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Abstract

Neuroblastoma is the most common pediatric solid tumor of neural crest origin. The current 

treatment options for neuroblastoma produce severe side effects. Programmed death-ligand 1 (PD-

L1), chronic inflammation, and non-coding RNAs are known to play a significant role in the 

pathogenesis of neuroblastoma. Cancer cells and the surrounding cells in the tumor 

microenvironment express PD-L1. Programmed death-1 (PD-1) is a co-receptor expressed 

predominantly by T cells. The binding of PD-1 to its ligands, PD-L1 or PD-L2, is vital for the 

physiologic regulation of the immune system. Chronic inflammation is involved in the recruitment 

of leukocytes, production of cytokines and chemokines that in turn, lead to survival, metastasis, 

and angiogenesis in neuroblastoma tumors. The miRNAs and long non-coding (lnc) RNAs have 

emerged as a novel class of non-coding RNAs that can regulate neuroblastoma associated cell-

signaling pathways. The dysregulation of PD-1/PD-L1, inflammatory pathways, lncRNAs, and 

miRNAs have been reported in clinical and experimental samples of neuroblastoma. These 

signaling molecules are currently being evaluated for their potential as the biomarker and 
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therapeutic targets in the management of neuroblastoma. A monoclonal antibody called 

dinutuximab (Unituxin) that attaches to a carbohydrate molecule GD2, on the surface of many 

neuroblastoma cells, is being used as an immunotherapy drug for neuroblastoma treatment. 

Atezolizumab (Tecentriq), an engineered monoclonal antibody against PD-L1, are currently in 

clinical trial for neuroblastoma patients. The lncRNA/miRNA-based therapeutics is being 

developed to deliver tumor suppressor lncRNAs/miRNAs or silencing of oncogenic lncRNAs/

miRNAs. The focus of this review is to discuss the current knowledge on the immune checkpoint 

molecules, PD-1/PD-L1 signaling, inflammation, and non-coding RNAs in neuroblastoma.
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1. Introduction

Neuroblastoma is the most common childhood cancers that originate from neuroblast cells. 

During development of a fetus, neuroblasts are transformed into nerve cells. However, 

mutations in the small portion of immature neuroblasts can lead to neuroblastoma [1]. 

According to one estimate, the incidence of neuroblastoma in the United States is 1 per 

100,000 children and approximately 700 children (younger than 15 years) suffer from this 

disease each year [2]. The majority of neuroblastoma patients are diagnosed at an advanced 

stage. Although surgery, radiation, and chemotherapy are common treatment options, 

neuroblastoma cells often develop resistance mechanisms and the disease relapses [3]. The 

patients with relapsed neuroblastoma are highly incurable [4]. Neuroblastoma has a poor 

prognosis especially when diagnosed in an advanced stage. Thus, improved detection and 

therapeutic methods for the diagnosis, prognosis, and therapy are required.

The immune checkpoint inhibition molecules such as programmed death protein-1 (PD-1) 

and its ligands (PD-L1, PD-L2), inflammatory molecules, and non-coding RNAs are known 

to play a significant role in the neuroblastoma pathogenesis. PD-1 is the major immune 

checkpoint receptor expressed on activated monocytes, B cells, T cells, dendritic cells 

(DCs), and natural killer T cells in humans and mice [5–8]. It plays a significant role in cell 

adhesion, proliferation, and cytokine signaling. It can also promote self-tolerance by 

suppressing T cell function [9, 10]. The inflammatory molecules (cytokines, chemokines) 

and transcription factors (NF-κB, STAT3) are dysregulated in many tumor types including 

neuroblastoma [11–13]. These inflammatory molecules play a role in modulating 

immunosurveillance, promoting angiogenesis and recruiting leukocytes to neuroblastoma 

cells [14, 15]. Non-tumor cells and factors such as tumor-associated macrophages (TAMs) 

and macrophage migration inhibitory factor (MIF) are also the major mediators of 

inflammation.

It is now clear that ~98% of the human genome accounts for non-coding sequences [16]. 

Furthermore, ~90% of these non-coding sequences are transcribed to produce a large 

number of non-coding RNAs [17–20]. There are two major classes of non-coding RNAs: 

microRNAs (miRNAs, 18–22 nucleotides) and long non-coding RNAs (lncRNAs, ≥200 
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nucleotides). Although miRNAs are well characterized, lncRNAs are relatively new. During 

recent years, lncRNAs have been implicated in regulating cellular functions and disease 

processes including neuroblastoma [21–23]. Because of specificity and ease in detection, 

lncRNAs can be used as a biomarker and therapeutic target [24–27]. miRNAs can also 

regulate different physiological and pathological processes including inflammation and 

cancer [28–30]. miRNAs are known to negatively regulate protein coding genes and the 

expression of other non-coding transcripts. miRNAs are involved in the post-transcriptional 

modulation of multiple genes by base-pairing to target mRNAs [31]. The binding of 

miRNAs to the 3’untranslated region (UTR) of mRNAs usually leads to the degradation or 

translational repression [32]. Accumulating evidence suggests that miRNAs play a 

significant role in the pathogenesis of neuroblastoma [2], and thus could be used for the 

diagnosis and prognosis of disease [33–37].

In the following sections, we discuss the role of immune checkpoint molecules, 

inflammatory molecules, PD-1/PD-L1 signaling, miRNAs, and lncRNAs in neuroblastoma 

pathogenesis. We also discuss the clinical implications of these molecules in neuroblastoma. 

We provide evidence that these molecules can be used as a biomarker and therapeutic target 

for neuroblastoma (Figure 1).

2. Immune Checkpoint molecules

T-lymphocytes are primary effector cells of the adaptive immune response against cancer, 

which includes helper T cells and cytotoxic T cells. The cytotoxic T cells directly attack the 

tumor cells and helper T cells to propagate the anti-tumor immune response in the immune 

system. These cells play an important role in the recognition of tumor antigens from the 

major histocompatibility complex (MHC) receptors. The interaction of T cell receptor and 

tumor antigen MHC complex on antigen-presenting cells is called as T-cell priming/

activation [38]. The priming of T-cells is firmly coordinated by immune checkpoint 

molecules. The most common immune checkpoint molecules are cytotoxic lymphocyte–

associated protein 4 (CTLA-4) and PD-L1. CTLA-4 and PD-L1 are over expressed on most 

cancer types and are known to inhibit the T cell function [39].

