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Landscape of Microsatellite
Instability Across 39 Cancer Types

abstract

Purpose Microsatellite instability (MSI) is a pattern of hypermutation that occurs at genomic
microsatellites and is caused by defects in the mismatch repair system. Mismatch repair de-
ficiency that leads to MSI has been well described in several types of human cancer, most
frequently in colorectal, endometrial, and gastric adenocarcinomas. MSI is known to be both
predictive and prognostic, especially in colorectal cancer; however, current clinical guidelines
only recommendMSI testing for colorectal and endometrial cancers. Therefore, less is known
about the prevalence and extent of MSI among other types of cancer.

Methods Using our recently published MSI-calling software, MANTIS, we analyzed whole-
exome data from 11,139 tumor-normal pairs from The Cancer Genome Atlas and Thera-
peutically Applicable Research to Generate Effective Treatments projects and external data
sources across 39 cancer types. Within a subset of these cancer types, we assessed mutation
burden, mutational signatures, and somatic variants associated with MSI.

ResultsWe identifiedMSI in 3.8% of all cancers assessed—present in 27 of tumor types—most
notably adrenocortical carcinoma (ACC), cervical cancer (CESC), and mesothelioma, in which
MSI has not yet been well described. In addition, MSI-high ACC and CESC tumors were
observed to have a higher averagemutational burden thanmicrosatellite-stable ACCandCESC
tumors.

ConclusionWe provide evidence of as-yet-unappreciatedMSI in several types of cancer. These
findings support anexpandedrole for clinicalMSI testingacrossmultiple cancer types aspatients
withMSI-positive tumors are predicted to benefit fromnovel immunotherapies in clinical trials.
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INTRODUCTION

Large-scale sequencing projects of cancer ge-
nomes have opened the door to studies that have
identified putative biomarkers with potential
clinical and therapeutic value, among them the
presence or absence of microsatellite instability
(MSI). Microsatellites are defined as 10 to 60 base
pair regions that contain multiple repeats of 1 to 5
base pair motifs.1 Microsatellites occur at micro-
satellite loci, which are widely dispersed through-
out the human genome. In normal cells, repeat
count of microsatellites is verified and main-
tained during cell division by themismatch repair
(MMR) system,2,3 one of many cellular DNA
repair mechanisms. Impairment of the MMR
system can render cells unable to regulate the
lengths of their microsatellites during cell divi-
sion, termed MSI. After multiple cycles of cell
division, cells with an impaired MMR system will
develop varying lengths in their microsatellite
sequences.

Mismatch repair deficiency is known to occur in
some tumors,2 either by somatic hypermutation
of MMR genes, most commonly, MLH14,5; an
inherited germlineMMRpathwaymutation, such
as in Lynch syndrome6,7; or double somatic mu-
tations in MMR genes. MSI has been frequently
observed within several types of cancer, most
commonly in colorectal, endometrial, and gastric
adenocarcinomas.8,9 The clinical significance of
MSI has been well described in colorectal cancer,
as patients with MSI-H (MSI-high) colorectal
tumors have been shown to have improved prog-
nosis compared with those with MSS (microsa-
tellite stable) tumors.10,11 Furthermore, MSI-H
colorectal tumors have been shown to be more
susceptible to immune-enhancing therapies, such
as the programmed cell death 1 (PD-1) inhibitor
pembrolizumab,12 which has been recently ap-
proved for any MSI-H or MMR-deficient unre-
sectable or metastatic solid tumor.13 Thus far,
MSI-H tumors have the highest response rates
to PD-1 inhibitors for any cancer type and have
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durable responses and a statistically significant
improvement in overall survival.12

MSI polymerase chain reaction (PCR) and im-
munohistochemistry are two molecular biology–
based methods that are in routine use for clinical
MSI testing. MSI-PCR analyzes the distribution
of microsatellite lengths at five standardized loci
(Bethesda panel),14 and immunohistochemistry
detects the presence or absence of four proteins
that are involved in the MMR pathway (MSH2,
MSH6, MLH1, and PMS2). Recently, several
computational methods have been developed that
analyze next-generation sequencing (NGS) data
to detect MSI. Examples of such software include
mSINGS,15 MSISensor,16 and MANTIS.17 A
recent study by our group17 demonstrated that
MANTIS achieves high sensitivity (97%) and
specificity (99%) across six cancer types—tested
using samples with known MSI status by MSI-
PCR—andprovides stableperformancewithvary-
ing numbers of microsatellite loci. Because of this,
MANTIS is particularlywell suited for application
to a wider variety of cancer types.

