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Abstract

Background Several mapping or cross-walking algorithms

for deriving utilities from the European Organisation for

Research and Treatment of Cancer Quality of Life Ques-

tionnaire for Cancer (EORTC QLQ-C30) scores have been

published in recent years. However, the large majority used

ordinary least squares (OLS) regression, which proved to

be not very accurate because of the specifics of the quality-

of-life measures.

Objective Our objective was to compare regression meth-

ods that have been used to map EuroQol 5 Dimensions 3

Levels (EQ-5D-3L) utility values from the general EORTC

QLQ-C30 using OLS as a benchmark while fixing the

number of explanatory variables and to explore an alter-

native three-part model.

Methods Weconducted a regression analysis of predictedEQ-

5D-3L utilities generated using data from an observational

study in ambulatory patients with non-small-cell lung cancer in

a Toronto hospital. Six alternative regression methods were

comparedwith a simple OLS regression as benchmark. The six

alternative regression models were Tobit, censored least

absolute deviation, normalmixture, beta, zero–one inflatedbeta

and a mix of piecewise OLS and logistic regression.

Results The best predictive fit was obtained by a mix of

OLS regression(s) for utilities lower than 1 with a cut-off

point of 0.50 and a separate binary logistic regression for

utilities equal to one. Zero–one inflated beta regression was

also promising. However, OLS regression proved to be the

most accurate for the mean. The prediction of utilities

equal to one was poor in all regression approaches.

Conclusions Three-part regression methods that separately

target low, medium and high (\0.50, 0.51–0.99 or 1)

utilities seem to have better prediction power than OLS

with EQ-5D-3L data, although OLS also seems quite

robust. Exploration of three-part approaches compared

with single (OLS) regression should be further tested in

other similar datasets or using individual pooled data from

various clinical or observational studies. The use of alter-

native goodness-of-fit measures for mapping studies and

their influence on the choice of the best performing

methods should also be investigated.

Key Points For Decision Makers

Mapping EuroQol-5 Dimensions (EQ-5D) utilities

from cancer-specific non-preference measures have

used ordinary least squares regression and, more

recently, a variety of more complex statistical

regression methods.

We have shown that these should be rejected in

favour of three-part models that are more able to take

into account the tri-modal distribution of the 3-level

(EQ-5D-3L) measures.

Further research should be undertaken to validate our

results in other cancer data and with the more recent

5-level (EQ-5D-5L) questionnaire.
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1 Introduction

1.1 Study Rationale

Economic evaluation of medical technology often empha-

sizes that outcomes be expressed in terms of quality-ad-

justed life-years (QALYs). In cancer, the main accepted

primary long-term endpoints are overall survival and dis-

ease- or progression-free survival; however, the aggres-

siveness of the treatments means health-related quality of

life (HRQOL) is often also measured using various disease-

specific questionnaires such as the European Organisation

for Research and Treatment of Cancer Quality-of-Life

Questionnaire for Cancer (EORTC QLQ-C30) or the

Functional Assessment of Cancer Therapy-General

(FACT-G) and their variants.

As clinical trials or other clinical studies do not often col-

lect preference-based measures, statistical mapping would

provide a statistical model or formula that allows the esti-

mationof utilities and the subsequent calculation ofQALYs in

clinical studies that do not use any preference-based HRQOL

instrument, provided it has a good predictive accuracy.

We previously showed that current ordinary least

squares (OLS)-based mapping algorithms showed poor

external validity [1, 2].

1.2 Study Objective

While most previous studies used OLS regression, more

complex methods such as beta-binomial (BB), normal

mixture (NMIX) and beta-regression have recently been

proposed in the mapping literature.

The aims of the current exploratory studywere to compare

these existing regressionmethods that have been used tomap

EuroQol 5 Dimensions 3 Levels (EQ-5D-3L) utility values

from the general EORTC QLQ-C30 using OLS as bench-

markwhile fixing the number of explanatory variables and to

propose a possible simple three-part method in practice.

Reporting and article structure followed the recent

Mapping onto Preference-based measures reporting Stan-

dards (MAPS) recommendations [3].