Lymphocyte-activation gene 3 (LAG 3) are MHC class 2 ligand immunecheck point 

molecules, expressed in dendritic cells (DCs) and tumor-infiltrating macrophages. It 

augments regulatory T cells (T reg) and impede the CD 8 effector T cell to allow the cancer 

cell immune escape [40]. T cell membrane protein 3 (Tim-3) is an immune checkpoint 

receptor molecules found in natural killer T cells, macrophages and DCs [41]. It is highly 

expressed in many cancers including liver, lung and melanoma tumors. BTLA is a B- and T-

lymphocyte attenuator protein immune checkpoint molecules, expressed in activated T-

helper cells. It is associated with a ligand in herpes virus entry mediator to mediate the 

signal recipient cancer cells. It is expressed on the surface of melanoma cancer cells and 

alleviates IL-2 to impair the activation of T cells [42]. Considering the fact that immune 

checkpoint molecules play major role in cancer therapy, a number of inhibitors are being 

evaluated by clinical trials [43].
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2.1. PD-1 and PD-L1 Signaling

2.1.1. Programmed Death-1 Protein (PD-1)—PD-1 also known as cluster of 

differentiation 279 (CD279), is a cell surface receptor that belongs to immunoglobulin gene 

super family [44]. PD-1 was isolated in 1992 using subtractive hybridization. It is expressed 

on activated monocytes, B cells, dendritic cells, NK cells, natural killer T (NKT) cells, T 

cells, regulatory T cells (Treg), and exhausted T cells [5, 45, 46]. PD-1 plays a crucial role in 

lowering the immune system through suppression of T-cell function and up-regulation of 

Tregs, which in turn, reduces autoimmunity and promotes self-tolerance [9, 10]. Under 

normal physiological conditions, PD-1 is known to interact with two ligands, PD-L1 and 

PD-L2; these ligands share 37% sequence homology [47–49]. The expression of PD-L1 and 

PDL2 is increased when cancer cells are attacked by the immune system, leading to the 

suppression of T cells and immune escape [50].

2.1.2. Programmed Death Ligand-1 (PD-L1)—PD-L1 is a 40-kDa type 1 

transmembrane protein that suppresses the immune system during physiological and 

pathological events (Dong et al.,). PD-L1 is constitutively expressed on antigen presenting 

cells, non-lymphoid organs and non-hematopoietic cells such as heart, lung, placenta, and 

liver. PD-L1 is also expressed by a variety of cancer cells and by tumor-infiltrating immune 

cells including dendritic cells and macrophages [51]. It can be induced by various pro-

inflammatory cytokines like IFN-γ, TNF-α, VEGF, granulocyte-macrophage colony-

stimulating factor (GM-CSF) and IL-10. PD-L1 can also be induced by toll like receptors 

(TLRs), interferon regulatory factor 1 (IRF1), STAT1, STAT3, and hypoxia-inducible 

factor-1alpha (HIF-1α) [52]. Up-regulation of PD-L1 in tumor cells facilitates immune 

suppression in the tumor microenvironment [53]. Upon epidermal growth factor receptor 

(EGFR) stimulation, mature PD-L1 undergoes glycosylation, which leads to its stabilization 

[54]. In the absence of glycosylation, PD-L1 undergoes GSK-3β mediated phosphorylation 

which triggers its K48-ubiquitination and subsequent degradation [54]. PD-L1 can also be 

stabilized by COP9 signalosome (CSN5) mediated deubiquitination [55]. Furthermore, 

nuclear factor (NF)-κB p65 can directly regulate CSN5 expression by binding to its 

promoter leading to PD-L1 stabilization and immune suppression [55]. The IFN-γ-induced 

PD-L1 expression is dependent on the NF-κB signaling [56]. In human glioma cells, 

dysfunction in PTEN and activation of PI3K is associated with increased expression of PD-

L1 [57]. PI3K can also increase the translation of PD-L1 mRNA [47]. These studies clearly 

demonstrated that PD-1 and PD-L1 contribute to cancer pathogenesis and thus could be used 

as biomarkers and therapeutic targets.

2.1.3. Diagnostic and Prognostic Significance of PD-1/PD-L1—Several lines of 

evidence have established the diagnostic and prognostic potential of PD-1/PD-L1 in 

neuroblastoma. For example, one study was aimed to characterize the PD-L1 expression and 

tumor-associated immune cells (TAICs) (lymphocytes and macrophages) in common 

pediatric cancers [58]. The whole slide sections and tissue microarrays were evaluated by 

immunohistochemistry for PD-L1 expression and the presence of TAICs. TAICs were also 

screened for PD-L1 expression. Thirty-nine of 451 evaluable tumors (9%) expressed PD-L1 

in at least 1% of tumor cells. The common cancer types observed in these pediatric cancer 

patients were Burkitt lymphoma, glioblastoma multi-forms, and neuroblastoma. PD-L1 
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staining was associated with inferior survival in neuroblastoma patients. Furthermore, 74% 

of tumors contained lymphocytes and/or macrophages. The macrophages were more likely 

to be identified in PD-L1-positive versus PD-L1-negative tumors. The authors of this study 

concluded that a subset of diagnostic pediatric cancers exhibit PD-L1 expression, whereas a 

much larger fraction show infiltration by tumor-associated lymphocytes. Furthermore, PD-

L1 expression could be used as a biomarker for poor outcome in neuroblastoma patients. 

However, more studies are required to define the predictive nature of PD-L1 expression in 

neuroblastoma both at diagnosis and after chemotherapy.

N-Myc (V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma-Derived 

Homolog) is a proto-oncogene encoded by MYCN that belongs to the Myc family of DNA 

binding basic helix-loop-helix leucine zipper proteins. Previous studies have demonstrated 

the association of MYCN amplification and N-Myc over-expression with several cancer 

types, most notably neuroblastoma [59–62]. MYCN is used as a biomarker to stratify and to 

assess neuroblastoma patients [63, 64]. MYC and MYCN are known to regulate PD-L1 in 

neuroblastoma [64, 65]. The functional inhibition of MYC/MYCN is known to suppress PD-

L1 expression [64]. Furthermore, MYC can initiate and maintain tumorigenesis through the 

modulation of immune regulatory molecules [65]. Toll-like receptor 3 (TLR3) can also 

enhance PD-L1 and major histocompatibility complex (MHC) class I expression in 

neuroblastoma cells [66]. Expression of TLR3 can also serve to predict favorable prognosis 

in neuroblastoma [67]. Treatment of neuroblastoma cell lines with TLR3 or interferon-γ can 

significantly up-regulate PD-L1 and MHC class I [68].

A study was sought to evaluate the expression of PD-L1 and HLA class I on neuroblastoma 

cells, and PD-1 and lymphocyte activation gene 3 (LAG 3) on tumor-infiltrating 

lymphocytes to examine if neuroblastoma patients may benefit from therapies targeting 

immune checkpoint molecules [64]. The expression of PD-L1, HLA class I, PD-1 and LAG3 

was assessed in 77 neuroblastoma specimens by in situ immunohistochemistry (IHC). These 

patients were characterized by tumor-infiltrating T-cell density that correlated with clinical 

outcome. A data set of 477 human primary neuroblastomas from Gene Expression Omnibus 

(GEO) and array expression databases was explored for PD-L1, MYC, and MYCN 

correlation. The combination of PD-L1 and HLA class I tumor cell density was found to be 

a prognostic biomarker for predicting overall survival in neuroblastoma patients. The 

abundance of PD-L1 transcript correlated with MYC expression in primary neuroblastoma. 

It was concluded that the combination of PD-L1 and HLA class I could be a novel 

prognostic biomarker for neuroblastoma.