As clinicalMSI testing is routinely performedonly
on colorectal and endometrial tumors,18 the prev-
alence ofMSI inmanyother cancer types has been
less well described. In addition, evidence exists
that MSI-PCR may be less accurate in other
cancer types.19 A recent study by Hause et al20

developed and applied the MSI detection tool,
MOSAIC, to perform a detailed survey of MSI
across 18 cancer types (n = 5,930 cases); however,
many other cancer types have yet to be analyzed
forMSI.The ability to detectMSI in novel cancer
types would permit the investigation of immune-
enhancing therapies in these cancers, with the
potential to benefit previously unknown subsets
of patients with cancer with MSI.

To perform a more comprehensive assessment of
MSI across many additional cancer types than
those analyzed by Hause et al, our study deter-
mined the prevalence ofMSI in 39 distinct cancer
types (n = 11,139 tumors from 11,080 patients) by
using our previously published MSI-calling tool,
MANTIS.

METHODS

Data Preprocessing—The Cancer Genome
Atlas and Therapeutically Applicable
Research to Generate Effective Treatments

For analysis, 10,701 cases of paired tumor-normal
whole-exome sequencing data were obtained
from The Cancer Genome Atlas (TCGA)21-44

and Therapeutically Applicable Research to

Generate Effective Treatments (TARGET)45,46

projects. Data from all of these cases, with the
exception of diffuse large B-cell lymphoma
(DLBCL) were processed via our in-house auto-
mated pipeline, L-MAP (Landscape Microsatel-
lite Analysis Pathway). L-MAP is implemented in
Python and MySQL and was run on the Oakley
supercomputer at the Ohio Supercomputing
Center.47 First, the metadata for all DNA
whole-exome BAM files were downloaded from
the Genomic Data Commons (GDC)48 and were
converted to SQL database entries. Aligned BAM
files (to hg3849) were queried from GDC by L-
MAP by using the slicing end point provided by
theGDCRESTAPI. Reads that covered any base
within 50 base pairs of a desired microsatellite
locus were downloaded. As GDC data harmoni-
zation includes duplicate marking,48 premarked
duplicate reads were removed by using SAMtools
(version 1.3.1).50

As a result of a GDC sample contamination issue,
all 48 DLBCL paired tumor-normal cases were
downloaded from the GDC Legacy Archive as
whole-exome BAM files aligned to hg19 by using
the GDC Data Transfer Tool. Premarked dupli-
cate reads were removed as above.

Data Preprocessing—Other Sources

Four hundred thirty cases of paired tumor-normal
whole-exome sequencing data were obtained
from the Sequence Read Archive51: 338 chronic
lymphocytic leukemia cases from 279 patients
from Landau et al,52 32 cutaneous T-cell lym-
phoma cases fromChoi et al,53 51 nasopharyngeal
carcinoma cases from Zheng h et al,54 and 8
cholangiocarcinoma cases from Ong et al.55 Fif-
teen additional cholangiocarcinoma cases were
obtained from the European Nucleotide Ar-
chive56 from Chan-on et al.57 All sample identi-
fiers used are available in the Data Supplement.
These cases were processed via L-MAP. Tumor
and normal samples were downloaded in the
FASTQ format using fastq-dump.51 Alignment
to hg38 was performed by using bwa (version
0.7.12)58with thememalgorithm.Duplicate reads
were marked and removed by using PicardMark-
Duplicates.59 Base quality score recalibration and
indel realignment were performed by using
GATK,60 and the resulting BAM files were sliced,
as above, by using SAMtools.