2 Methods

2.1 Patient Population and Setting

2.1.1 Estimation Sample

Jang et al. [4] collected QLQ-C30 and EQ-5D-3L data

from a sample (N = 172) of ambulatory patients with

mainly stage III/IV non-small cell lung cancer (NSCLC)

who were relapse free post-resection with or without

undergoing chemotherapy or combined radio-chemother-

apy in a single major Canadian centre in Toronto on a

single visit in 2009.

The mean age of the patients was 66 years, 46.5% were

male, and the mean EQ-5D utility score was 0.76 ± 0.20

(valued by the D2 US valuation tariff of Shaw et al. [5]).

The mean QLQ-C30 scores were equal to ‘physical

function’ (PF) 3.25; ‘role function’ (RF) 67.44; ‘emotional

function’ (EF) 75.19; ‘cognitive function’ (CF) 79.84;

‘social function’ (SF) 73.16; and overall quality of life

(QOL) 65.89. Most symptom scores were relatively low

(\0.30), except for fatigue 40.83; dyspnoea 31.20 and

insomnia 34.88, reflecting the expected symptoms profile

of this population (for further details, see Jang et al. [4]).

We re-analysed these data using instead the original UK

EQ-5D-3L valuation tariff [6].

Jang et al. [4] performed a simple OLS regression with

all the QLQ-C30 scores (called the full model) and a sec-

ond one limited to a number of significant variables from

the full regression (called the reduced model).

2.1.2 External Validation Sample

Given the exploratory nature of this study and the small

number of observations, no external validation sample was

used.

2.2 Instruments Description

2.2.1 Source and Target Measures

The EORTC QLQ-C30 version 3 is a cancer-specific

patient-administered questionnaire of 30 questions (items)

scored from 1 (very poor) to 7 (excellent) and incorporates

five functional multi-item dimensions (PF, RF, CF, EF and

SF); three symptom domains (fatigue, pain and nausea/

vomiting); and a Global Health Status/QOL score (two

items). A further six single items, mainly tracking symp-

toms, are also included (dyspnoea, insomnia, appetite loss,

constipation, diarrhoea and financial difficulties).

The QLQ-C30 functional domain scores and item (i.e.

symptom) scores can be standardized from the raw item

scores to have a 0–100 range through a linear transfor-

mation. The combined HSQOL score was constructed as

the average of the ‘health status’ (HS) and overall QOL

scores.

For functional scores, a high score means a high level of

functioning, whereas a high symptom score means a high

level of symptom severity. The functional and symptom

scores were constructed following the EORTC published

scoring manual [7], resulting in a total of 15 distinct
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variables (five functions, eight symptoms, one overall

QOL, one financial impact).

The EQ-5D-3L provides a simple descriptive QOL

profile or vector of five items (mobility, self-care, usual

activities, pain/discomfort and anxiety/depression) with

three levels. Each individual EQ-5D-3L profile can be

translated into utilities by applying country-specific general

population-elicited ‘tariffs’ to generate a single utility

index [5].

The EQ-5D-3L utilities were constructed using the

original UK tariff instead of the original US tariff used by

Jang et al. [4] to enhance comparisons, as this is the most

widely used tariff in published mapping studies to date, and

applied to the observed EQ-5D-3L health dimensions.

2.3 Statistical Analysis

2.3.1 Exploratory Analysis

However, the overlap of EQ-5D-3L items with those of the

QLQ-C30 scores is only partial. To explore the overlap, we

performed a non-parametric Spearman rank correlation

analysis at a function/item level between the two.

2.3.2 Missing Data

All records were used; there were no missing data in the

available dataset.

2.3.3 Modelling Approaches

Mapping methods can be divided into regression-based and

non-regression methods (for an early literature review, see

Mortimer and Segal [8]). Regression-based methods can be

further subdivided into direct one-step models that estimate

the target utility value or two-step models that estimate first

the response level for each item of the multiple attribute

utility (MAU) target measure and then apply a tariff for-

mula to the estimated responses.

We then regressed all QLQ-C30 functional scores on the

observed EQ-5D-3L utilities and reran the OLS regression

with the restricted model-retained variables to get our

benchmark OLS algorithm. As the goodness-of-fit (GOF)

measures of the OLS regression between the full and

reduced model were very close, we chose to use the

reduced model for further analysis because including

additional variables would not provide new information.

