1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Nat Rev Microbiol. Author manuscript; available in PMC 2019 May 01.

-, HHS Public Access
«

Published in final edited form as:
Nat Rev Microbiol. 2018 May ; 16(5): 316-328. d0i:10.1038/nrmicro.2018.17.

Pseudomonas syringae: what it takes to be a pathogen

Xiu-Fang Xinl, Brian Kvitko?, and Sheng Yang He3
Linstitute of Plant Physiology & Ecology, Shanghai Institute for Biological Science/Center for

Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, and CAS-JIC Center of

Excellence for Plant and Microbial Sciences, Shanghai 200032, China

2Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA

SDepartment of Energy Plant Research Laboratory, Department of Plant Biology, Plant Resilience

Institute, and Howard Hughes Medical Institute, Michigan State University, East Lansing, Ml
48824, USA

Abstract

Pseudomonas syringae is one of the best studied plant pathogens and it serves as a model for
understanding host-microbe interactions, bacterial virulence mechanisms, host adaptation of
pathogens, as well as microbial evolution, ecology and epidemiology. Comparative genomic
studies have revealed key genomic features contributing to 2. syringae virulence. As an
extracellular plant pathogen that lives in the intercellular space (apoplast) of aboveground tissues
(phyllosphere), 2 syringae has evolved two principal virulence strategies, suppression of host
immunity and creation of an aqueous apoplast. In addition, P, syringae infection is profoundly
influenced by external environmental conditions, such as humidity. 2 syringae may serve as an
excellent model to understand not only how pathogens evolve specific virulence strategies to
intercept host immunity, but also how pathogenic microbes integrate external environmental
conditions and endogenous plant microbiota to become ecologically robust and diverse pathogens
of the plant kingdom.
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Introduction
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Pseudomonas syringae is one of the best-studied plant pathogens and serves as a model for
understanding bacterial pathogenicity, molecular mechanisms of plant-microbe interactions
as well as microbial ecology and epidemiology. £ syringae was originally isolated from

diseased plants and was largely studied with respect to its plant pathogenic potential®: 2. So
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far more than 50 pathovars have been identified in the species, with each pathovar infecting
a characteristic group of host plant species. Collectively, the ~50 pathovars of A2 syringae
infect almost all economically important crop species, making £ syringae one of most
common pathogens on plants. In addition, new disease outbreaks, caused by £ syringae
isolates, continue to threaten global crop production. A recent example is the devastating
kiwifruit canker in New Zealand and Europe, which is caused by Pseudomonas syringae pv.
actinidiae, likely originating from China3-5. Although the species was initially identified as
a pathogenic bacterium, it has since been found that many isolates phylogenetically
belonging to the species are non-pathogenic to plants and that they exist on plants as
commensals. Understanding the genetic and phenotypic variability of 2 syringae, especially
by comparing with its closely-related non-pathogenic bacteria, helps elucidating what makes
this organism a pathogen.

P, syringae bacteria have two interconnected phases of growth in or on plants: the epiphytic
phase, when the bacteria live on the surface of plant tissues (usually the above-ground parts,
such as leaves, stems and fruits, collectively known as the phyllosphere), and the endophytic
phase, when bacteria enter the plant tissue and colonize the intercellular space called the
apoplast (see Fig. 1, refS). While many 2 syringae strains, such as those of 2. syringae pv.
syringae, are strong epiphytes and had been widely used in microbial ecological studies,
disease occurs only after 2 syringae bacteria enter the plant and multiply in the apoplast
(i.e., the endophytic phase). The initial epiphytic populations of some £ syringae strains on
the plant surface can be good predictors of their later endophytic populations inside the plant
tissue and disease outbreaks under favorable environmental conditions? 7/, illustrating the
importance of dissecting the epiphytic phase for understanding £, syringae pathogenesis.

Genomic features that are correlated with preferably epiphytic or endophytic/pathogenic
living style have been studied and discussed®2. For example, tolerance to ultraviolet light
and dry environment is generally considered important for a strong epiphytic life style.
Another notable feature of £ syringae bacteria that may be important for the epiphytic phase
is ice nucleation and the associated ability to cause frost injury in plants, which may lead to
water and nutrient release from plants and could create openings on the plant surface to
facilitate bacterial entry. The ice-nucleation ability of £ syringae depends on the ice-
nucleation gene /NVA. INA encodes the ice-nucleating protein, which allows ice crystals to
form at temperatures higher than normal freezing temperature in plants? 8. In fact, studies of
this important feature led to approaches to control frost injury in agriculture using naturally
non-ice nucleating bacteria or /NA" P syringae mutant bacteria, the first recombinant
microorganism allowed for release in the fields®. In addition, as one of the most effective ice
nucleators in nature and ubiquitously found in precipitates and water sources, P, syringae has
been proposed as an essential player in the formation of rain and snowfall, shaping the water
cycle on Earth19, Readers are referred to many excellent reviews that discuss in details on
the topics of microbial ecology, epidemiology, genomics and habitat interactions of both
non-pathogenic and pathogenic Psyringae? 10-13, Below, we focus on plant-pathogenic 2
syringae and summarize the current understanding of virulence strategies, pathogenicity-
related genomic features of £ syringae as well as effects of environmental conditions on
disease outcomes.
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Genomic and genetic features of P. syringae