MSI Calling

MSI analysis with MANTIS (version 1.0.3; com-
mit #942061f) was performed as previously de-
scribed17 for all cases by using an average distance
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threshold of 0.4 to differentiateMSI-H fromMSS
tumors. Coordinates for 2,539 microsatellite loci
within or near the exome—originally introduced
by Salipante et al15 and used by later studies17—
were converted from hg19 to hg38 by using Lift-
Over.61 Nine unlifted loci were discarded, which
left 2,530 regions that were used for analysis with
MANTIS in all cohorts, with the exception of
DLBCL (Data Supplement). As the DLBCL data
were aligned to hg19, the original 2,539 loci were
used instead. MANTIS was run with author-
recommended settings for whole-exome data—
minimum read quality, 20; minimum locus qual-
ity, 25; minimum locus coverage, 20; minimum
repeat reads, one; all other settings left at defaults.
Eight sampleswereobserved tohave fewer than10
loci sufficiently covered and were dropped. After
MSI calling, microsatellite locus performance was
assessed in each type of cancer as previously de-
scribed.17 Kernel density estimation functions
were computed by using R (version 3.3.2) using
the density() function with default settings.

Whole-Exome Analysis

For all tumor-normal pairs that were tested by
MANTIS in adrenocortical carcinoma (ACC;
n = 92), cervical cancer (CESC; n = 305), and
mesothelioma (MESO; n = 83), we downloaded
aligned reads from whole-exome sequencing.
Reads were downloaded in BAM format from
GDC by using the GDC Data Transfer Tool.
Premarkedduplicate readswere removedbyusing
SAMtools,50 variant calling was performed using
MuTect62 (see Variant Calling), and annotation
was performed by using ANNOVAR (version
2016-02-01)63 and GNU Parallel.64

Variant Calling

All variant calling was performed by using
MuTect (version 1.1.7).62 The target region was
derived from RefSeq (release 80).65 Exon data
from the refGene table of the RefSeqGenes track
was downloaded in BED format on February 28,
2017, by using the University of California, Santa
Cruz Table Browser66 and 100 base pair padding.
Unknown contigs were excluded and overlapping
regions were merged with BEDTools.67 Variant
cell format output was specified for MuTect and
all other options were left at default. MuTect
variant cell format output was then filtered for
variants marked PASS. Variant annotation was
performed by using ANNOVAR (version 2016-
02-01)63 and GNU Parallel.64 Somatic mutations
in the repair genesMSH2,MSH6,MLH1, PMS2,
EXO1, POLD1, and POLE were determined by

filtering variants with aDANN68,69 pathogenicity
score greater than 0.96 (included inANNOVAR).
This threshold for DANN was chosen as it was
previously shown to provide optimal sensitivity
and specificity.69

Mutational signature calling was performed by
using the tool deconstructSigs70 with the Nature
2013 signatures set, which contains 27 signa-
tures,71 and the exome2genome normalization
method. A mutational signature is a probability
vector of length 96, with each element repre-
senting a single base change, along with bases
immediately flanking it. In this analysis, linear
regression is used to determine the relative con-
tribution of each signature to the observed pat-
tern of mutations. deconstructSigs was run over
every ACC, CESC, and MESO sample by using
all passing variants called with MuTect, as pre-
viously described.

All other downstream analyses were performed
with Perl, Python, and R (version 3.3.2). Figures
were generatedbyusingR,Excel 2010 (Microsoft,
Redmond, WA), and GraphPad Prism (version
7.0a; GraphPad Software, La Jolla, CA).

RESULTS

MSI Prevalence

We analyzed paired whole-exome sequencing
data from 11,139 tumor-normal samples; 10,415
from the The Cancer Genome Atlas (TCGA)72