Six different regression methods were used to predict

EQ-5D-3L utilities from the QLQ-C30 functional scores

using OLS as benchmark. The other approaches were

Tobit, censored least absolute deviation (CLAD), beta

regression (BB), zero-one inflated beta regression (ZOIB),

Gaussian Mixture (NMIX) with two or three components,

and a three-part piecewise linear (PWL), comprising two

separate OLS and one logistic regression to cover the most

common as well as some more recent published mapping

regression models for the QLQ-C30.

We did not investigate a response-level model, as this

was outside the scope of this article [9, 10]. All calculations

were conducted in STATA� version 14.

2.3.4 Estimation of Predicted Utilities

For ease of comparison between the different regression

methods, the predictive variables were fixed in all regres-

sions to include only the physical, emotional and pain

QLQ-C30 scores as these corresponded to the original

reduced model from Jang et al. [4] (except for role func-

tioning, see Table 1); based on the results of a preliminary

OLS regression involving all the QLQ-C30 functional and

symptom scores and comparing its results with a reduced

model by means of a likelihood ratio (LR) test.

The emphasis is therefore placed on the comparison

between the different regression methods and not on pro-

viding a mapping algorithm as such (which would involve

using all QLQ-C30 scores with a variable number of

variables ultimately possibly being retained in each

regression and exploring various functional forms of the

regression equations).

2.3.5 Measures of Model Performance

First, the predicted utilities were plotted and visually

compared with the observed utilities in a series of plots.

Second, the mean, standard deviation, median and upper

and lower quintiles of the mapped utilities were compared

with the original observed utilities. This allowed us to

judge the bias and precision of the estimates.

Finally, a series of GOF statistics were calculated and

summarized. These were mean absolute error (MAE), root

mean squared error (RMSE) (or sigma for Tobit regres-

sion), the number of absolute errors[0.05 as an indication

of minimal clinical important difference (MCID) and the

number of estimated observations greater than one and

lower than zero.

2.3.6 Validation Methods

Given the exploratory nature of this study and the small

number of available observations, no in-sample cross-val-

idation or external validation sample was performed.

Generally, in-sample validation is of limited use as it

preserves the internal structure of the data, which is not the

case with independent external samples. It is our intent to

explore this aspect in further research using a set of dif-

ferent external NSCLC patient samples.
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3 Results

3.1 Exploratory Analysis

Typical of EQ-5D-3L utilities, we observed a large ceiling

effect, a gap around 0.90 and a left skew with some neg-

ative observations and a clustering of values in the

0.60–0.85 range [mean 0.667; median 0.743; standard

deviation (SD) 0.285; skewness -1.365; kurtosis 4.564]

(Table 2).

The tri-modal aspect of the distribution is apparent with

a long lower tail, a clustering at medium values and a high

upper ceiling effect (Fig. 1).

Mapping still requires checking for some concordance

between the dimensions of both questionnaires [11].

As one would expect, the pain items were highly cor-

related in both scales.

Fatigue symptoms were associated at more or less the

same degree with mobility, usual activities and pain/dis-

comfort, whereas dyspnoea was only associated with usual

activity performance but not strongly with mobility (rho

0.35).

PF impairment was relatively highly associated with

performing usual activities and somewhat lesser with

mobility and self-care, as was RF except for self-care.

EF was clearly associated with depression/anxiety in the

EQ-5D-3L.

Clearly, fatigue and diminished PF (which are them-

selves correlated, rho 0.68) have the broadest impact on the

EQ-5D-3L dimensions, and there is strong one-to-one

relationship between the items for pain and depression.

Dyspnoea is probably specific to this lung cancer patient

population and was only moderately correlated with usual

activity performance.

Some of the above QLQ-C30 items were also moder-

ately to highly cross-correlated (q[ 0.50–0.70), with some

others such as PF with EF, fatigue and dyspnoea, RF with

SF and fatigue, SF with fatigue, and finally fatigue with

pain.

These inter-item correlations in the QLQ-C30 mean that

some multicollinearity might be present when performing

regressions using all the QLQ-C30 scores.