The phylogeny of pathogenic P. syringae
P, syringae forms a monophyletic group within the £ fluorescens-like major branch of the
Pseudomonas genust* 15, Extensive efforts to collect and sequence 2. syringae isolates from
diverse agricultural and non-agricultural sources have driven a revolution in our
understanding of £, syringae diversity and evolution. Currently, the 2 syringae species
complex is divided into 13 phylogroups (PGs) based on multi-locus sequence analysis
(MLSA)(Fig. 1)14-16, These PGs encompass previously defined phylogenetic divisions;
rarefaction curve analysis implies that the identified PGs represent the bulk of 2 syringae
diversity at this phylogenetic level. The 13 PGs split into two major categories, the seven
late-branching canonical lineages (PGs 1-6, 10) and the six early-branching non-canonical
lineages (PGs 7-9, 11-13)17. The canonical PGs are composed of strains with phenotypic
characteristics traditionally associated with P, syringae (i.e., the LOPAT phenotype; see
Glossary). With very few exceptions, they possess canonical tripartite pathogenicity islands
(T-PAI) with the Arp/hre-encoded type 11 secretion system (T3SS) gene cluster flanked by
both the Conserved Effector Locus (CEL) and the Exchangeable Effector Loci (EEL)8. The
CEL encodes a trio of highly conserved syntenic effector genes, hiopAA1-1, hopM1 and
avrE, whereas the effectors encoded by the EEL vary between pathovars and strains. The
T3SS translocates a variety of bacterial effector proteins into host cells as a central
mechanism of pathogenesis/symbiosis in diverse plant/animal-bacterial interactions!®: 20,
Other traits common among the canonical £ syringae lineages include the capacity to cause
immune-associated programmed host cell death (i.e., the hypersensitive response; HR) in
resistant plants, ice nucleation activity and the /aal gene, which is involved in inactivation of
the plant hormone auxin. The jaal genes is found among the canonical PGs composed
primarily of plant specialists?! (Fig. 1). The six early-branching lineages include 2 syringae-
like, broad-host-range plant pathogens P, viridiflavaand P cichorii, and generally have
greater diversity in phenotypes as well as in the type and genomic location of PAIL. Some of
the early-branching lineages carry the single-part pathogenicity island (S-PAI); a genomic
region that contains genes encoding the Arp/hArcT3SS but, compared with T-PAl, lack a
canonical CEL and EEL.

The evolution of P. syringae into a pathogen

To answer the question of “what makes £ syringae a successful plant pathogen”, it would be
important to trace a potential path of £ syringae evolution from a non-pathogenic ancestor
and its relation to other plant-associated bacteria. Genetic clock estimates, calibrated with
the proposed divergence rates between £. coliand Salmonella, place the last common
ancestor (LCA) of the 2. syringae canonical lineages between 153-183 MYAZ22 (Fig. 1). This
time frame is roughly contemporaneous with molecular clock estimates for the emergence of
angiosperms (i.e., flowering plants)23: 24,

The distribution of genetic and phenotypic traits in the 2 syringae phylogeny can help us
infer possible traits of the P syringae LCA. Virulence factors common among the canonical
P, syringae lineages include the T-PAI, ice nucleation, auxin synthesis, auxin inactivation
(jaal) and production of the exopolysaccharide alginatel6: 17. 21, 25-29 gjmilar alginate
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synthesis and regulatory pathways are present in £, aeruginosa, P. fluorescensand P
syringae, so we can expect that the 2 syringae LCA had these genes as well28. The jaaM/
faaH genes for auxin synthesis are also common among plant-associated Pseudomonas
species and the phylogeny of P syringae chromosomal /aaM/iaaH genes are largely
congruent with phylogeny based on housekeeping genes, implying that they are ancestral30.
The acquisition of the T-PAI and ice nucleation protein appears to have occurred prior to the
divergence of the P, syringae canonical PGs and the P, viridiflavaPG 7. R viridffava PG 7 is
the only early-branching PG that is composed of members with the T-PAI and ice nucleation
trait that are isolated routinely from plants6: 31, Lastly, the LCA most likely did not possess
plant habitat specialization or auxin inactivation, as these appear to be derived traits in the
canonical £, syringae lineages'®: 29, We surmise that the LCA of the canonical 2 syringae
lineages is likely to have been a ubiquitous strain with the capacity to synthesize alginate
and auxin, possessing both ice nucleating activity and the T-PAI.

The acquisition of the T-PAI by the ancestor of canonical 2 syringae appears to be a critical
step towards patho-adaptation. Expansion and specialization of the virulence factor
repertoire, especially T3SS effectors (T3Es), greatly shaped the host range and £ syringae
diversification. More details of the T-PAI and T3E clusters are provided in Box 1. In
addition to T3Es, A syringae strains collectively produce a diverse collection of phytotoxins,
such as coronatine and syringomycin, which contribute to disease by diverse mechanisms.
To some degree, toxins and T3Es appear to play overlapping functional roles (see sections
below). Some phytotoxin synthetic clusters have a sporadic and narrow distribution, similar
to what is observed for most T3Es, while some others are much more broadly distributed.
PG2 strains of £, syringae are notable for their broad host ranges, high epiphytic potential,
small T3E repertoires, and their possession of a “toxin package” comprised of syringolin A
as well as syringomycin and syringopeptin, both of which have membrane disruption and
ion-leakage activities?®. There is an overall correlation between the presence of the
syringomycin synthetic cluster and a small T3E repertoire2®. This extends to members of
PG10, which have the smallest reported effector repertoire among £, syringae>2. We propose
a hypothetical and evolutionary view of a potential pathway of a Pseudomonas non-pathogen
evolving into a P, syringae pathogen (Fig. 2).

Box 1

Genetic variation within the canonical P. syringae tripartite pathogenicity
island (T-PAI)

The T-PAI locus of P, syringae pv. phaseolicola 1448A is shown to scale
(NC_005773;1,471,435..1,510,651). The T-PAl is a virulence starter kit, and contains the
hrc/hrp genes for the assembly and regulation of the T3SS, flanked by genes for both
conserved and variable suits of T3Es. Both the T3SS genes as well as conserved effector
functions are required for successful 2 syringae infection!1?: 118 The A syringae T-PAI-
encoded T3SS is a member of the Hrpl T3SS group, one of seven major groups of
virulence-associated T3SS119. Presence of particular allele variants within PG member
strains are noted but are not necessarily PG exclusive. The Arp/hre T3SS gene cluster
encodes all the structural genes required to assemble of the T3SS. It also encodes the
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upstream regulators HrpR and HrpS, which are paralogous AAA+ RpoN activator
proteins, required to induce the expression of the ECF-family sigma factor HrpL, the
master regulator responsible for the expression of all Arp/Arc T3SS structural genes and
T3E-encoding genes!20: 121 This regulatory circuitry is a defining hallmark of the Hrp1
T3SS, which is also found in the AP syringae S-PAls, as well as in plant pathogenic
Enterobacteriacea (e.g. Pantoea stewartii, Erwinia amylovora, Dickeya dadantii,