Dondero and colleagues analyzed the effect of constitutive and inducible expression of PD-

Ls in human neuroblastoma cell lines, ex vivo isolated neuroblasts, and lymphocytes [69]. A 

combination of PD-L1 and human leucocyte antigen (HLA) class I tumor cell density was 

identified as a prognostic biomarker for predicting overall survival in neuroblastoma 

patients. In another study, the infiltrating T cells were found to possess prognostic value 

greater than the currently used methods [70].

Relapsed/refractory neuroblastoma (rNB) after traditional chemotherapy is highly incurable. 

A recent clinical trial from USA (https://clinicaltrials.gov/ct2/show/study/NCT02868268) is 
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recruiting rNB patients. This clinical trial is utilizing the multi-institutional infrastructure 

and Translational Genomics Research Institute GEM sequencing platform. The aim of the 

trial is to identify subgroups of rNB patients with potentially targetable genetic (ALK, 

MAPK, metabolic-related genes) and/or immunologic (tumor-associated macrophage 

infiltration and/or PD-L1 expression) biomarkers in rNB. It is expected that understanding 

the genetic and immunologic landscape of rNB will help in devising novel therapies for 

these patients.

2.1.4. Therapeutic Potential of PD-1/PD-L1—PD-1 inhibitors block the interaction of 

PD-L1 and PD-L2 with PD-1 on T cells and increase T cell proliferation and function [71]. 

The molecular basis for PD-1 and PD-L1 based therapy is presented in Figure 2. In fact, 

some inhibitors have been developed against PD-1/PD-Ls. For example, opdivo (nivolumab) 

and keytruda (pembrolizumab) are PD-1 inhibitors approved by FDA for advanced 

melanoma and non-small cell lung cancer (NSCLC).

PD-L1 antibodies act by blocking the interaction of PD-L1 with PD-1 without affecting PD-

L2/PD-1 interaction. Because the PD-1/PD-L2 pathway plays a role in peripheral tolerance, 

the specificity of PD-L1 antibodies may help to decrease toxicity. Some monoclonal 

antibodies developed against PD-L1 are BMS-986559 (MDX-1105), MPDL3280A, and 

MEDI4736. These antibodies are currently under evaluation in clinical trials for advanced 

malignancy (http://www.clinicaltrial.org/). However, the efficacy of these antibodies against 

neuroblastoma is yet to be determined. To our knowledge, dinutuximab (unituxin), a 

monoclonal antibody that targets the ganglioside GD2, is the most effective immunotherapy 

for neuroblastoma. Dinutuximab is reported to improve the 2-year event-free survival of 

high-risk neuroblastoma patients from 46% to 66% [72]. Atezolizumab (Tecentriq) is an 

engineered monoclonal antibody designed against PD-L1. The safety, tolerability, 

pharmacokinetics, immunogenicity, and preliminary efficacy of this antibody is being 

evaluated by an early phase clinical trial (https://clinicaltrials.gov/ct2/show/study/

NCT02541604). A recent report on a 6-year-old baby revealed that combination chemo-

immunotherapy could be successfully used for high-risk NB relapsed after haploidentical 

stem cell transplantation (haplo-HSCT) [73].

In HLA class I positive neuroblastoma cell lines, PD-L1 is constitutively expressed, whereas 

PD-L2 is very rarely detected [69]. Furthermore, an induction in PD-L1 by IFN-γ was 

observed in neuroblastoma cell lines and in neuroblastoma engrafted nude mice. 

Importantly, PD-L1 was identified in metastatic neuroblasts isolated from bone marrow 

aspirates of high-risk neuroblastoma patients. PD-1 positive cells were mainly represented 

by αβ T cells, as well as small populations of γδ T cells and NK cells. The authors of this 

study concluded that PD-L1-mediated immune resistance mechanisms occur in metastatic 

neuroblasts and thus provide a biological rationale for blocking the PD-1/PD-Ls axis for 

immunotherapy.

PD-1 inhibitors have also been used in combination for neuroblastoma immunotherapy [69, 

74–76]. For example, in combination with TLR ligands, the PD-L1 blockade was proposed 

as a promising immunotherapy for neuroblastoma [76]. Furthermore, pembrolizumab is 

more effective than docetaxel in PD-L1-expressing advanced NSCLC patients [77]. 

Nallasamy et al. Page 6

Semin Cancer Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.clinicaltrial.org/
https://clinicaltrials.gov/ct2/show/study/NCT02541604
https://clinicaltrials.gov/ct2/show/study/NCT02541604


However, only some subsets of patients benefit from PD-1/PD-L1 immune checkpoint 

blockade therapies. Therefore, it is essential to identify those populations that can benefit 

from PD-1/PD-L1 blockade therapy. Currently, PD-L1 expression in tumor specimens by 

IHC is the most commonly used biomarker for selecting patients with the possibility to 

respond to treatments [78]. However, conflicting results have been reported on PD-L1 

expression. For example, over-expression of PD-L1 in melanoma is associated with poor 

clinical outcome [79]. Conversely, the PD-L1 over-expression in the context of CD8-positive 

cells is associated with a better prognosis [80]. Although these studies suggest the efficacy 

of PD-1 inhibitors against melanoma and NSCLC, the potential of these inhibitors against 

neuroblastoma has not been determined.

4. Inflammation and Neuroblastoma

While acute inflammation is beneficial, chronic inflammation leads to various chronic 

diseases including cancer. Various inflammatory molecules have been identified as a 

molecular mediator of cancer. These include pro-inflammatory transcription factors (NF-κB, 

STAT3), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, chemokines, cyclooxygenase 

(COX)-2, 5-lipooxygenase (5-LOX), matrix metalloproteinases (MMPs), vascular 

endothelial growth factor (VEGF), adhesion molecules, and numerous other molecules. 

Apart from inflammatory molecules, non-tumor cells such as tumor-associated macrophages 

(TAMs) are also known mediator of inflammation. The role of TAMs, macrophage 

migration inhibitory factor (MIF), chemokines and transcription factors in neuroblastoma 

pathogenesis are discussed in following sub-sections.

4.1. Tumor Associated Macrophages (TAMs)

Tumor-associated macrophages (TAMs) are cell types that are found near or within tumor 

masses. M1 and M2 are two major macrophage classes that are activated in response to 

dynamic stimuli. These macrophages are essential modulators of the immune response. The 

activation of M1 macrophages is observed in response to bacterial infection or interferon-γ 
(IFN-γ). This leads to enhanced antigen presentation and increased production of IL-12, 

IL-23, and reactive oxygen species (ROS) and anti-tumor effects. M2 macrophages are 

induced by interleukins (IL-4, -10, -13), and glucocorticoids, and promote growth and 

metastasis of neuroblastoma [81]. M2 macrophages can contribute to tissue remodeling, 

repair, and may protect tumor cells from apoptosis [82].

TAMs are fundamental to the progression of many tumor types including neuroblastoma 

[83–85]. Growing evidence suggests that TAMs can facilitate progression of neuroblastoma. 