3.2 Individual Model Coefficients

3.2.1 Benchmark Ordinary Least Squares Regression

on Non-Small-Cell Lung Cancer

We only retained the explanatory variables with p values

\0.10 from the overall linear regression including all

QLQ-C30 scores. The number of retained variables set

using UK tariff values is more restricted than the original

restricted formula published by Jang et al. [4] using a USA

valuation tariff, i.e. respectively, PF-EF-PA versus PF-RF-

Table 1 Original non-small-cell lung cancer ordinary least squares results (Jang et al. [4]) with USA tariff compared with UK tariff regression

Variables Jang et al. [4]

USA full modela
UK tariff full model Jang et al. [4]

USA reduced modela
UK tariff reduced model

Intercept 0.3381 0.1873 (p = 0.177) 0.4029 0.1963*** (p = 0.016)

Physical functioning (PF) 0.0035*** 0.0051*** (p = 0.000) 0.0039*** 0.0058*** (p = 0.000)

Role functioning (RF) 0.0007 0.0011 (p = 0.158) 0.0008***

Emotional functioning (EF) 0.0011*** 0.0016* (p = 0.064) 0.0015*** 0.0019*** (p = 0.005)

Cognitive functioning (CF) 0.0007 0.0005 (p = 0.575)

Social functioning (SF) -0.0007 -0.0013 (p = 0.100) -0.0007

Global health status/QOL (HSQOL) 0.0009 0.0009 (p = 0.448)

Fatigue (FA) 0.0003 0.0003 (p = 0.784)

Nausea and vomiting (NV) -0.0002 -0.0005 (p = 0.693)

Pain (PA)*** -0.0021** -0.0032*** (p = 0.000) -0.0021** -0.0034*** (p\ 0.0001)

Dyspnoea (DY) -0.0001 -0.0002 (p = 0.735)

Insomnia (SL) -0.0001 -0.0002 (p = 0.712)

Appetite loss (AP) -0.0001 -0.0003 (p = 0.656)

Constipation (CO) 0.0005 0.0006 (p = 0.267)

Diarrhoea (DI) 0.0004 0.0006 (p = 0.380)

Financial difficulties (FI) -0.0001 -0.0001 (p = 0.494)

* p\ 0.10, ** p\ 0.05, *** p\ 0.01
a p values not published
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EF-PA, with RF becoming non-significant. However,

remarkably, the overall explained variance of the reduced

model was similar (adjusted R2 0.58), with barely a change

in the adjusted R2 compared with the full model and a

similar RMSE of 0.187 and equal to that obtained by Jang

et al. [4] (adjusted R2 0.57 and 0.58 for the full and reduced

linear models, respectively). The GOF statistics of the full

and reduced UK tariff benchmark OLS model are pre-

sented in Table 3.

As the adjusted R2 and RMSE were very close, we

performed a classical LR test (v2 = 8.55, p = 0.74), which

indicated the reduced model was not different from the full

one; therefore, we decided to use the reduced model as our

benchmark [12].

We also plotted the residuals to assess departure from

normality (Fig. 2).

Clearly at the lower end of the quantile plot, residuals

deviate from the normal quantile line but are otherwise

rather well behaved.

We also formally tested for the presence of

heteroscedasticity of the residuals and their normality by

applying the Breusch–Pagan test and the Shapiro–Wilks

test on the OLS residuals (Table 4).

The assumption of homoscedasticity and normality of

the residuals are rejected, with mainly a large non-normal

residuals tail, which in theory leads to biased OLS

estimators.

One can also see clearly that the estimated OLS utilities

overestimate the ‘true’ observed utilities below 0.50 and

underestimate utilities equal to one with the ‘best’ fitting

occurring in the interval 0.50–0.85. Notice also the gap

around 0.90 inherent to the UK Tariff valuation.

In the following sections, we present the results of

alternative regression methods using the same reduced

model. This allows us to estimate a ‘pure method’ effect

compared with OLS without introducing additional

explanatory variables.

3.2.2 Tobit Regression

We find very comparable results as in OLS and a somewhat

improved fit for utilities equal to one. [see Appendix 4 and

Fig. S1 in the Electronic Supplementary Material (ESM)].

3.2.3 CLAD regression

Visually, CLAD regression with a lower limit set at -

0.319 does not seem to improve the fit much compared

with OLS, with the fit perhaps even slightly worse for

lower utilities (see Appendix 4 and Fig. S2 in the ESM).