etc)119. 122,123 The HrpA pilin, which assembles to create the T3SS extracellular
appendage, has undergone diversifying selection and is the only gene within the Aro/hirc
cluster divided into gene family subgroups. Some PG 3 strains carry recombined ArpA3
alleles common in PG 5 P cannabina strains'24, Within the Arp/hrc gene cluster there is
evidence of recombination among certain £ syringae groups in hrpR/hrpS, hreN, hrpQ,
hreV, and hrpK1 genes?® 126 Adjacent to the Aro/hire cluster is a conserved syntenic
region, the Conserved Effector Locus (CEL), which encodes a trio of highly conserved
effectors, hopAAI-1, hopM1 and avrEX. The hopAAI-1 gene is commonly
pseudogenized in PG3 strains?: 127 while #opM1 and/or avrE genes have been identified
within every known example of the 2. syringae S-PAIl and T-PAI18: 29,123 and have been
shown to play critical roles during infection (see later sections). The Arp/hrc cluster is
also flanked by a second T3SS effector locus, the Exchangeable Effector Locus (EEL),
and EEL effector content and loci structure vary extensively between strains and
phylogroups. In strains where it has been examined, the EEL region has been extensively
reworked by mutation, deletion, recombination and transposon insertion and commonly
contains zero to three intact T3Es18: 128 The EEL of PG 3 strains commonly carry the
effector #1opXZin a class Il EEL and the effectors AvrB3 and HopZ3 are also found in
other EEL classes!18 128,

& o
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P NI KR
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Overcoming host defenses and forming a niche

As mentioned above, pathogenic £ syringae strains must make a transition from the
epiphytic phase to the endophytic phase to cause disease. This involves efficient entry into
the plant tissue and aggressive multiplication within the apoplast. Neither step would be easy
for a microbe. In fact, most microbes (i.e., the vast number of commensal microbes) fail to
do one or both of these two steps because plants have evolved ways to restrict the entry
and/or multiplication of these microbes.

Overcoming stomatal closure at bacterial entry

Entering plant tissue through natural openings such as stomata represents one of the first
steps of an active infection cycle. Plants have evolved defense mechanisms to reduce the
entry of pathogens. Upon recognition of conserved bacterial features collectively named
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PAMPs (pathogen-associated molecular patterns), such as flagellin, a signaling cascade is
activated in the stomatal guard cell to eventually close stomata as part of the pattern-
triggered immunity (PTI) in plants33: 34, Readers are referred to other recent reviews that
summarize many secondary messengers and downstream components, including plant
hormones (i.e. salicylic acid [SA] and abscisic acid [ABA]), involved in the PAMP-triggered
stomatal closure pathway34 35,

As a counter-defense strategy, £ syringae has evolved virulence factors, such as the
phytotoxin coronatine and T3Es, to impair plant stomatal defense. Coronatine is a molecular
mimic of the active form (jasmonoyl isoleucine; JA-1le) of the plant hormone jasmonate
(JA), directly binding to and activating the plant JA receptor3%: 37, Recent studies have begun
to elucidate the signaling pathways by which coronatine-mediated activation of JA signaling
results in stomatal opening. Coronatine exploits the endogenous antagonistic interaction
between JA signaling and SA signaling, which is downstream of PAMP signaling required
for PAMP-induced stomatal closure33: 38 (Fig. 3). Key players in the coronatine-mediated
stomatal opening pathway in Arabidopsis plants include canonical JA signaling components,
such as the COI receptor, JAZ2 transcriptional repressor and MY C2/3/4 transcription
factors, as well as ANAC19/55/72 transcription factors that regulate SA accumulation38: 39,
In tomato, JA signaling components JA2L40 transcription factors are involved in coronatine-
induced stomatal opening. Coronatine has also been reported to inhibit stomatal closure by
suppressing guard cell NADPH oxidase-mediated ROS production®!, and inhibits stomatal
closure or re-opens stomata in plant leaves treated with PAMPs, ABA or darkness34 41. 42,
On the other hand, the transcription factor ANAC32, induced during £ syringae infection of
Arabidopsis, has been shown to directly repress MYC2 activation, perhaps as a
countermeasure of the plant to inhibit coronatine-mediated stomata opening?3.

In addition to coronatine, at least three P, syringae T3Es (HopX1, HopZ1a and HopBB1)
have been reported to activate JA signaling by directly interacting with and/or destabilizing
JAZ repressor proteins*4—46. Another P, syringae T3E, AvrB, activates JA signaling by
promoting JAZ protein degradation and modulates the phosphorylation of plant protein
RIN4 and membrane ATPase activity, leading to stomatal opening*’: 48, Finally, T3Es
HopF2 and HopM1 were reported to suppress PAMP-induced oxidative burst and stomatal
closure?®: 50, Consistent with the observed effects of T3Es in suppression of stomatal
closure, a recent /n vivo imaging study showed that guard cells, which make up stomata, are
target cells of type 111 secretion®: 52, Taken together, these studies show that 2. syringae
devotes a variety of virulence factors to counter stomatal closure as part of its infection
strategy (Fig. 3).

Suppressing plant immunity and making a living in the apoplast

After entering the plant (e.g., leaves), P syringae encounters the apoplast, a hostile
environment and a new battlefield. In the apoplast, intricate interactions between plant
immune responses and bacterial virulence strategies occur. For example, mesophyll cells
inside leaves can mount (i) PTI in response to recognition of bacterial PAMPs and (ii)
effector-triggered immunity (ETI) in response to recognition of T3Es delivered into the
mesophyll cells. A major consequence of PTI and ETI is inhibition of bacterial
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multiplication®3 %4, How PT1 and ETI actually inhibit bacterial multiplication remains
unclear. Possible mechanisms include production of anti-bacterial defense compounds,
down-regulation of the T3SS, and strengthening of plant cell walls>®. A recent study showed
that the sugar uptake activity of the plant transporter STP13 is enhanced during PTI, which
results in removal of apoplastic sugars, suggesting that restriction of nutrients in the apoplast
may be one of consequences of plant immunity®6.