database, 280 from the TARGET45 database, and
444 from other studies,52-55,57 representing 39
distinct cancer types. MSI was detected in 27 of
these 39 types of cancer (Fig 1A; Appendix Table
A1; Data Supplement). The disease-specific prev-
alence of MSI varied widely, from 31.4% in en-
dometrial carcinoma to 0.25% in glioblastoma
multiforme. MSI was not detected in 12 cancer
types (Figs 1A and 1B). Of 27 cancer types with
MSI, 12 were found to have more than a single
MSI-H tumor present and MSI-H prevalence
greater than 1%. The relative level of instability,
as measured by MANTIS score, varied substan-
tially among MSI-H cancer types (Fig 1B and
Appendix Fig A1 In addition, we attempted to
determine which specific microsatellite loci per-
formed best across the greatest number of cancer
types (Data Supplement). Of 2,530 loci, we iden-
tified 22 loci that, within at least five cohorts, had
an MSI-H versus MSS difference score greater
than 0.75 and were sufficiently covered by at least
50% of samples in the cohort (Appendix Table
A2). Only two loci that were assessed in the
Bethesda14 andPromega73MSI-PCRpanelswere
included in our 2,530 loci, and neither of these
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were within the set of 22 top-performing loci.
These results indicate a striking heterogeneity
of MSI patterns across various types of cancer.
All four disease types with the highest rates of
MSIprevalencewereLynchsyndrome–associated
tumor types that have been previously known
to exhibit MSI: endometrial carcinoma, colon
adenocarcinoma, gastric adenocarcinoma, and
rectal adenocarcinoma. Consistent with previous
studies, MSI was observed to be more frequent
in colon adenocarcinoma (19.7%) than rectal

adenocarcinoma (5.7%).20,74 Of importance,
MSI was detected in three cancer types that have
not been previously well characterized, most no-
tably ACC (4.3%), cervical squamous cell carci-
noma and CESC (2.6%), and MESO (2.4%; Fig
1A). To further investigate MSI status classifica-
tions, kernel density estimation75,76 was per-
formed on the MANTIS scores for these tumor
types. This indicated clear distinctions between
samples that MANTIS called MSI-H from sam-
ples calledMSS (Fig 2). Kernel density estimation
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Fig 1. Prevalence of microsatellite instability (MSI) across 39 human cancer types. (A) MSI prevalence was detected across 39 tumor types. The total
number of tumors and the percentage of cases calledMSI-high (MSI-H) in each cohort is listed inAppendixTable A1. (B)The relative level of instability, as
measured byMANTIS score, is shown across all 39 tumor types.Note that for chronic lymphocytic leukemia (CLL), the listedMSI prevalence in panel A is
out of 279 patients, and all 338 tumors are shown in panel B.MANTIS threshold cutoff of 0.4 is depictedwith a dashed line. ACC, adrenocortical carcinoma;
AML, pediatric acute myeloid leukemia (TARGET); BLCA, bladder carcinoma; BRCA, breast carcinoma; CESC, cervical squamous cell carcinoma and
endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; CTCL, cutaneous T-cell lymphoma; DLBC, diffuse large
B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney
chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia (TCGA); LGG,
lower-grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma;
NBL, pediatric neuroblastoma; NPC, nasopharyngeal carcinoma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG,
pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectal adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous
melanoma; STAD, stomach adenocarcinoma; TCGT, testicular germ cell tumor; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus
endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma; WT, Wilms tumor.
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was also performed on all other tumor types tested
(Appendix Fig A1).

ComparingMutation Burden and Signatures
Between MSI-H and MSS Tumors

As Lynch syndrome–associated MSI-H tumors
have been shown to have higher somatic mutation
burden,12,77 we performed additional analyses to
detect potential hypermutation in MSI-H ACC,
CESC, and MESO. Somatic variant calling was
performed on whole-exome samples from these
four cancer types, and the mean absolute number
of somatic mutations—both nonsynonymous and
synonymous—was found to be increased among
MSI-H versus MSS tumors within their own co-
horts (Fig 3). In particular, an average of 1,157
somatic mutations were detected within MSI-H
ACC samples versus 216 within MSS ACC
(P = .01). An average of 5,675 somatic mutations
were detected within MSI-H CESC samples ver-
sus 639 within MSS CESC (P = .003). Although
statistical significance was not reached within
MESO, MSI-H MESO tumors had, on average, a
nearly seven-fold increase in mutational burden
compared withMSSMESO tumors (982 v 142; P
= .10). All P values were calculated by using
Welch’s two-sample t test with log normalization.
These results indicate that MSI in ACC and
CESC is correlated with high mutational burden.