Metastatic neuroblastoma patients are characterized by higher infiltration of TAMs. 

Neuroblastoma patients with an age of ≥ 18 months have higher expression of 

inflammationrelated CD16, CD33, IL6R, IL10, and FCGR3 than in patients diagnosed at the 

age of < 18 months [86]. MYCN non-amplified stage 4 patient’s clinical reports have 

demonstrated that increased expression of TAM- associated genes such as CD14 and CD16 

are significantly correlated with 5-year event-free survival [87]. Lymphocyte markers such 

as CD8A, CD4, and FOXP3 were not correlated with MYCN non-amplified stage 4 patient’s 

clinical reports. Neuroblastoma cells cultured with primary monocytes are associated with 
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rapid tumor growth in a xenograft mouse model. While administration of IL-6 neutralizing 

antibodies reduced tumor growth, over-expression of IL-6 was associated with increased 

tumor growth rates. The presence of TAMs was confirmed by immunohistochemistry. 

Furthermore, a significant increase in IL-6 was observed in tumor-infiltrated bone marrow 

[87]. IL-6 derived from bone marrow stromal cells (BMSC) is enhances progression of 

metastatic neuroblastoma [88]. When IL-6R-positive neuroblastoma cells are cultured in the 

presence of BMSC or recombinant human IL-6, an increase in proliferation is observed. 

Furthermore, IL-6R-positive neuroblastomas are protected from etoposide-induced apoptosis 

in the presence of BMSC or recombinant human IL-6. However, these responses were not 

observed in IL-6R-negative neuroblastoma cells [88]. A major limitation of the current 

neuroblastoma therapy is that over time neuroblastoma cells develop resistance to 

therapeutic agents [89]. Previous studies have demonstrated that TAMs can promote 

neuroblastoma growth, metastasis and the development of drug resistance [86]. Thus TAMs 

represent a negative prognostic factor for neuroblastoma [90–92]. However, the molecular 

mechanism by which TAMs contribute to tumorigenic effects is not properly understood.

4.2. Tumor-infiltrating lymphocytes (TILs)

Tumor-infiltrating lymphocytes (TILs) are group of mononuclear T cells infiltrated from 

tumor tissue found in most solid tumor including breast, colon, cervical, melanoma and 

neuroblastoma [93]. TILs are found in stroma within tumor area and contain T cells, B cells, 

NK cells and macrophages. TILs are important for diagnosis and prognosis in patients with 

many solid tumor including neuroblastoma [70, 94, 95]. A sub population of CD4+ cells in 

TILs shows detrimental effect on host milieu [96]. The histopathological specimen 

containing TIL could provide a decisive prognostic information in a wide variety of solid 

tumors especially neuroblastoma. TILs are assessed by standardized methodology on 

hematoxylin and eosin dye stained histological section based on the international immuno-

oncology biomarker working group guidelines [97]. This standardized methodology may be 

used to evaluate clinical validity and utility of immunotherapy in neuroblastoma patients. 

Genetically modified TILs are preferred over conventional therapies in treating malignancies 

such as neuroblastoma [98].

4.3. Tumor Associated Mesenchymal Stem Cells (TMSCs)

Mesenchymal stem cells (MSCs) are multipotent stem-like cells that can differentiate into a 

variety of cell types [99, 100]. MSCs are known to produce a large range of cytokines, 

growth factors, proteins and can regulate survival, angiogenesis, immunomodulation, and 

drug resistance [101]. The primary and metastatic tumors are known to attract MSCs from 

bone marrow and other sites in their microenvironment. Conversely, in the bone marrow, 

MSCs attract tumor cells and contribute to a microenvironment that promotes tumor growth.

Cancer-associated fibroblasts (CAF) originating from MSC through the mediation of STAT3 

and ERK1/2 pathways [102] are known to provide a favorable environment for 

neuroblastoma progression [103]. MSCs have also been used as a delivery vehicle for 

neuroblastoma therapy [104, 105]. For example, MSCs were used as carriers of oncolytic 

adenovirus and improved the efficacy of virotherapy for neuroblastoma by delivering the 

adenovirus to tumors and recruiting T cells [105].
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4.4. Macrophage Migration Inhibitory Factor (MIF)

MIF is an important pro-inflammatory mediator that links inflammation with cancer [106]. 

The expression of MIF in neuroblastoma is well documented [107]. MIF plays an essential 

role in both innate and acquired immunity. MIF is known to abrogate the functions of p53 

leading to the promotion of tumor cell proliferation and angiogenesis, inhibition of 

apoptosis, and induction of cyclooxygenase-2 (COX-2) through enhanced endothelial cell 

proliferation and differentiation [106, 108].

4.5. Chemokines and Transcription Factors

Chemokines are a family of secreted proteins that play an essential role in coordinating the 

inflammatory and immune response by specifically controlling leukocyte trafficking. 

Accumulating evidence suggests that chemokines can help with the migration, proliferation, 

and survival of tumor cells. Neuroblastoma cells are known to express C-X-C chemokine 

receptor type 4 (CXCR4) and the ligand, CXCL12 [109]. Furthermore, increased expression 

of CXCR4 correlates with advanced clinical stage and the presence of bone marrow 

metastases with poorer outcome [109]. The hypoxia-inducible transcription factors (HIF-1α, 

HIF-2α) are correlated with metastasis and development of drug resistance [110]. These 

transcription factors are differentially expressed in neuroblastoma cells [111]. While HIF-1α 
is transiently stabilized, prolonged expression of HIF- 2α is observed in neuroblastoma cells 

under hypoxic conditions [111].

NF-κB is a pro-inflammatory transcription factor that is constitutively expressed in most 

tumor types including neuroblastoma [112, 113]. It is comprised of five subunits including 

NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB, and c-Rel. Under normal conditions, NF-

κB resides in the cytoplasm in association with its inhibitory subunit IκB. Upon stimulation, 

IκB subunit undergoes phosphorylation, ubiquitination, and degradation. This releases the 

p65-p50 subunit and allows it into the nucleus where it regulates the expression of NF-κB 

dependent target genes [114]. The phosphorylation of IκB can also lead to its dissociation 

from the trimeric complex without degradation. NF-κB can regulate the expression of over 

500 cancer-related genes that are involved in various aspects of tumor development 

including transformation, survival, proliferation, invasion, angiogenesis, and metastasis 

[112, 115]. Therefore, NF-κB signaling pathway represents a potential target for therapeutic 

intervention. Agents that can inhibit protein tyrosine kinases, serine/threonine kinases, 

ubiquitination, proteasomes, acetylation, and DNA binding steps, have the ability to inhibit 

NF-κB activation. Although over 500 NF-κB inhibitors have been identified by preclinical 

studies, only bortezomib is used to treat multiple myeloma patients. Furthermore, the 

potential of bortezomib in neuroblastoma patients remains to be determined.

5. MiRNAs and Neuroblastoma

The role of miRNAs in regulating neuroblastoma pathogenesis is well established (Table 1). 