To defeat immune responses from mesophyll cells, P syringae again deploys T3Es and other
virulence factors to intercept plant immune signaling at various steps. For example, as in the
stomatal guard cell (Fig. 3), coronatine can inhibit SA-mediated defense in leaf mesophyll
cells, presumably through the JA-SA antagonism38. Coronatine also induces the protein
phosphatases 2C (PP2C) HAI1, which dephosphorylates and inactivates MPK3 and MPKa®,
two positive immune regulators®’. There are other toxins, besides coronatine, produced by 2
syringae. For instance, syringomycin has been shown to function as a virulence factor for 2
s. pv. syringae®® %9, At least two virulence-related activities of syringomycin have been
discovered: inducing pore formation on plant membranes, leading to release of plant
metabolites, and acting as bio-surfactant, leading to increased wetness of plant surface and
bacterial movement8,

However, coronatine and other small-molecule toxins are produced by only subsets of 2
syringae pathovars?® and genetic mutations eliminating toxin production often have modest
effects on virulence, especially when bacteria are inoculated directly into the apoplast33: 60,
In contrast, the T3SS is conserved in all pathogenic P, syringae strains and disruption of the
T3SS invariably renders £ syringae nonpathogenic even if bacteria are inoculated directly
into the apoplast®l. This suggests that T3Es are collectively essential for the pathogenicity of
P, syringae inside the apoplast. The T3E repertoire among £ syringae strains is highly
variable and relatively few effectors are conserved?®: 62, An important question arises: What
is the minimal repertoire of T3Es that 2 syringae must possess to become a phyllosphere
pathogen? This question was addressed by Cunnac and colleagues®3. By an elegant
combination of effector gene deletion and reconstitution experiments, a set of eight T3Es
from £ s. pv. tomato (Psf) DC3000 was shown to be sufficient to rescue much of the
virulence of an “effector-less” mutant strain in the plant Nicotiana benthamiana. These eight
effectors include AvrPtoB, HopM1, AvrE, HopE1l, HopG1, HopAM1-1, HopAALl-1, and/or
HopN182, Below, we highlight the virulence functions of these eight T3Es (Fig. 4a), as they
give important insights into the central question of this review: What it takes for £ syringae
to become a successful pathogen? We must point out that there are many other T3Es whose
intriguing virulence functions and host targets were also extensively studied. We
summarized these studies and divided these T3Es in groups based on the host processes they
target (Table 1). Readers are referred to other excellent reviews on this topic®4-67,

Of the eight effectors in the minimal T3E repertoire of Pst DC3000, at least five have been
shown to be involved in suppressing host immunity. AvrPtoB inhibits both PT1 and ETI
responses and is one of the first T3Es of which the host targets were identified®8-70,
AvrPtoB possesses an E3 ubiquitin ligase activity and targets pattern-recognition receptors
(PRRs), including FLS2, CERK1 and Bti9, for protein degradation or kinase activity’%-73, In
tomato and N. benthamiana, certain truncated versions of AvrPtoB suppress ETI-associated
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plant cell death and that this activity is mediated by degradation of immune-associated
kinases such as Fen in tomato®® and MAP kinase kinase 2 in . benthamiana’. Therefore,
AvrPtoB is able to inhibit both PTI and ETI.

HopG1 and HopE1 have been shown to target components of the plant cytoskeleton. HopG1
changes the actin filament architecture and interacts with a mitochondrion-localized motor
protein kinesin, which is required for HopG1-mediated disease symptoms’®. Transgenic
expression of HopG1 inhibits PTI outputs, including immunity-associated callose deposition
in the plant cell wall”®. On the other hand, HopE1 targets the microtubule network through
interaction with the plant calmodulin protein and microtubule-associated protein 65
(MAPG65). This interaction leads to disassociation of MAPG5 from microtubule and results in
inhibition of multiple immune-associated responses, including callose deposition in the plant
cell wall”’.

HopN1 was reported to target a tomato chloroplast protein PsbQ and is able to suppress the
production of reactive oxygen species (ROS) and callose deposition in Arabidopsis’8.
Transgenic expression of HopAML also suppresses callose deposition in the plant cell wall
and, interestingly, enhances ABA responses in plants via an unknown mechanism?®.

AvrPtoB, HopG1, HopE1, HopAM1 and HopN1 in the “minimal T3E repertoire” represent a
large number of P, syringae T3Es that are capable of suppressing host immune responses
under laboratory experimental conditions (Table 1). It appears that many components of the
plant immune machinery are vulnerable to attacks by £ syringae T3Es. The impressive
number of “immune-suppressing” T3Es in £ syringae illustrates that suppression of host
immune responses is fundamentally important for 2 syringae infection, a concept that
echoes earlier studies0: 81,

Water soaking

Avre all AP syringae T3Es in the minimal repertoire primarily involved in suppressing plant
immune responses? The answer seems to be no. This is illustrated by the virulence functions
of HopM1 and AvrE, which represent two of the most conserved and widely distributed T3E
families within the whole 2. syringae T3E repertoire2%. Although studies have shown that
HopM1 and AvrE are also capable of suppressing PAMP-triggered oxidative burst and/or
callose deposition0: 8283 recent study showed that the primary virulence function of
HopM1 and AvrE appears to establish an aqueous apoplastic environment (or “water
soaking” symptom, during which liquid is accumulated in the intercellular space between
mesophyll cells in the leaf). The aqueous apoplast could potentially benefit bacterial
multiplication in multiple ways, such as diluting anti-microbial compounds and/or making
nutrients more accessible. It is possible that the previously observed effects of HopM1 and
AVrE on apoplast immune responses, such as production of ROS and callose deposition in
the apoplast, could be secondary effects due to a water-soaked apoplast. It was shown that
transgenic expression of AvrE1l and HopM1 from Pst DC3000 is sufficient to cause severe
water-soaking in Arabidopsis leaves84. AvrE1 and HopM1 share no amino acid sequence
similarity, but are functionally redundant in Pst DC3000 pathogenesis 83. The Pst DC3000
avrE hopM1~ mutant, which lacks water-soaking-inducing effectors, fails to multiply
aggressively in the apoplast or cause disease. However, supplementation of water to the
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apoplast could restore the virulence of the Pst DC3000 avrE hopM1~ mutant®, reinforcing a
major role of AvrE/HopM1-mediated water soaking in bacterial pathogenesis.