3.2.4 Normal Mixture Regression

We first fitted an uncensored NMIX model with two and

three components to the data. Compared with the two-

component model, barely any difference can be

Table 2 Pearson correlations

between QLQ-C30 scores and

EQ-5D-3L for significant

variables in the full model by

Jang et al. [4] (all p\ 0.001)

QLQ-C30/EQ-5D-3L Mobility Self-care Usual activity Pain/discomfort Depression/anxiety

Physical function (PF) -0.603 -0.595 -0.609 -0.427 -0.268

Role function (RF) -0.415 -0.391 -0.683 -0.412 -0.213

Emotional function (EF) -0.162 -0.286 -0.374 -0.350 -0.590

Social function (SF) -0.277 -0.305 -0.516 -0.391 -0.232

Fatigue (FA) ?0.469 ?0.380 ?0.555 ?0.501 ?0.256

Pain (PA) ?0.275 ?0.348 ?0.366 ?0.699 ?0.256

Dyspnoea (DY) ?0.372 ?0.301 ?0.453 ?0.278 ?0.167
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Fig. 1 Observed EQ-5D-3L utility values

Table 3 Goodness of fit measures for the full and reduced ordinary

least squares regression non-small-cell lung cancer model (UK tariff)

Adj-R2 Log-likelihood AIC BIC RMSE

Full model 0.58 48.5 -89.0 -76.4 0.1847

Reduced model 0.57 52.77 -73.6 -23.2 0.1869

AIC Akaike information criterion, BIC Bayes information criterion,

RMSE root mean square error
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distinguished between the two-component and three-com-

ponent mixture models (see Appendix 4 and Figs. S3, S4

and S5 in the ESM). However, the fit for utilities = 1 was

still poor in both models and did not improve in the three-

component model.

3.2.5 Beta Regression

We also fitted a simple beta regression as proposed by

Hunger et al. [13] using a maximum likelihood procedure

(Betafit procedure in Stata).

We first transformed the utility range to constrain the

data in the range ]0,1[ by applying the formula

Uscale_UKbeta = (Uscale_UK 9 (172 - 1) ? 0.5)/172

[14].

This generated a more constrained range of utilities with

mean 0.675 (±0.283) very similar to the original data but

with a maximum of 0.997 instead of 1. However, there

were still eight observations with negative values, which

were discarded from the regression.

No significant improvement in GOF seems to appear

except for a slightly better fit for lower utilities (see

Appendix 4 and Fig. S5 in the ESM).

3.2.6 Beta-Binomial Regression

Recently, some authors used a BB regression similar in

some respects to the zero–one inflated beta (ZOIB) model

for mapping purposes [15, 16].

We performed a similar regression using the ZOIB

procedure in Stata [17] by putting all negative utility

values equal to zero and considering only a one-inflated

model.

This is obviously one of the drawbacks of all beta-re-

gression approaches, as they are constrained to a [0, 1]

interval. However, it did seem to improve somewhat the fit

for low utility values compared with a simple beta-re-

gression approach (see Appendix 4 and Fig. S6 in the

ESM).

3.2.7 Piecewise Linear Regression

To construct a piecewise linear regression, we split the

sample at 0.50 (following the OLS results in Fig. 3) to

separate low utilities and higher utilities as demonstrated

by Versteegh et al. [18]. Likewise, we separated utilities

equal to one from the rest.

Fig. 2 Normal quantile plot of

residuals in benchmark non-

small-cell lung cancer reduced

ordinary least squares model

Table 4 Benchmark ordinary

least squares model tests for

heteroscedasticity and normality

of residuals

Breusch–Pagan test Shapiro–Wilks test Prob[ z

Variable v2 v2 p value W V z

df p

Physical functioning 18.98 0.0000a – – –

Emotional functioning 12.58 0.0012a – – –

Pain 14.65 0.0004a – – –

Simultaneous 25.51 0.0000 0.95326 6.117 4.135 0.00002

a Bonferroni corrected
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We therefore had three separate subgroups to estimate,

with utilities ranging from -0.319 to 0.50, from 0.51 to

0.99 and equal to one.

We first used a logistic regression to predict which

observations would be equal to one by setting all other

observations equal to zero to obtain a binary dataset. We

then regressed all QLQ-C30 functional scales on the binary

utility outcome (0–1) to obtain a predictive fit (see the

tables in the appendix in the ESM).