For example, miR-148a, miR-21, and miR-200a can modulate cell growth, migration, 

invasion, and apoptosis in neuroblastoma [116]. Similarly, miR-10b, miR-29a/b, miR-335, 

miR-7, and miR-338-3p are potentially associated with neuroblastoma progression [117]. 

miR-203 is known to inhibit the proliferation, migration, and invasion of neuroblastoma 
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cells by targeting Sam 68 [118]. miR-337-3p and miR-584-5p can target matrix 

metalloproteinase (MMP) in neuroblastoma cells [37, 119]. miR-558 induces the 

transactivation of heparanase and promotes tumorigenesis in neuroblastoma [120]. The 

miR-17-92 polycistronic cluster is highly expressed in neuroblastoma tissues and serves as a 

marker for poor outcomes in patients [121]. miR-21, a well-known oncogenic miRNA, can 

promote proliferation and reduce chemo sensitivity in neuroblastoma cells [122]. miR-15a 

can also suppress the expression of reversion-inducing cysteine-rich protein with Kazal 

motifs (RECK) a cysteine-rich protein with Kazal motifs and promoted the migration of 

neuroblastoma cells [123].

A study reported that 32 of 157 miRNAs in primary neuroblastomas are differentially 

expressed in favorable and unfavorable tumor subtypes [124]. miR-92a, miR-15b, 

miR-128a, and miR-628-3p were significantly increased in neuroblastoma cells. miRNA 

expression profile in low-risk and high-risk neuroblastoma patients has also been reported 

[125]. miR-92a, miR-15b, miR-128a and miR-628-3p are also known to be significantly 

altered and epigenetically silenced in metastatic neuroblastoma [126, 127]. miR-380-5p is 

over-expressed in neuroblastoma and is known to repress p53 and inhibit apoptosis in NB 

cells [128]. Furthermore, an over-expression in miR-380-5p is associated with poor 

outcomes in NBs [128]. Using the neuroblastoma cell line SH-SY5Y, miR-125b was found 

to play an important role in human neuronal differentiation [129]. Similarly, miR-10a and 

miR-10b are known to induce neuroblastoma cell differentiation by targeting the nuclear 

receptor corepressor 2 [130]. miR-340, a tumor suppressive miRNA is epigenetically 

silenced. Ectopic expression of this miRNA is known to induce differentiation and apoptosis 

in a context-dependent manner in neuroblastoma cells [131]. The inhibition of miR-18a in 

neuroblastoma cells led to the outgrowth of varicosity-containing neurites and the induction 

of sympathetic neuron differentiation markers [132]. MYCN knockdown could also induce 

neuroblastoma differentiation. During MYCN knockdown-mediated neuronal 

differentiation, 23 miRNAs were differentially expressed in neuroblastoma cells [133]. 

miR-21 was strongly up-regulated upon MYCN knockdown. However, miR-21 over-

expression did not prevent the differentiation of neuroblastoma cells. Recently, we 

demonstrated that the exosomal miR-21 released from neuroblastoma cells could be 

transferred to human monocytes [116]. Similarly, miR-155 from human monocytes can be 

transferred to neuroblastoma cells. We previously shown that unique role of exosomal 

miR-21 and miR-155 in the cross-talk between neuroblastoma cells and human monocytes 

and in the development of resistance to chemotherapy[116]. Mechanistically, a novel 

exosomic miR-21/TLR8-NF-κB/exosomic miR-155/TERF1 signaling pathway was involved 

in the development of chemo resistance.

During the past decade, attempts have been made to develop miRNA-based therapeutics for 

neuroblastoma. One strategy is to block oncogenic miRNAs using oligonucleotides. In 

certain instances, nanoparticles have been used for the delivery of tumor suppressive 

miRNAs. For example, nanoparticles encapsulating miR-34a and conjugated to a GD2 

antibody was found to facilitate tumor-specific delivery into mice [134]. Furthermore, a 

significant reduction in tumor growth, increased apoptosis and a reduction in vascularization 

were observed. miR-9 overexpression was found to inhibit invasion, metastasis, and 

angiogenesis of neuroblastoma cells in vivo [90]. Similarly, miR-145 can significantly 
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inhibit the growth, invasion, metastasis, and angiogenesis of neuroblastoma cells by directly 

targeting HIF-2a [135]. miR-184 can significantly reduce tumor growth in an orthotopic 

murine model of neuroblastoma [136]. Similarly, an in vivo delivery of miR-380-5p 

antagonist can decrease tumor size in an orthotopic mouse model of neuroblastoma [128]. 

miRNAs can also be used in combination therapy for the clinical management of 

neuroblastoma. For example, miR-7-1 can enhance the inhibitory effects of 4-HPR [N-(4-

hydroxyphenyl) retinamide] and EGCG (epigallocatechin-3-gallate) on neuroblastoma cells 

growth [137].

From above discussion, it is clear that miRNAs can be used as a target for neuroblastoma 

therapy. However, the potential of miRNAs in neuroblastoma patients remains to be 

explored. Extensive preclinical studies focused on safety and toxicity is necessary before a 

miRNA-based therapy can be considered for neuroblastoma patients.

6. LncRNAs and Neuroblastoma

Because of high specificity, dys-regulated expression pattern, and ease in the detection 

methods, lncRNAs can be used as a biomarker and therapeutic target for neuroblastoma. 

Some lncRNAs have been studied in the context of neuroblastoma (Table 2). N-Myc is a 

protooncogene encoded by the MYCN, which is a highly conserved and major oncogene in 

humans. N-Myc plays a crucial role during normal brain development [138]. However, 

MYCN amplification and N-Myc over-expression is associated with several cancer types, 

especially neuroblastoma [59–61]. The neuroblastoma patients with N-Myc amplification 

are prone to metastasis. N-Myc is also known to regulate the expression of lncRNAs such as 

T-UCRs and ncRNAs [139].

A study was aimed to examine lncRNA expression pattern by micro array in neuroblastoma 

cells after transfection with control or N-Myc-specific siRNA [140]. The linc00467 was 

identified as the novel lncRNA target of N-Myc. N-Myc suppressed linc00467 expression by 

direct binding to its promoter. Furthermore, gene silencing of linc00467 up-regulated the 

tumor suppressor gene DKK1, suppressed the viability and increased the apoptosis in 

neuroblastoma cells. These effects were reversed by the use of DKK1 siRNA. Thus, 

linc00467 can reduce neuroblastoma growth by modulation of DKK1 expression. Another 

study examined the expression pattern of lncRNAs and protein-coding genes between 

MYCN amplified and MYCN non-amplified NB patients [141]. A total of 6 lncRNAs were 

differentially expressed in neuroblastoma patients. MYCN amplification was found to up-

regulate the expression of the lncRNA, SNHG1. SNHG1 was co-expressed with TAF1D 

(coding gene), and exhibited an association with poor patient survival. Furthermore, high 

expression of SNHG1 was predicted as an independent prognostic marker for event-free 

survival of patients. A robust expression of GAS5 is also reported in MYCN-amplified and 

non-amplified neuroblastoma cell lines [142]. The gene silencing of GAS5 produced defects 

in proliferation, apoptosis, and cell cycle arrest. The loss of GAS5 also induced p53, 

BRCA1, and GADD45A in neuroblastoma cell lines [142].