HopM1 targets and degrades a plant ARF-family guanine nucleotide exchange factor,
AtMIN7, which is involved in vesicle trafficking®°. Correspondingly, the Arabidopsis
atmin7 mutation, which partially mimics the virulence action of HopM1, promotes some
spontaneous, albeit limited, water-soaked spots in certain Arabidopsis genotypes under high
humidity84. These results suggest that the normal function of AtMIN?7 is probably to
maintain water homeostasis in the leaf apoplast and that HopM1 targets AtMIN7 as part of
its mechanism to cause water-soaking. The host targets of AvrE1 include protein
phosphatase 2A regulatory subunits®. It remains to be determined whether protein
phosphatase 2A regulatory subunits are also involved in AvrE1-mediated establishment of an
aqueous apoplast.

In summary, current studies suggest that two fundamental aspects of host biology are
perturbed by the eight “minimum-repertoire” T3Es of Pst DC3000: host immunity and
apoplast environment. This begs the question of whether perturbing these two host processes
is sufficient to allow P, syringae pathogenesis in leaves. This critical question was
investigated by Xin and colleagues® in disease reconstitution experiments. Specifically, two
high-order Arabidopsis mutants were generated, in which relevant genes involved in plant
immunity (PTI) and the gene encoding AtMIN7 were mutated simultaneously. These
Arabidopsis mutants allow the T3SS-defective Pst DC3000 ArcC mutant to grow
significantly in the apoplast, supporting the hypothesis that perturbation of host immunity
and water homeostasis in the apoplast are two principal virulence mechanisms that underlie
basic 2 syringae pathogenesis (Fig. 4b)84. It is likely that other virulence factors are
involved in further optimizing £ syringae virulence by targeting other aspects of host
biology and/or in adaptation to different environmental conditions (see below).

Suppression of host immunity and establishment of an aqueous apoplast may not be two
mutually exclusive processes. A previous study showed that £ syringae strains experience
different water stress levels in the leaf apoplast of susceptible and resistant Arabidopsis
plants. Specifically, Pst DC3000 experiences suitable water potentials for multiplication in
the leaf apoplast of the Arabidopsis Col-0 accession, whereas Pst DC3000 (avrRpm1I),
which activates ETI in Col-0 plants, experiences a prohibitory high water stress in the
resistant plant 8. In line with this study, Pst DC3000 (avrRpt2), which also activates ETI in
Col-0 plants, fails to induce water-soaking symptoms84. This finding suggests that activation
of ETI in plants can block the water-soaking process, possibly as an integral part of the plant
defense mechanism against bacterial pathogens. Thus, host immunity and water homeostasis
in the apoplast may influence each other and future research should investigate whether the
two processes may be connected at some mechanistic level.

Influence of environmental factors on P. syringae infection

In 1960, Stevens formulated the famous “disease triangle” concept in plant pathology: in
addition to a virulent pathogen and a susceptible host, disease outbreaks require right
environmental conditions such as optimal temperature and humidity87 (Fig. 5a). In addition,
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recent plant microbiome studies highlight a potential fourth vertex—the co-existing microbial
communities on plants—to the “disease triangle”, as these microbial communities can
potentially have a significant influence on plant immunity and/or pathogen virulence88,
While host immunity and £, syringae pathogenesis mechanisms have been extensively
studied in the past three decades, the molecular bases of environmental influences on
diseases caused by £ syringae is under-studied.

High humidity has been observed to be tightly correlated with the vast majority of 2
syringae disease outbreaks in crop fields. Many previous studies pointed to a role of high
humidity and associated conditions (i.e., dew, fog and rain) in maintaining a high epiphytic
P, syringae population on the plant surface, for which a quantitative relationship to following
disease outbreaks in the field has been established?: 7 89 90, High humidity has also been
shown to increase the formation of bacterial aggregates on leaf surfaces and bacterial
swarming motility of 2 s. pv. syringae®®: 92, and to affect the bacterial cell length, trans-
conjugation and plasmid transfer of 2 s. pv. glycinea on bean leaves®3. Panchal et al.%*
reported that high humidity suppresses bacterium-induced stomatal closure (Fig. 5b), which
could contribute to enhanced Arabidopsis susceptibility to Ps¢t DC3000 infection.

In addition to facilitating bacterial entry, high humidity is also required for P, syringae
pathogens to aggressively multiply inside the apoplast (i.e., even after bacteria are infiltrated
directly into the plant leaf). As mentioned above, Pst DC3000 utilizes two conserved T3Es,
AvrE and HopM1, to drive the formation of an aqueous apoplast (i.e. “water soaking™) as an
essential virulence strategy. Importantly, maintenance of the aqueous apoplast requires high
humidity, because, under low air humidity, apoplast water would quickly evaporate through
leaf stomata. Thus, establishment of an aqueous apoplast by £ syringae not only requires
specific virulence factors, such as HopM1 and AvrEL, but also high humidity, providing a
critical insight into the high-humidity dependence for many 2. syringae disease outbreaks®4.

