sets 

which are based in homogeneous population based collections and that use independent 

genetic variants for analyses. Canalisation and pleiotropy remain potentially serious 

limitations. The former of these has yet to really escape the bounds of theory and if present, 

may only act to nullify genetic associations before they are found. On the other hand, 

pleiotropy and more generally the blind use of biologically complex genetic variation (and 

potentially large collections of complex genetic proxies from GWAS studies) remains one of 

the real challenges to these applied approaches.

It is becoming increasingly clear that there are important potential complications in the 

formation of genetic proxy measures for MR studies. Through either the analysis of complex 

or derived phenotypic outcomes which can generate genetic associations which are driven by 

artefactual biases(94) or just the presence of complex biological underpinnings, the chosen 

genetic variation for MR studies may bring just as many complications as they appear to 

avoid. In circumstances where well-characterised, candidate driven and biologically 

understood genetic variants as proxy measures (relied upon in previous MR studies derived 

from smaller scale genetic association studies) are unavailable, but where extremely large 

GWAS consortia yield apparently reliable association signals, it is tempting to use 

exhaustive lists of genetic risk factor in a genetic risk scores to undertake MR analyses (95).

Taking the example of educational attainment (a complex, biologically distal and poorly 

measured phenotype not dissimilar to BMI), a large-scale GWAS identified three genetic 

variants reliably correlated with education (96) but these signals represent less than a tenth 

of the expected difference between girls and boys in educational attainment (97). Faced with 

the lack of a strong genetic proxy for substantive MR study, an alternative strategy is to 

generate composite genetic proxy measures from collections of genomewide data (easily 

done through blind application of refined software interfaces such as PLINK (98)). In this 

example specifically, a composite genetic proxy measure for educational attainment can 

explain up to ~3% of the variance in this exposure would therefore be a valuable tool for MR 

studies focused on compelling hypotheses such as the impact of education on income/

lifetime earning ability.

However, the formation of genetic proxy measures in this way can have complex flaws. 

Through the combined impact of genetic contributions from many different biological 

pathways and the possible biasing effects of pleiotropy, the use of genomewide proxy 

measures can produce effect estimates that are biased towards the confounded observational 

estimates MR is attempting to avoid. Furthermore, with the expansion of GWAS study 
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sample size and power and the consequent discovery of increasingly distal contributions to 

outcome variance, looks set to introduce these complications even in the presence of 

apparently robust genetic association discoveries. The expansion of genetic association 

consortia for the analysis of BMI is now spilling way over n=300000 and with targets of up 

to n=1000000 in a single meta-analysis, the abundance of genetic proxy measures for BMI is 

set to grow. It is therefore with these limitations in mind that we should approach the use of 

novel findings that carry with them as much complication as clarification.

This is not to remove applied genetic epidemiology and MR as a logical extension to the 

analysis of causal relationships, rather to suggest that in an era of proliferation for genetic 

analysis, we should remain sceptical of the performance of any one analysis type. 

Triangulation of evidence should be sought where possible and MR viewed as a valuable 

contributor rather than a sole answer(37, 38). What is clear is that the success of MR and its 

move to mainstream analysis should not become the worst enemy of this approach. 

Furthermore, the growing presence of high quality functional biological data to help 

understand genetic associations and novel statistical approaches(99) to undertaking MR will 

help to relieve some of the problems mentioned above.

Conclusion

This review has considered major contributions to non-genetic approaches to assessing the 

causal impact of BMI on human health and current knowledge concerning the common, 

population based, genetic contribution to BMI and how this has fed into the developing field 

of applied epidemiology. We have revised complications of complex genetic aetiology and 

phenotypic measurement, and considered potential development and application of multiple 

omic data sources to help unpick the largely misunderstood relationships between BMI and 

human health and disease. Lastly, we have brought to attention the importance of appropriate 

use of applied genetic analyses in that whilst potentially complex, the ability to de-confound 

and add clarity to the prevailing weight of evidence is a superb possibility in suitable 

conditions.