MYCN is also known to enhance lncRNAs expression by inducing epigenetic changes. For 

example, JMJD1A, a histone demethylase, has the potential of demethylating the lysine 9 
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residue of histone H3 (H3K9) and thus can activate gene transcription. In one study, N-Myc 

was found to directly bind to the JMJD1A gene promoter and up-regulated the gene 

expression in N-Myc amplified human neuroblastoma cells [143]. Furthermore, JMJD1A 

up-regulated MALAT1 by inducing histone demethylation at its promoter. While JMJD1A 

and MALAT1 induced, use of DMOG (small molecule inhibitor of JMJD1A) was found to 

suppress the migration and invasion of neuroblastoma cells. Overall, these results suggest 

that N-Myc can modulate the neuroblastoma cell migration and invasion by modulating 

JMJD1A and MALAT1 expression.

Neuroblastoma cells like other cancer cells are characterized by hypoxic conditions. In one 

study, hypoxia was found to induce MALAT1 in neuroblastoma cell lines [144]. The gene 

silencing of MALAT1 was associated with a reduction in endothelial cell migration, invasion 

and vasculature formation, and down-regulation of the expression of fibroblast growth factor 

2 (FGF2). Interestingly, an addition of recombinant FGF2 protein to the cell culture media 

reversed the effects of MALAT1 siRNA on vasculature formation. Overall, these data 

suggest that MALAT1 mediate its tumorigenic effects under hypoxic conditions by 

modulating the expression of FGF2 [144]. MALAT1 can also up-regulate Axl, which is a 

member of the receptor tyrosine kinase family and associated with neuroblastoma metastasis 

[145]. MALAT1 can also induce ERK/MAPK activation and neuronal differentiation in 

neuroblastoma cell lines [146].

The lncRNAs HCN3, linc01105, and MEG3 are known to regulate neuroblastoma 

pathogenesis. While a high expression of HCN3 and linc01105 was observed in 

neuroblastoma tissue, MEG3 expression was decreased [147]. The gene silencing of HCN3 

and linc01105, and MEG3 over-expression was associated with an increase in apoptosis. 

Furthermore, linc01105 knockdown promoted cell proliferation, whereas MEG3 over-

expression inhibited proliferation. These observations suggest that HCN3 and linc01105 act 

as oncogenes, while MEG3 is a tumor suppressor.

NBAT1 (neuroblastoma associated transcript 1) is a tumor suppressor lncRNA identified in 

neuroblastoma. It regulates cell proliferation and invasion by interacting with EZH2 

(enhancer of zeste 2) [148]. Furthermore, NBAT1 can be used to predict clinical outcome of 

neuroblastoma patients [21, 148]. NBAT1 can also contribute to the aggressiveness of 

neuroblastoma by promoting proliferation and impairment in the differentiation of neuronal 

precursors [21].

The chromosome 6p22 has been reported as the most susceptible locus for the development 

of neuroblastoma [149]. This locus harbors several lncRNAs including the tumor suppressor, 

CASC15. The low-level expression of a short CASC15 isoform (CASC15-S) is highly 

associated with advanced neuroblastoma and poor patient survival [150]. Furthermore, 

attenuation of CASC15-S can increase extracellular matrix transcripts, cellular growth, 

adhesion and migration in neuroblastoma cells. The lncRNA, ncRAN is located on 

chromosome 17q25.1 and contains two splice variants: a long form (Nbla10727) and a short 

form (Nbla12061) [151]. An up-regulation in ncRAN has been reported in neuroblastoma 

patients that associate with poor prognosis [151]. The intergenic lncRNA loci are known to 

regulate the expression of adjacent protein-coding genes. Dali is an intergenic lncRNA that 
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is transcribed downstream of the Pou3f3 transcription factor. The depletion of Dali can 

disrupt the differentiation of neuroblastoma cells [152]. Dali can also epigenetically regulate 

the expression of genes.

PVT-1 is a lncRNA that can regulate c-Myc over a long distance. One study examined the 

expression of PVT-1 and c-Myc in normal human tissues and transformed cells [153]. 

Although PVT-1 was restricted to a relatively low number of normal tissues, c-Myc mRNA 

was widely distributed. However, PVT-1 was highly expressed in many transformed cells 

including neuroblastoma that do not express c-Myc. Furthermore, PVT-1 promoter region 

contained two putative binding sites for Myc proteins.

Transcribed ultra conserved regions (T-UCRs), another class of novel lncRNA [154], exhibit 

absolute conservation in humans, rat, and mice [155]. T-UCRs are associated with 

neuroblastoma pathogenesis [156]. In one study, T-UCRs were found to possess prognostic 

significance [157]. This novel class of lncRNAs was associated with MYCN-amplification 

in neuroblastoma patients. Although seven T-UCRs (uc.279, uc.347, uc.350, uc.364, uc.379, 

uc.446, and uc.460) were up regulated in MYCN-amplified tumors, none of the T-UCRs 

were down regulated. Furthermore, T-UCRs were widely associated with cancer-related 

pathways such as proliferation, apoptosis, and differentiation. The significance of T-UCRs in 

neuroblastoma pathogenesis was demonstrated by another study [158]. Some other lncRNAs 

reported in neuroblastoma are Gomafu [159], H19 [160], CAI2 [161], lncUSMycN [162, 

163], HOXD-AS1 [164], HOTAIR [165], and Paupar [166]. The lncUSMycN inhibit 

degradation of N-Myc mRNA as described in Figure 3.

Overall, it is clear that both up-regulation and down-regulation in lncRNAs expression 

pattern could be of diagnostic and prognostic significance for neuroblastoma patients. 

Additionally, lncRNAs can also be used as therapeutic targets. However, most conclusions 

are based on the modulation of gene expression that could also result from non-cancer 

conditions. In spite of several studies, none of the lncRNAs are recommended for use in 

neuroblastoma patients. Future studies should be focused more towards elucidating the 

clinical utility of these lncRNAs in neuroblastoma patients.

8. System biology and neuroblastoma

System biology is an interdisciplinary field to study the complex interaction within the 

biological system using computational and mathematical modeling. In 1952, British 

neurophysiologists Alan Lloyd Hodgkin and Andrew Fielding Huxley were created a 

mathematical model to explain the neuronal cell axon’s action potential propagation [167]. 

This model described the interaction of cellular functions of sodium and potassium channels, 

and this was a landmark discovery to beginning computational system biology field [168]. It 

analyzed complex data sets such as genomics, proteomics, transcriptomics, metabolomics, 

glycomics, lipidomics from various experimental data sets to use computational tools. 