Temperature

Another important environmental factor is temperature (Fig. 5¢). Even though ~28°C is used
as an optimal growth temperature for many P, syringae strains in vitro, a generally negative
effect of high temperature on the production of 2. syringae virulence factors (e.g.,
phytotoxins, EPS or T3E secretion) have been docummented®>-101, However, these studies
were performed almost exclusively /n vitro, whether and how high temperature might affect
P, syringae virulence mechanisms in planta remains to be investigated, as studies have shown
that high temperature (e.g., 28°C) leads to enhanced diseases by £ syringaet02. In the
context of disease, high temperature can affect plant immunity92. 103, pathogen virulence or
both. Cheng and colleagues recently showed that PTI and ETI pathways respond to
temperature fluctuations differentlyl%4, suggesting that different plant immunity pathways
(and possibly different 2 syringae virulence factors) may respond to temperature in a
different manner.
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P, syringae pathogens co-exist with numerous other microbes (i.e. microbiome) on plants.
The presence of other interacting microbes could influence the virulence of a pathogen
and/or the amplitude of plant immune responses, leading to different disease outcomes!2: 88,
There are already many studies illustrating interactions between P, syringae strains, plants
and other microbes. For example, individual “bio-control” microbes could promote
resistance to 2. syringae through diverse mechanisms195-107 and induced systemic
resistance (ISR) can be triggered by individual members of the plant root microbiome and
“prime” plants for a stronger immune response against subsequent infection by £
syringaet98-110 (Fig. 5d). However, current studies are largely focused on binary interactions
between plants and individual strains of £, syringae and biocontrol/ISR agents. How A2
syringae interacts with multiple members of the endogenous plant microbiome (i.e., in a
community context) is poorly understood, as multiple microbe-microbe, microbe-pathogen
and microbe-plant interactions could potentially neutralize or synergize final disease
outcomes.

In summary, environmental conditions including temperature, humidity and the plant
microbiome could greatly shape plant-~. syringae interactions. Yet, despite some emerging
studies on these topics, we are quite far from a comprehensive and mechanistic
understanding of their influences.

Conclusions and perspectives

Three decades of unprecedented mechanistic studies of £ syringae virulence factors and
genomic and evolutionary insights have revealed basic features of £, syringae as a plant
pathogen, putting us closer to answering the central question of “what makes P, syringae a
successful plant pathogen”. Current results point to three principal strategies used by A2
syringae to subvert plants: epiphytic survival and adaptation, suppression of host immunity
at various stages of infection and establishment of an aqueous apoplast that promotes
bacterial access to abundant water and likely nutrients. Acquisition of the T3SS and a core
T3E repertoire, together with production of phytotoxins and other virulence factors, appear
to be critical to the execution of these strategies and success of P, syringae as a plant
pathogen.

One may wonder whether the virulence strategies employed by P syringae are unique or
common among plant pathogens that infect the phyllosphere. A clear answer to this question
awaits future studies. However, there are strong indications that suppression of host
immunity is a widespread virulence mechanism utilized by other pathogens. For instance,
many effector proteins from other bacterial, fungal and oomycete pathogens have been
shown to intercept various components of the plant immune machinery, leading to host
immune suppression54-66, In addition, “water-soaking” symptom is observed in diverse
diseases caused by bacteria, fungi and oomycetes!11: 112 |n-depth studies of Pantoea
Stewartii subsp. stewartii and Xanthomonas gardneri, for example, show that these bacterial
pathogens can induce strong water-soaking in host plants. WtsE, an AvrE-family effector
protein and an essential virulence factor in 2 stewartii. subsp. stewartii, is required for
water-soaking induction!13: 114 On the other hand, AvrHah1, a water-soaking T3E in X.
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gardneri, activates the expression of plant cell wall-modifying enzymes, suggesting that
plant cell wall alteration may be involved in perturbation of water homeostasis in the
apoplast!12. It remains to be seen whether leaf-infecting fungi and/or oomyctes also dedicate
specific virulence factors to establish an aqueous apoplast as part of their infection strategy.

Because £, syringae strains typically carry dozens of T3Es52, the identification of a minimal
repertoire of eight T3Es for 2 syringae infection of N. benthamiand®® highlight an aspect of
P, syringae biology that requires further study. Why do P, syringae strains maintain an
apparently “larger-than-necessary” repertoire of T3Es and other virulence factors? Deletion
of many £ syringae effectors apparently do not show a virulence loss in a given host plant,
and this has been attributed to functional redundancy and the possibility that some effectors
may be needed only in some other host plants!16. In light of the significant influence of
environmental conditions on £ syringae infection and the fact that most molecular studies of
P, syringae infection have been conducted under static environmental conditions, we propose
an additional possibility: many £ syringae virulence factors, including T3Es, may become
necessary under natural fluctuating environmental conditions. We anticipate that
understanding how environmental conditions and other biotic factors (i.e. microbiome)
shape P, syringae infection will likely become an important aspect of future research. It will
be particularly interesting to investigate whether, like HopM1 and AvrEl, some T3Es
function to integrate different environmental conditions and microbial communities and
contribute to disease development under a particular environmental and/or microbiome
context. It is hoped that a complete understanding of the multi-dimensional plant-~2
syringae-environment/microbiome interactions will infer innovative approaches for
controlling diseases on crop plants.
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LOPAT

The LOPAT phenotypic scheme was developed to distinguish species of phytopathogenic
fluorescent Pseudomonads. Canonical £ syringae are positive for Levan (L), negative for
cytochrome C Oxidase (O), negative for Potato soft rot (P), negative for Arginine
dihydrolase (A), and positive for the hypersensitive response on Tobacco (T).

Multi-Locus Sequence Analysis (MLSA)

A technique to determine genetic relatedness and predict phylogeny based on the analysis of
concatenated sequences of multiple housekeeping genes. MLSA can be used to determined
phylogenetic relationships within a closely related group of organisms.
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Rarefaction curve

A tool used to estimate genetic diversity. Rarefaction curves plot total “genetic units” per
analyzed idividuals. This can be set to different genetic thresholds from SNPs to species.
E.g. how many total phlyogroups have been identified per individuals analyzed. As the curve
flattens predictions can be made about the extent of genetic diversity yet to be identified at
the particular mesured threshold.

T3SS

Type |11 secretion system; a proteinaceous supramolecular complex produced by many
Gram-negative bacteria infecting plants or animals. It functions as a syringe-like structure
and delivers virulence proteins, called type 111 effectors (T3Es), into the host cell, and plays
essential roles in bacterial virulence.

hrp/hrc genes

hrp, hypersensitive response and pathogenicity. Arp genes gain their names from the
phenotypes observed upon their inactivation, specifically the loss of the host hypersensitive
response (HR) in resistant plants as well as the loss of pathogenic (P) potential in susceptible
host plants. A subset of /rp genes were subsequently renamed to Arc (Airp conserved) genes
based on conservation with Yersinia T3SS genes. Many of the Arol Airc genes encode
structural components of the T3SS.