The two other subgroups were then estimated separately

by OLS using only the three retained significant scores

from the reduced benchmark OLS regression, as we

expected a difference in the coefficients between the low

and high utility subgroups.

As can be seen, the slopes of the regression lines were

nearly identical between the low and high utility groups for

all three scores (Fig. 4).

We then joined the predictions of all three sub-models

and compared the results with the original utility values

(Fig. 5).

The piecewise OLS regression on utility values below

one gave quite a good fit, with a nearly identical slope for

the low and high regression lines in all cases. However, the

logistic regression failed to adequately predict a number of

observations with utility equal to one.

Even with the whole set of QLQ-C30 functional and

symptom scores as predictors, the sensitivity was only

equal to 0.52 with no more of 14 of the 29 observations

correctly predicted, although specificity was high (0.95)

(see Appendix 1 in the ESM). This is because a number of

observations with observed utilities equal to one presented

with some relatively low function scores and therefore

these observations were not adequately predicted. Never-

theless, for other utility values than one, this approach

seemed to give quite a good overall fit compared with OLS.

3.2.8 Summary of Goodness-of-Fit Measures Across

Regression Methods

When looking at the regression coefficients per regression

method (Table 5), we observed a relative closeness of the

OLS, Tobit and CLAD coefficients but a much more pro-

nounced difference between the simple and ZOIB

approaches, whereas the two NMIX components are

clearly different, as are the high and low parts of the

piecewise regression. However, the odds ratios in the

logistic regression are barely different from one, indicating

a poor predictive value of the function scores for patients

with utility equal to one.

3.2.9 Model Performance

The three-part model scored better on most validation

statistics in Table 6, except for the mean utility estimation.

The lower mean of the piecewise regression is partly due to

the choice of the replacement estimated utility for the 18

observations with a mismatch between the binary utility

estimation by the logistic regression and the observed

utility (observed 1, estimated 0). In those cases, we sub-

stituted the predicted utility by its estimated value from the

high utilities (range 0. 51–0.90) OLS regression. However,

this underestimates the true utility value (mean 0.784,

range 0.689–0.813). Using the predictive values from the

overall benchmark OLS regression instead increased the
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Fig. 3 Predicted versus

observed utilities in non-small-

cell lung cancer ordinary least

squares benchmark model.

Diagonal line indicates the

perfect fit
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estimate (mean 0.829, range 0.577–0.917) somewhat but

not sufficiently, as both underestimated the utilities at the

higher end above 0.90 (see Appendix 2 in the ESM).

When focusing on the predicted mean utility, OLS

proved the most accurate because its underestimation of

high utilities was compensated by its overestimation of low

utilities. Whether this is by happenstance or is a constant

feature in QLQ-C30 mapping to the EQ-5D-3L is unclear

(Fig. 6; Table 7).

GOF measures are all in favour of the three-part model,

except for the Bayesian information criterion (BIC), which

favours a simple beta regression. Although, when rerun-

ning it per utility class of poor and good health patients, the

BIC results were very similar (-20 and -285, respec-

tively) to those of the piecewise model.

4 Discussion

Our results show that none of the alternative methods fared

better than OLS except a three-part linear piecewise OLS/

logit when based on the usual observation-based GOF

measures.

The best predictive fit was obtained by a mix of OLS

regression(s) for utilities lower than one with a cut-off

point of 0.50 and a separate binary logistic regression for

utilities equal to one, but single OLS had the best pre-

dicted mean utility. However, the prediction of utilities

equal to one was poor in all regression approaches and

should be further explored and improved in future map-

ping studies (see appendix 4 figures S1 to S7 in the

ESM).