To further investigate the observed somatic mu-
tations in MSI-H versus MSS ACC, CESC, and
MESO tumors, mutational signature analysis was
performed by using a set of 27 signatures intro-
duced by Alexandrov et al.71 A mutational signa-
ture defines a pattern of preferential somatic
mutation types and may be associated with a
known biologic process or type of cancer. This
analysis was first performed on pooled mutations
among MSI-H or MSS samples within each of
these three cancer cohorts (Appendix Fig A2). No

clear pattern of signature differences was evident
from this pooled analysis. Next, mutational sig-
nature analysis was performed for each individual
case within these cohorts without pooling (Data
Supplement). Differences among signature prev-
alence in ACC, CESC, and MESO did not reach
statistical significance. P values were calculated by
using two-sidedFisher’s exact test (using signature
presence or absence), with Benjamini correction
for multiple hypotheses.78

MMR Pathway Alterations

MSI-H Lynch syndrome–associated tumors are
known to lack the expression or function of at least
oneMMRprotein; therefore,weanalyzed somatic
mutations that were predicted to be deleterious
(by DANN68) in the MMR genesMSH2,MSH6,
MLH1, PMS2, and EXO1, and the proofreading
DNA polymerases POLD1 and POLE, among
MSI-H and MSS samples within ACC, CESC,
and MESO (Appendix Table A3; Data Supple-
ment). Although POLD and POLE are not
considered MMR proteins, mutations in these
genes have been shown to lead to somatic
hypermutation.22,79 Within these cohorts, 64%
ofMSI-H cases and 7% ofMSS cases were found
to contain at least one predicted deleterious so-
matic mutation in at least one of these genes;
however, given that these sampleswere sequenced
with potentially different exome captures, to-
gether with the increased mutational burden of
MSI-H tumors, we could not determine the sta-
tistical significance of this finding.

DISCUSSION

In this study, we have performed, to our knowl-
edge, the largest analysis of MSI in human cancer
exomes to date, including 11,139 whole-exome
tumor-normal pairs from 39 types of cancer.
Compared with a study by Hause et al,20 we

0.0
0.5
1.0
1.5
2.0

5
10
15
20
25

MANTIS Score

De
ns

ity

0.2 0.4 0.6 0.8 1.0

A

MANTIS Score
0.2 0.4 0.6 0.8 1.0

0.0
0.1
0.2
0.3
0.4

5

10

15

De
ns

ity

B

MANTIS Score
0.2 0.4 0.6 0.8 1.0

0
1
2
3
4
5

20

30

40

50

De
ns

ity

C

Fig 2. Kernel density
plots of MANTIS scores
within (A) adrenocortical
carcinoma (ACC), (B)
cervical squamous cell
carcinoma and
endocervical
adenocarcinoma (CESC),
and (C) mesothelioma
(MESO). The dotted line
denotes the average
distance threshold of 0.4,
used by MANTIS to
differentiate microsatellite
instability high from
microsatellite stable
tumors.ACC:n=92, kernel
bandwidth (h) = 7.6e-3;
CESC: n = 305, h = 9.4e-3;
MESO: n = 83, h = 3.2e-3.
KD plots for the other 36
cancer types analyzed are
available in Appendix
Fig A1.
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observed similar rates ofMSI in18 types of cancer,
and we also analyzed another 5,209 whole-exome
tumor-normal pairs from 21 additional types of
cancer. In addition,weobserved thatMSI-HACC
andCESC tumors are significantly hypermutated
comparedwithMSSACCandCESC tumors.We
identified three cohorts with significant MSI
prevalence that have not been previously well
described. Of particular interest, we identified
MSI in 4 (4.4%) of 92ACCcases. Previous studies
of MSI in ACC have implicated Lynch syndrome
as a risk factor for familial ACC80,81; however, to
our knowledge, NGS-based MSI analysis has not
yet been applied to ACC.

MSI-H colorectal tumors have been previously
showntobeexceptionally sensitive to therapywith
PD-1 immune checkpoint inhibitors.12 Identifi-
cation ofMSI in novel tumor types may lead to an
expanded role for immunotherapy and a broader
scope of clinicalMSI testing.82 In addition,MSI is
known to be prognostic within colorectal can-
cer,83 which may apply in other cancer types as
well. For instance, Hause et al20 provide evidence
that increasing MSI positively correlates with
survival time.Clinical trials of immunecheckpoint
inhibitors are beginning or are underway in ACC
(ClinicalTrials.gov identifier: NCT02673333),
CESC (ClinicalTrials.gov identifier: NCT02635360),
and MESO (ClinicalTrials.gov identifiers:
NCT02784171, NCT02991482, NCT02707666,
and NCT02399371), and a previous study of
dendritic cell immunotherapy in ACC84 demon-
strated tumor marker but not clinical response.
These studiesmay benefit from the retrospective

evaluation of MSI-H as a biomarker. Prospec-
tive expansion of clinical MSI testing to other
cancer types may enlighten the prognostic and
predictive value of MSI-H for noncolorectal
cancers.