T3E

T3SS effectors; virulence proteins that are produced in many Gram-negative bacterial
pathogens and delivered into the plant cell via the T3SS. T3Es function to manipulate
various plant processes to promote infection.

HR

Hypersensitive response, a programmed-cell death response of plants, mediated by
recognition of pathogen effectors by the corresponding plant resistance proteins and
activation of effector-triggered immunity (ETI).

PTI

A branch of plant innate immunity, sometimes referred to as basal defense. PTI signaling is
initiated by recognition of conserved microbial structures (e.g. flagellin) by plant membrane-
localized receptors, and transduced by downstream components including the MAP kinase
cascade and WRKY transcription factors, and finally leads to expression of plant immunity
genes.

ETI

Another branch of plant innate immunity, formerly called “gene-for-gene” resistance. It is
triggered by recognition of specific T3E proteins by the corresponding plant resistance
proteins, through direct or indirect interaction. ETI evokes strong plant immune responses,
which often culminates in programed cell death (i.e., hypersensitive response).

Stomata
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Microscopic pores found in the epidermis of leaves, stems, and other plant organs, that
facilitates gas exchange. The pore is bordered by a pair of specialized epidermal cells known
as guard cells that are responsible for regulating the size of the stomatal opening.

Guard cell
Specialized epidermal cells that surround the stomatal pore and enable it to open and close.

Mesophy!ll cell
Cells located between the upper and lower epidermis in the plant leaf; the primary cell type
for photosynthesis in the plant.

I1AA
Indole-3-acetic acid, the most common, naturally occurring, plant hormone of the auxin
class.

Coronatine
A toxin produced by Pseudomonas syringae, its chemical structure consists of two moieties,
coronafacic acid (CFA) and coronamic acid (CMA).

Syringomycins

A class of lipodepsinonapeptide molecules that are secreted by Pseudomonas syringae.
Syringomycins are virulence determinants required for the manifestation of disease
symptoms on a number of plants.

EPS
Exopolysaccharide; high-molecular-weight polymers that are composed of sugar residues
and are secreted by a microorganism into the surrounding environment.

Pathovar

A bacterial strain or set of strains with the same or similar characteristics, which is
differentiated at the infrasubspecific level from other strains of the same species or
subspecies on the basis of distinctive pathogenicity to one or more plant hosts.

Phylogroup

A phylogenetically related group of organisms. In the £ syringae species complex,
phylogroups have been delineated based on genetic relatedness of less than 5% in conserved
housekeeping genes.

PAMP

Pathogen-associated molecular pattern, sometimes called microbe-associated molecular
pattern (MAMP). These are conserved molecular structures from microbes and can elicit
immune responses in the host.

Endophyte
A microbial organism that lives within a plant for at least part of its life cycle.

Salicylic acid
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A phenolic plant defense hormone that mediates plant defense against infections by
biotrophic and hemibiotrophic pathogens.

Jasmonate
A lipid-based plant hormone that mediates plant defense against attacks by herbivory and
necrotrophic pathogens as well as regulating plant growth and development.

Abscisic acid
An isoprenoid plant stress hormone that functions in plant developmental processes such as
seed dormancy and mediates plant response to water desiccation.

Induced systemic resistance

An important mechanism by which selected plant growth—promoting bacteria and fungi in
the rhizosphere prime the whole plant body for enhanced defense against a broad range of
pathogens and insect herbivores.

Oomycetes

A distinct phylogenetic lineage of fungus-like eukaryotic microorganisms. Oomycetes
include some of the most notorious pathogens of plants, causing devastating diseases such as
late blight of potato and sudden oak death.
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Key Points

. Pseudomonas syringae is one of the most common plant pathogens that infect
the phyllosphere (i.e., the aboveground plant organs). 2. syringae can live on
the plant surface as an epiphyte. To cause disease it enters the plant, through
wounds or natural openings such as stomata, and multiplies within the
intercellular space called the apoplast. In the past three decades, £ syringae
has been used as an insightful model for understanding bacterial virulence
mechanisms, host adaptation of pathogens, as well as microbial evolution,
ecology and epidemiology.

. The P, syringae species complex forms a monophyletic group in the 2
fluorescens-like division of Pseudomonas. P. syringae strains are split into 13
phylogroups, which separate between early branching and canonical lineages.
Members of the canonical lineages have conserved virulence-associated and
phenotypic features and include several plant-specialist phylogroups. 2
syringae has also been subdivided into ~50 pathovars based on host of
isolation, host range and other properties.

. P, syringae attacks plants using a variety of virulence factors, including
“effector proteins” that are translocated into the plant cell via the type IlI
secretion system (T3SS), small-molecule toxins, exopolysaccharides, cell
wall-degrading enzymes and plant hormones (or hormone mimics). Whereas
all pathogenic strains of 2. syringae possess the T3SS and effectors, they may
or may not produce other virulence factors.

. Plants have evolved a defense mechanism (stomatal closure) to reduce
bacterial entry through stomata by detection of pathogen-associated molecular
patterns (PAMPs). To defeat stomatal defense, 2 syringae use toxins and
T3SS effector proteins to overcome PAMP-induced stomatal closure.
Stomatal closure is sensitive to high atmospheric humidity, which could
promote bacterial entry into the plant.

. After entry into the plant, 2 syringae encounters the apoplast, a potentially
carbohydrate-rich but heavily defended living space for microbes. Recent
advances in the identification of a minimal repertoire of T3SS effectors and
host-mutation-based “disease reconstitution” experiments provide evidence
that immune suppression and establishment of aqueous apoplast are two
principal pathogenic processes required for 2 syringae multiplication inside
the apoplast.