Obesity and adiposity, measured principally via the faithful stand-in BMI, is of course a 

major risk factor when considering variance in risk for all sorts of health outcomes. There 

have now been a series of established study designs (prospective observational studies and 

MR analyses in particular) which have supported the notion of BMI as a causal agent in the 

formation of disease risk. For any given patient, however, it is unlikely to be the label 

“33kg/m2” that causes morbidity or mortality. Understanding the detailed routes from the 

biology reported (on average) by BMI to disease by employing new measurement 

techniques and through advanced causal analysis methods will be crucial for future 

preventative medicine. Combinatorial investigations incorporating multi-omic examination 

of patients going through radical changes in BMI via surgical intervention, population based 

analyses of BMI affect through MR and analyses aimed at identifying modifiable risk factors 

able to modify exposure will be essential to the future breakdown and understanding of how 

BMI exerts a causal effect on health.
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Study Importance Questions

1. What major reviews have already been published on this subject?

a) Loos, R.J.F. (2012) Genetic determinants of common obesity and 

their value in prediction, Best Practice & Research Clinical 
Endocrinology & Metabolism, 26(2): 211-226.

This paper reviews the discovery of loci associated with obesity-

related traits, and subsequently focuses on the body mass index 

(BMI) loci in particular to explore whether there is sufficient 

evidence for these loci to be used as clinical predictors. It does not 

consider use of loci in causal analyses.

b) Burgess, S. et al. (2015) Mendelian randomization: where are we 

now and where are we going? International Journal of 
Epidemiology, 44(2): 378-388.

This editorial considers developments in the methodology and 

application of Mendelian randomization to study causal 

mechanisms in health and disease over the past decade. It does not 

consider adiposity, BMI or obesity specifically.

2. What does our study add?

Progress in the field of applied genetic epidemiology and in particular in the 

application of Mendelian randomisation has been rapid in the last few years, 

driven largely by developments in a variety of omics technologies. This 

review provides a reflection on what has been achieved so far in dissecting the 

causal relationship between body mass index (BMI) and disease and gives 

comment on the likely future directions of this field. We also present a 

sobering discussion of the potential limitations of these approaches which are 

becoming commonplace in the field of complex trait analysis, especially for 

BMI in light of large-scale consortium science.
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Figure 1. Manhattan plot showing body mass index (BMI)-associated variants with loci identified 
prior to 2015 in blue and novel loci identified by Locke et al. (33) in red.
Novel loci are labelled with the nearest gene, and the y-axis is truncated to allow easier 

observation of novel associations. This plot is reproduced from Locke et al. (33) with the 

permission of the authors.
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Figure 2. The interplay between increased variance explained and diminishing marginal return 
as the number of confirmed body mass index (BMI)-associated genetic loci has increased.
The single line represents the cumulative variance explained and the double line the 

marginal return, calculated as the cumulative variance explained divided by the number of 

loci (29, 33, 100, 101, 102).
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Figure 3. Mendelian randomisation; the use of genetic proxy measures of risk factors to allow 
causal inference.
(A) In general, a genotype of use to this study is associated with the exposure, is 

independent of measured or unmeasured confounders and can only influence outcome via 

the causal effect of the exposure.

(B) The presence or absence of association between the BMI associated genotype and 

disease risk (from existing genomewide association study data sets) give evidence that the 

BMI is a causal risk factor for disease.

(C) Here genotype acts as a proxy measure for an exposure potentially affecting the BMI in 

a reciprocal analysis. This type of reciprocal analysis allows for a triangulation or network 

approach to the assessment of the effects of and effects on BMI.
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Figure 4. The comparison of observational and Mendelian randomisation derived estimates for 
blood pressure and ischaemic heart disease.
(A) Linear relationships between body mass index and blood pressure derived from 

observational and Mendelian randomization analyses. Upper scatter indicates systolic blood 

pressure and the lower diastolic. Grey areas around the estimated relationships indicate 

95%CI for Mendelian randomisation estimates and in black those for observational 

estimates (plot generated from analysis for (43)). Note that for this analysis the log of body 

mass index was regressed on sex, age, age squared, log(height), and an age-sex interaction 
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and exponentiated to give an individual’s “relative BMI,” that is, the ratio between his or her 

actual BMI and that expected for his or her sex, age, and height.

(B) Meta-analysis forest plots of observational and instrumental variable estimates of the 

relationship between ischaemic heart disease and body mass index. Odds ratios are for a 

4kg/m2 increase in body mass index (plot generated from analysis for (46)).
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Figure 5. A two-step Mendelian randomization design applied to intermediate phenotype 
analysis in body mass index (BMI) and ischaemic heart disease (IHD).
In Step 1 (shown in red), BMI-associated variants are used to estimate the causal effect of 

BMI on relevant intermediates. In Step 2 (shown in green), variants associated with each of 

the intermediate traits are used to estimate the causal effect for those traits on IHD.
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