Cancer system biology deal with specific data sets such as patients samples, high-throughput 

patient’s genome, cancer cell lines, xenograft models, next-generation sequencing, siRNA 

based screenings, somatic mutations and genome instability [169].
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The recent development of genome and proteasome level annotation of protein-protein 

interaction (PPI) networks facilitate functional cross-talk between genes in neuroblastoma 

[170]. Computational modeling was performed in neuroblastoma PPI network to elucidate 

the mutated genes effects on altered pathways in neuroblastoma [171]. The researchers have 

an opportunity to overlay patients and experimental data on to the network scaffold database 

such as BioGRID, STRING, and KEGG to analyze protein and gene interactions [172]. 

NeAT, an open source network analysis tool analyze and visualize the epigenetic, 

transcriptomic and metabolomics data may be an option to use neuroblastoma research 

[173]. Reverse-engineer networks approaches presume the interaction between data through 

Bayesian probabilistic models and pearson correlation coefficients[174]. This method has 

the capable the power to operate the human disease model like neuroblastoma and suitable 

for study the novel vital regulators play an essential role in neuroblastoma etiology and 

progression using large-scale multi-omics data [175].

It is challenging effect to apply system biology tools in human disease, but the ultimate goal 

was achieved through the collaborative efforts made with clinicians from all over the world. 

System biology promise of shedding new light to superior diagnosis to classify the virtual 

patient data and predict the outcome of suggested treatment on the basis of personalized 

neuroblastoma medicine. The system biology is more relevant to heterogeneous nature of 

neuroblastoma because it benefitted from the holistic and integrated approach to risk 

stratification. It provides realistic multi-scale in silico models of neuroblastoma and helps 

the clinical management and therapeutic design for the neuroblastoma patients.

9. Conclusions

The checkpoint molecules (PD-1, PD-L1), inflammatory molecules, lncRNAs, and miRNAs 

play a crucial role in neuroblastoma pathogenesis. These signaling molecules regulate 

various aspects of tumor development including transformation, survival, proliferation, 

invasion, angiogenesis, and metastasis of tumor cells. Opdivo (nivolumab) and keytruda 

(pembrolizumab) are PD-1 inhibitors approved by FDA for advanced melanoma and non-

small cell lung cancer. However, the efficacy of these inhibitors for neuroblastoma patients 

remains to be examined. Dinutuximab (unituxin), a monoclonal antibody that targets the 

ganglioside GD2, is the most effective immunotherapy for neuroblastoma. Atezolizumab 

(Tecentriq), an engineered monoclonal antibody against PD-L1, is currently being evaluated 

for its potential in neuroblastoma patients.

Although bortezomib, a potent NF-κB inhibitor is approved for multiple myeloma patients, 

its potential for neuroblastoma patients remains to be determined. An inhibition of 

oncogenic miRNAs/lncRNAs or delivery of tumor suppressive miRNAs/lncRNAs is a 

potential strategy for neuroblastoma therapy. However, delivery, stability and off-target 

effects are some of the limitations associated with miRNA/lncRNA-based therapeutics. 

Future studies should be focused towards improving the delivery options of miRNAs and 

lncRNAs for prolonged therapeutic efficiency and safety. It is also imperative to examine if 

the crosstalk between miRNAs/lncRNAs and PD-1/PD-L signaling pathways exist. The 

system biology approach will probably add significantly in this direction.

Nallasamy et al. Page 14

Semin Cancer Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In conclusion, immune-oncology has provided new hope to neuroblastoma patients. As 

discussed in this review, miRNA/lncRNA and immune checkpoint molecules could be used 

as biomarker and therapeutic target. The non-coding based biomarker has been developed 

for some cancer type. However, non-coding RNA based biomarker has yet to be approved 

for neuroblastoma. As for other cancer types, clinical trials in neuroblastoma are associated 

with high failure rates due to the expression of PD-L1 and other immune checkpoints in 

cancer cells as well as other cells of the tumor microenvironment. The use of reliable 

preclinical animal models will probably help to rapidly progress neuroblastoma field. New 

areas such as “Drug repurposing” should be explored to develop neuroblastoma therapy. We 

hope that the ongoing research across the scientific community will possibly help to place 

PD-1/PD-L1 and miRNA/lncRNA-based therapeutics as a potentially new facet for 

neuroblastoma therapy.
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Figure 1. Potential Biomarkers and therapeutic targets of Neuroblastoma
Abbreviations: 5-LOX: 5-lipoxygenase, CAI2: CDKN2A/ARF intron 2, CASC15: cancer 

susceptibility candidate15, COX-2: cyclooxygenase-2, CTLA4: cytotoxic T-lymphocyte 

associated protein 4, CXCL12: C-X-C motif chemokine 12, CXCR4: C-X-C chemokine 

receptor 4, FCGR3: Fc fragment of IgG receptor III, GAS5: growth arrest special 5, HCN3: 

hyperpolarization-activated cation nucleotide-gated isoform 3, HIF-1α: hypoxia-inducible 

factor 1-alpha, HOXD-AS1: HOXD cluster antisense RNA 1, IRF1: interferon regulatory 

factor 1, linc00467: long Intergenic non-protein coding RNA 467, linc01105: long intergenic 

non-protein coding RNA 1105, lncUSMycN: lncRNA upstream of MYCN, MALAT1: 

metastasis associated lung adenocarcinoma transcript 1, MEG3: maternally expressed 3, 

miR: microRNA, NBAT1: neuroblastoma associated transcript 1, ncRAN: non-coding RNA 

expressed in aggressive neuroblastoma, NF-κB: nuclear factor kappa-light-chain-enhancer 

of activated B cells, PD-1: programmed death-1, PD-L1: programmed death-ligand 1, PD-

L2: programmed death-ligand 2, PVT-1: plasmacytoma variant translocation 1, SNHG1: 

small nucleolar RNA host gene 1, STAT-3: signal transducer and activator of transcription 3, 

TAMs: tumor-associated macrophages, TNF-α: tumor necrosis factor-alpha, VEGF: 

vascular endothelial growth factor.
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Figure 2. The molecular basis for the action of PD-1and PD-L1 based therapy
[A] PD-1 is expressed by T-cells, while PD-L1/PD-L2 is expressed by tumors. In 

neuroblastoma, interaction of PD-1 with PD-L1/PD-L2 suppresses T-cells function. [B] The 

PDL-1 antibodies act by blocking the interaction of PD-L1 with PD-1without affecting PD-

L2/PD-1 interaction. This enhances the T cell function leading to anti-tumor activity.
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Figure 3. The lncUSMycN act by inhibiting degradation of N-Myc mRNA
[A] In normal, cell, N-Myc undergoes degradation at post transcriptional and post translation 

level. [B] In neuroblastoma cells, MYCN oncogene harbor lncUSMycn, a lncRNA at 14 kb 

upstream of the gene. The lncUSMycn act as a scaffold for the RNA binding protein NonO. 