. P, syringae infection is profoundly influenced by external environmental
conditions, such as air humidity, temperature and microbiota that live on
healthy plants. Understanding how abiotic and biotic environmental
conditions shape £, syringae infection at the mechanistic level may become an
important aspect of future research. A complete understanding of the multi-
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dimensional plant-£ syringae-environment/microbiome interactions will infer
innovative approaches for controlling diseases on crop plants.
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Figure 1. The phylogeny of P. syringae and common phylogroup features
On the left, proposed phylogenetic branching order for major species groups within the 2

fluorescens-like major branch of Pseudomonast* 15. On the right, thirteen identified
phylogroups (PGs) in the P, syringae species complex, based on multi-locus sequence
analysis (MLSA). Phylogroups representing monophyletic species within the complex are
noted. Characteristic PG members are listed along with general phylogroup-associated
features when known6. S-PAI, single-part pathogenicity islands lack a canonical CEL but
may carry CEL T3SS effectors within the Arp/Are cluster. laal, presence of the indole acetic
acid lysine synthetase gene for the inactivation of auxin2®. Hab, common habitat, strains are
isolated mostly from plants (P) or the environment (E), or both/ubiquitous (U). INA,
reported ice nucleation capacity or the presence of the /nalWice-nucleation gene. laal, Hab
and INA traits vary on a strain-to-strain basis. *, PG 2 clade ¢ and PG 13 have A-typical S-
PAIs (A-PAI) with distinct genomic locations!2.
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Figure 2. Potential steps to patho-adaptation in P. syringae evolution
Hypothesized ancestry of important traits in the £ syringae species complex. The S-PAI

encodes AvrE and/or HopM effectors associated with apoplast water-soaking. T-PAI effector
loci genes are associated with JA manipulation and defense suppression in addition to
apoplast water-soaking. In addition to trait name abbreviations in Figure 1, Alg, genes for
the regulation and production of alginate. /aaM/iaaH, genes for auxin synthesis, Pel, pectate
lyase. T3Es, expansion and diversification of T3E repertoires. Tox, toxin packages of broad-
host-range pathogens.
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Figure 3. Battle during bacterial entry
Upper panel, £ syringae bacteria enter a section of a plant leaf through natural opening

stomata. Lower panel, perception of bacterial PAMPs stimulates PAMP immune signaling in
a stomatal guard cell leading to SA signaling and eventual stomatal closure; £ syringae
phytotoxin coronatine and several T3Es (i.e. AvrB, HopBB1, HopX1 and HopZ1a) target the
COI1 receptor or JAZ transcriptional repressors to activate JA signaling. Activation of JA
signaling leads to modulation of the expression of ANAC transcription factors and ICS1 and
BSMT1, which are involved in SA biosynthesis and metabolism, respectively, resulting in
lowered SA accumulation and inhibition of PAMP-triggered stomatal closure38.
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Figure 4. Battle inside the leaf apoplast after bacterial entry
a. A diagram depicting the host targets of eight “core” T3Es in a susceptible Arabidopsis

cell. AvrPtoB targets PRR complex to inhibit PTI. HopG1 and HopE1 target actin and
microtubule networks through interaction with kinesin and MAPG65, respectively. HopAM1
induces ABA hypersensitivity in the plant and enhances virulence on drought-condition
plants, and HopN1 targets the chloroplast protein PsbQ. These five T3Es appear to be
primarily involved in suppression of host immunity responses. Two conserved T3Es, HopM1
and AvrE, induce an aqueous apoplast. HopM1 targets a trans-Golgi network (TGN)/early
endosome (EE)-localized ARF guanine exchange factor, MIN7, and AvrE interacts with
protein phosphatase 2A (PP2A). The host target of HopAAL (not shown) is not known. b. A
conceptual model illustrating two basic aspects of host biology perturbed by £ syringae post
epiphytic growth. Suppression of plant immunity and creation of an aqueous apoplast are
two principal features of P syringae infection in the leaf.
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Figure 5. Interactions between plant, P. syringae and abiotic and biotic environment
a. A diagram illustrating the plant-pathogen-environment triangular interactions formally

known as the “disease triangle”. b—d. Effects of temperature (b), humidity (c) and the
microbiome (d) on £ syringae, the plant and disease outcome. Normal arrows indicate
positive effects and block arrows indicate negative effects.
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Host targets of £ syringae T3Es.

Table 1

T3Es Host target(s) Host process References
AvrPto FLS2, EFR, BAK1 PTI 70, 129, 130
AvrPtoB FLS2, CERK1, Bti9, BAK1 PTI 70-73, 131
HopB1 BAK1 PTI 132
AvrPphB BIK1/PBS1/PBLs PTI 133
HopF2 BAK1, MKK5 PTI 134-136
HopAll MPK3, MPK6, MPK4 PTI 137,138
AvrRpt2 MPK4, MPK11 PTI 139
AvrRps4 WRKYs PTI 140, 141
HopD1 NTL9 ETI 142
AvrPtoB Fen, Ryopap1 ETI 69,74
HopX1, HopBB1, HopZ1la JAZ JA 44-46, 143
AvrB JA 48
AvrRpt2 AUX/IAA Auxin 144,145
AvrPtoB ABA 146
HopAM1 ABA 7
HopQ1 Cytokinin 147
HopAF1 MTN1/2 Ethylene 148
Hopl1 SA 149, 150
Hopw1 Actin Actin 151
HopG1 Kinesin Actin 75
HopE1l MAP65 Microtubule 7
HopZla Tubulin Microtubule 152
HopM1 MIN7 Water balance ~ 82.84,85
AvrE PP2A 82,84
HopN1 PsbQ Chloroplast 78
Hopll Hsp70 Chloroplast 149
HopK1 Chloroplast 153
AvrB RIN4/MPK4/Hsp90/RAR1  RIN4 complex — 47.143
AvrRpt2 RIN4 RIN4 complex 154,155
AvrRpm1 RIN4 RIN4 complex 156
AvrPto, AvrPtoB RIN4 RIN4 complex 157
HopF2 RIN4 RIN4 complex 158
AvrRps4, HopAl EDS1 EDS1 159, 160
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T3Es Host target(s) Host process References
HopU1 GRP7/8 Gene transcript 161,162
HopZ1a, HopZ1b GmHID1 Phytoalexin 163
Hopz4 RPT6 Proteasome 164
HopM1, HopG1, HopAO1, HopAl Proteasome 165

“Host target” denotes the plant protein that directly interacts with and/or is modified by the corresponding T3E.
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