MMR deficiency is well recognized as the pre-
dominant cause of MSI within colorectal, endo-
metrial, and gastric cancers. In addition, there
have been anecdotal reports of ACC80,81 as a
potential extracolonic manifestation of Lynch
syndrome. If future studies indicate that MSI in
ACC, CESC, and/or MESO is indeed a result of
MMR deficiency, the findings of this study may
implicate previouslyunappreciated cancer types as
being part of Lynch syndrome. Compared with
germline alterations in MMR genes, somatic
events aremost often a result of hypermethylation
of CpG islands in the promoter region ofMLH1.4

Additional investigation is needed to elucidate
other molecular mechanisms that can lead to
MSI, as well as the downstream effects of MSI
on tumor-specific biology. In addition, of 9,569
tumors assessed in this studynotwithin colorectal,
endometrial, or gastric cancer, 77 (0.8%) were
MSI-H. Only 14 of these were within ACC,
CESC, or MESO, which compromised the sta-
tistical power of ourmutational signature analysis.
A larger cohort of MSI-H tumors would permit
more comprehensive studies, including correla-
tion with clinical data.

In summary, we have detected MSI in multiple
cancer types, including ACC,CESC, andMESO,
which indicates that MSI may affect non–Lynch
syndrome tumor types.Withineach typeof cancer
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Fig 3. Somatic

mutational burden
correlates with
microsatellite instability
high (MSI-H) status within
adrenocortical carcinoma
(ACC) and cervical
squamous cell carcinoma
and endocervical
adenocarcinoma (CESC).
Mutational burden is listed
for (A) ACC, (B) CESC,
and (C) mesothelioma
(MESO). P values were
calculated using the Welch
two-sample t test of log-
normalized absolute
somatic mutation counts.
Variant calling was
performed by using
MuTect (“Variant Calling”
inMethods), and all passing
variants were included
(nonsynonymous or
synonymous).
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having MSI, we identified which loci—among
2,530—were most predictive of overall tumor
MSI status. With additional analysis, these well-
performing loci may form the basis of a targeted
NGS panel for pancancer MSI detection. In
addition, we found that MSI-H tumors in ACC
and CESC have higher mutational burden than

MSS tumors of these types. Given our observa-
tions of a long tail of MSI-H tumors across
multiple cancer types, we propose that these
and other, less common cancers undergo evalu-
ation for MSI.
DOI: https://doi.org/10.1200/PO.17.00073
Published online on ascopubs.org/journal/po onOctober 3, 2017.
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Fig A1. Kernel density plots ofMANTIS scores within 36 cancer types. The dotted line denotes the average distance threshold of 0.4, used byMANTIS to
differentiate microsatellite instability high from microsatellite stable tumors. Uterine corpus endometrial carcinoma (UCEC): kernel bandwidth (h) = 4.89e-02.
Colon adenocarcinoma (COAD): h = 1.13e-02. Stomach adenocarcinoma (STAD): h = 7.59e-03. Rectal adenocarcinoma (READ): h = 9.16e-03. Uterine
carcinosarcoma (UCS): h = 4.10e-03. Pediatric high-risk Wilms tumor (WT): h = 1.27e-02. Esophageal carcinoma (ESCA): h = 5.02e-03. Breast carcinoma
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(NBL:): h = 5.47e-03. Lower-grade glioma (LGG:): h = 4.32e-03. Chronic lymphocytic leukemia (CLL): h = 2.64e-03. Glioblastoma multiforme (GBM):
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Table A1. Summary of MSI Landscape Analysis