This facilitate the interaction between NonO and MYCN. This results in the stabilization of 

MYCN transcript and eventually proliferation of tumor cells
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Table 1

A list of miRNAs dys-regulated in neuroblastoma and their functions

Column1 Column2 Column3 Column4

miRNA
Expression Function/Clinical

implication
Reference

miR-9 ↓ Inhibited invasion, metastasis, and angiogenesis of NB cells by targeting MMP-14 [90]

miR-10a Induced neural differentiation by suppressing NCOR2 and MYCN in neuroblastoma cells [130]

miR-10b Induced neural differentiation by suppressing NCOR2 and MYCN in neuroblastoma cells [130]

miR-15a Induced NB migration by targeting RECK and regulating MMP-9 [123]

miR-17-92 Inhibited TGF-β signaling; induced proliferation and adhesion of NB cells [176]

miR-34a ↓ Inhibited NB growth when administered to the mice in conjugation with GD2 antibody [134]

miR-145 ↓ Inhibited the growth, invasion, metastasis and angiogenesis of NB cells by targeting HIF-2α [135]

miR-155 Contributed to the development of chemoresistance by neuroblastoma cells [116]

miR-184 ↓ Inhibited tumor growth in an orthotopic NB murine model [136]

miR-203 ↓ Inhibited proliferation, migration and invasion of NB cells by targeting Sam 68 [118]

miR-335 ↓ Suppressed invasion of NB cells by targeting TGF-β signalling pathway [177]

miR-337- 3p ↓ Suppressed nuroblastoma progression by repressing MMP-14 [37]

miR-340 ↓ Induce differentiation and apoptosis in a context dependent manner in neuroblastoma cells [131]

miR-380-5p Repressed p53 and inhibited apoptosis in NB cells; associated with poor outcome in NBs [128]

miR-584-5b ↓ Exerted tumor suppressive functions in NB cells by suppressing MMP-14 [119]

Abbreviations: : up-regulation, ↓: down-regulation, HIF-2α: hypoxia-inducible factor 2 alpha, MMP: matrix metalloproteinase, MYCN: v-myc 
myelocytomatosis viral related oncogene, NB: neuroblastoma, NCOR2: nuclear receptor co-repressor 2, RECK: reversion-inducing cysteine-rich 
protein with kazal motifs, Sam 68: src-associated in mitosis 68, TGF-β: transforming growth factor beta
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Table 2

A list of lncRNAs dys-regulated in neuroblastoma and their functions

Column1 Column2 Column3 Column4

lncRNA
Expression Function/Clinical

implication
Reference

linc00467 - Reduced neuroblastoma growth through modulation of DKK1 [140]

SNHG1 Associated with event-free survival of patients [141]

GAS5 Regulated expression of p53, BRCA1, and GADD45A in neuroblastoma cells [142]

MALAT1 Induced migration and invasion of neuroblastoma cells [143]

MALAT1 Modulated cell migration, invasion and vasculature formation by down-regulating FGF2 in [144]

neuroblastoma cells under hypoxic conditions

MALAT1 Up-regulated Axl and induced invasion and migration of neuroblastoma cells [145]

MALAT1 Induced ERK/MAPK activation and neuronal differentiation in neuroblastoma cell lines [146]

HCN3 Regulated apoptosis and proliferation in neuroblastoma cells [147]

linc01105 Regulated apoptosis and proliferation in neuroblastoma cells [147]

MEG3 ↓ Regulated apoptosis and proliferation in neuroblastoma cells [147]

NBAT1 ↓ Regulated proliferation and invasion of neuroblastoma cells by interacting with EZH2; [148]

associated with poor clinical outcome in patients

NBAT1 ↓ Contributed to the aggressiveness of neuroblastoma by promoting proliferation and [21]

an impairment of differentiation of neuronal precursors

CASC15 ↓ Regulated extracellular matrix transcripts, adhesion, growth, and migration of neuroblastoma cells [150]

ncRAN Associated with poor prognosis of neuroblastoma patients [151]

Dali - Regulated the differentiation of neuroblastoma cells [152]

PVT-1 Regulated expression of Myc proteins [153]

CAI2 Associated with high-risk and clinical outcome of neuroblastoma patients [161]

lncUSMycN - Regulated N-Myc expression and neuroblastoma oncogenesis in mice model [162]

lncUSMycN Induced NCYM expression; correlated with poor prognosis of neuroblastoma patients [163]

HOXD-AS1 - Regulated RA-induced differentiation and oncogenesis in mice model expression of genes 
associated

[164]

with angiogenesis and inflammation in SH-SY5Y neuroblastoma cells

Paupar - Induced differentiation of neuroblastoma cells [166]

Abbreviations: -: up-regulation, ¯: down-regulation, Axl: AXL receptor tyrosine kinase, BRCA1: breast cancer 1, DKK1: dickkopf WNT signaling 
pathway inhibitor 1, ERK: extracellular signal-regulated kinase, MAPK: mitogen-activated protein kinase, EZH2: enhancer of zeste homolog 2, 
FGF2: fibroblast growth factor 2, GADD45A: growth arrest and DNA damage-inducible protein 45 alpha, Myc: myelocytomatosis oncogene, 
NBAT1: neuroblastoma associated Transcript 1, RA, retinoid acid
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Table 3

A list of immunotherapy based clinical trials for neuroblastoma

Columnl Column2 Column3 Column4

Trials identifier No.
Trial
status Drug/agent used NB patient feature

NCT02169609 Active, not recruiting Dinutuximab (Ch 14.18) GM-CSF and IL-2 high-risk neuroblastoma

NCT02573896 Yet to recruit ch14.18/Lenalidomide relapsed refractory neuroblastoma

NCT01183897 Active, not recruiting Hu3F8/GM-CSF and 13-Cis-Retinoic Acid primary refractory neuroblastoma in bone 
marrow

NCT03033303 Recruiting Hu3F8/GM-CSF Isotretinoin high-risk neuroblastoma with first remission

NCT01183884 Active, not recruiting 3F8/GM-CSF 13-Cis-Retinoic Acid high-risk neuroblastoma with second or 
greater remission

NCT01183429 Active, not recruiting 3F8/GM-CSF 13-Cis-Retinoic Acid non-myeloablative therapy with high-risk 
neuroblastoma in first remission

NCT02765243 Recruiting 4SCAR-GD2 T cells refractory or recurrent neuroblastoma

NCT02311621 Recruiting genetically modified T cells to express CAR recurrent or refractory neuroblastoma

NCT01183416 Active, not recruiting High-dose 3F8/GM-CSF and 13-cis-retinoic 
acid

autologous stem-cell transplantation after 
myeloablative therapy first remission

NCT03242603 Recruiting Anti-GD2/ NK Cells high-risk neuroblastoma

NCT02130869 Recruiting CD133+ selected autologous stem cell 
infusion/hu 14.18K322A

high-risk neuroblastoma

NCT02919046 Recruiting GD2-targeted CAR-T cells Relapsed or refractory neuroblastoma

NCT02173093 Recruiting GD2 bispecific antibody Children with neuroblastoma and 
osteosarcoma

Abbreviations: GM-CSF: granulocyte-macrophage colony stimulating factor, NK: natural killer cells, GD2: disialoganglioside, Hu3F8: humanized 
3F8 monoclonal antibody; CAR: chimeric antigen receptor
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