Cancer Type No. of Cases MSI-H % MSI-H

Adrenocortical carcinoma (TCGA-ACC) 92 4 4.35

Bladder carcinoma (TCGA-BLCA) 412 2 0.49

Breast carcinoma (TCGA-BRCA) 1,044 16 1.53

Cervical squamous cell carcinoma and endocervical adenocarcinoma (TCGA-CESC) 305 8 2.62

Cholangiocarcinoma (TCGA-CHOL,CHOL_10.1038_ng.2273,CHOL_10.1038_ng.2806) 74 1 1.35

Chronic lymphocytic leukemia (CLL_phs000922.v1.p1) 338 1 0.30

Colon adenocarcinoma (TCGA-COAD) 431 85 19.72

Cutaneous T-cell lymphoma (CTCL_10.1038_ng.3356) 33 0 0.00

Lymphoid neoplasm diffuse large B-cell lymphoma (TCGA-DLBC) 48 0 0.00

Esophageal carcinoma (TCGA-ESCA) 184 3 1.63

Glioblastoma multiforme (TCGA-GBM) 396 1 0.25

Head and neck squamous cell carcinoma (TCGA-HNSC) 510 4 0.78

Kidney chromophobe (TCGA-KICH) 66 0 0.00

Kidney renal clear cell carcinoma (TCGA-KIRC) 339 5 1.47

Kidney renal papillary cell carcinoma (TCGA-KIRP) 288 0 0.00

Acute myeloid leukemia (TCGA-LAML) 146 0 0.00

Lower-grade glioma (TCGA-LGG) 513 2 0.39

Liver hepatocellular carcinoma (TCGA-LIHC) 375 3 0.80

Lung adenocarcinoma (TCGA-LUAD) 569 3 0.53

Lung squamous cell carcinoma (TCGA-LUSC) 496 3 0.60

Mesothelioma (TCGA-MESO) 83 2 2.41

Nasopharyngeal carcinoma (NPC_10.1073_pnas.1607606113) 50 0 0.00

Ovarian serous cystadenocarcinoma (TCGA-OV) 437 6 1.37

Pancreatic adenocarcinoma (TCGA-PAAD) 183 0 0.00

Pheochromocytoma and paraganglioma (TCGA-PCPG) 179 0 0.00

Prostate adenocarcinoma (TCGA-PRAD) 498 3 0.60

Rectal adenocarcinoma (TCGA-READ) 157 9 5.73

Sarcoma (TCGA-SARC) 255 2 0.78

Skin cutaneous melanoma (TCGA-SKCM) 470 3 0.64

Stomach adenocarcinoma (TCGA-STAD) 440 84 19.09

Testicular germ cell tumor (TCGA-TGCT) 150 0 0.00

Thyroid carcinoma (TCGA-THCA) 496 0 0.00

Thymoma (TCGA-THYM) 123 1 0.81

Uterine corpus endometrial carcinoma (TCGA-UCEC) 542 170 31.37

Uterine carcinosarcoma (TCGA-UCS) 57 2 3.51

Uveal melanoma (TCGA-UVM) 80 0 0.00

Pediatric acute myeloid leukemia (TARGET-AML) 19 0 0.00

Pediatric neuroblastoma (TARGET-NBL) 220 1 0.45

Pediatric high-risk Wilms tumor (TARGET-WT) 41 1 2.44

Total 11,139 425 3.82

NOTE. Listed for each cancer type are the number of cases analyzed and those calledMSI-H byMANTIS. Note that for CLL, these 338 cases were from 279 patients, many of
whom had multiple tumor samples.
Abbreviations:MSI,microsatellite instability;MSI-H,microsatellite instability high;TARGET,TherapeuticallyApplicableResearch toGenerateEffectiveTreatments;TCGA,
The Cancer Genome Atlas.
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Table A2. All Microsatellite Loci With Difference Scores of . 0.75 in Five or More Cancer Types

Locus Count Cancer Type K-mer

chr5: 14485053-14485065 8 BRCA, CHOL, COAD, ESCA, LUSC, STAD, THYM, UCEC (T)13

chr13: 27559820-27559834 7 COAD, ESCA, GBM, READ, STAD, UCEC, UCS (A)15

chr13: 78642222-78642234 7 COAD, ESCA, LGG, STAD, THYM, UCEC, UCS (A)13

chr8: 102275623-102275635 7 CHOL, COAD, ESCA, LUSC, STAD, THYM, UCEC (A)13

chr18: 62275354-62275366 6 CHOL, COAD, GBM, LGG, LUSC, STAD (T)13

chr3: 140959543-140959557 6 ACC, CHOL, COAD, ESCA, READ, UCEC (A)15

chr6: 152419547-152419559 6 ACC, CHOL, COAD, ESCA, OV, READ (A)13

chr7: 93271201-93271214 6 NBL, CHOL, COAD, READ, STAD, UCS (T)14

chr1: 230958305-230958320 5 CHOL, COAD, ESCA, STAD, THYM (A)16

chr1: 31915992-31916005 5 WT, CHOL, ESCA, SARC, THYM (A)14

chr1: 77966823-77966836 5 COAD, LUSC, READ, STAD, UCEC (A)14

chr14: 30722463-30722475 5 CHOL, ESCA, LIHC, LUSC, STAD (T)13

chr2: 119956826-119956841 5 CHOL, COAD, ESCA, GBM, STAD (T)16

chr2: 200913995-200914009 5 CHOL, COAD, ESCA, GBM, UCEC (A)15

chr20: 38517489-38517502 5 NBL, CHOL, ESCA, STAD, UCEC (T)14

chr3: 112155056-112155069 5 CHOL, COAD, ESCA, PRAD, STAD (A)14

chr4: 38132803-38132818 5 CHOL, COAD, ESCA, READ, THYM (T)16

chr5: 53062932-53062944 5 CHOL, OV, PRAD, THYM, UCS (A)13

chr6: 111008019-111008035 5 CHOL, COAD, ESCA, STAD, UCEC (T)17

chr7: 74753041-74753054 5 COAD, ESCA, STAD, UCEC, UCS (A)14

chr8: 129862369-129862381 5 ESCA, READ, STAD, THYM, UCS (A)13

chr9: 99968416-99968429 5 ESCA, GBM, LUSC, SARC, THYM (T)14

NOTE. A locus was only considered in a cancer type if sufficient sequencing coverage of the locus was present in at least 50% of cases in that cancer type, including at least one
microsatellite instability high sample.
Abbreviations: ACC, adrenocortical carcinoma; BRCA, breast carcinoma; CHOL, cholangiocarcinoma; chr, chromosome; COAD, colon adenocarcinoma; ESCA, esophageal
carcinoma;GBM, glioblastomamultiforme; LGG, lower-grade glioma;LIHC, liver hepatocellular carcinoma; LUSC, lung squamous cell carcinoma;NBL, neuroblastoma;OV,
ovarian serous cystadenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectal adenocarcinoma; SARC, sarcoma; STAD, stomach adenocarcinoma; THYM, thymoma;
UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; WT, Wilms tumor.
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Table A3. Frequency of Predicted Deleterious MMR Mutations in ACC, CESC, and MESO

Variable
Total

No. of Samples MSH2 MSH6 MLH1 PMS2 EXO1 POLE
Total No. of SamplesWith at Least One

Predicted Deleterious Mutation

ACC

MSS 88 1 1 0 1 0 1 4

MSI-H 4 0 0 1 0 0 1 2

CESC

MSS 297 3 3 5 0 3 10 22

MSI-H 8 0 1 3 1 1 2 6

MESO

MSS 81 0 1 0 0 0 1 2

MSI-H 2 1 0 0 0 0 0 1

ACC + CESC + MESO

MSS 466 4 5 5 1 3 12 28

MSI-H 14 1 1 4 1 1 3 9

NOTE. Listed are the number of samples (MSS or MSI-H) with at least one predicted deleterious mutation in MSH2, MSH6, MLH1, PMS2, EXO1, POLD1, and POLE.
Mutations were called by using MuTect (“Variant Calling” in Methods) and included in this table if the DANN pathogenicity score was . 0.96.
Abbreviations: ACC, adrenocortical carcinoma; CESC, cervical cancer; MESO, mesothelioma; MMR, mismatch repair; MSI, microsatellite instability; MSI-H, microsatellite
instability high; MSS, microsatellite stable.
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