Fig. 5 Predicted versus

observed utilities in non-small-

cell lung cancer: piecewise

linear model. Diagonal line

indicates the perfect fit

Table 5 Regression coefficients per regression method

Dep

variable

OLS Tobit CLAD NMIX

component

1

NMIX

component

2

Simple

beta

ZOIB Piecewise

linear logit

Piecewise

linear OLS –

low

Piecewise

linear OLS –

high

PFscore 0.0058 0.0064 0.0059 0.0068 0.0031 0.0232 0.0156 0.6083 -0.0053 ?0.0022

EFscore 0.0018 0.0021 0.0014 0.0034 0.0010 0.0104 0.0056 0.0350 -0.0010 ?0.0010

PAscore -0.0033 -0.0037 -0.0033 -0.0041 -0.0016 -0.0149 -0.0092 -0.0619 ?0.0033 -0.0010

Constant 0.196 0.159 0.251 -0.0594 0.493 -1.1748 -0.7221 -8.882 ?0.5528 0.5085

As our emphasis is on the choice between regression methods and their likeness with a fixed set of explanatory variables and not to provide a

usable mapping algorithm as such for the QLQ-C30, we chose not to present the confidence intervals in this table. All coefficients in all

regressions were significant at the p = 0.05 level with narrow confidence intervals

CLAD censored least absolute deviation, EFscore emotional function, NMIX normal mixture, OLS ordinary least squares, PAscore pain, PFscore

physical function, ZOIB zero–one inflated beta
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4.1 Comparison with Recent Studies

Khan and Morris [15] used a BB approach and compared it

to linear, quadratic, Tobit, CLAD and quantile regression

in data from two NSCLC trials (TOPICAL and SOCCAR)

and obtained an MAE of, respectively, 0.10 and 0.13 and

an RMSE of 0.09 and 0.11. The predicted mean compared

with the observed mean utility were 0.608 versus 0.61 and

0.749 versus 0.75, with the BB regression yielding the best

accuracy.

Nonetheless, when testing each developed model on the

other trial data, performance was degraded, especially for

the SOCCAR algorithm, resulting in an RMSE of 0.132

(TOPICAL ? SOCCAR) and 0.159 (SOCCAR ? TOPI-

CAL) with the 95% confidence interval of the estimated

mean only containing the true mean in 60% of the cases.

Table 6 Summary validation statistics of predicted utilities (YHAT)

Methods Observed OLS Tobit CLAD Simple

beta

ZOIB NMIX 2

components

Piecewise linear with logit

component

Mean 0.676 0.676 0.700 0.707 0.694 0.667 0.688 0.654–0.663a

Range 1.319 1.075 1.194 0.872 0.823 0.934 0.917 1.203

SD 0.28 0.22 0.24 0.17 0.191 0.204 0.185 0.26

Median 0.74 0.73 0.76 0.75 0.755 0.698 0.72 0.74

Minimum 20.319 0.110 -0.174 0.073 0.076 0.001 0.017 20.203

Maximum 1 0.965 1.021 0.946 0.898 0.935 0.934 1

SEM 0.017 0.016 0.018 0.013 0.015 0.016 0.014 0.019

Lower 95% CI of

mean

0.643 0.645 0.674 0.681 0.664 0.637 0.660 0.617

Upper 95% CI of

mean

0.709 0.708 0.746 0.733 0.722 0.697 0.714 0.691

Skewness 21.38 -0.98 -0.98 -0.94 -1.18 -1.16 -0.98 21.53

The SEM allows us to calculate the 95% confidence interval of the mapped means (CI = mean ± 1.96 SEM) in a hypothetical population

In bold, the best fitting method according to the criterion in question

CI confidence interval, CLAD censored least absolute deviation, OLS ordinary least squares, SD standard deviation, SEM standard error of the

mean, ZOIB zero–one inflated beta
a Depending on the mismatch imputation method used

-.5
-.4

-.3
-.2

-.1
0

.1
.2

.3
.4

.5
.6

.7
.8

.9
1

E
st

im
at

ed
 U

til
ity

0 .2 .4 .6 .8 1
Utility decile

avgUscaleUK (mean) OLS
(mean) piecewise (mean) betabinomial

Means per decile
Linear Regressions ComparisonFig. 6 Mean predicted utility

per observed utility decile

174 R. Crott



They also showed that the worse the health state, the more

the regressions, whatever the method, overstated the EQ-

5D-3L utilities.

Wailoo et al. [19] used a bespoke mixture model with

four components to map the Bath Ankylosing Spondylitis

Disease Activity Index (BASDAI) to EQ-5D-3L utilities

and compared it with a linear model and an indirect method

based on a generalized ordered probit model. They showed

that the best fit was obtained by their mixture model.

However, MAE and RMSE were rather elevated: 0.158 and

0.210. To our knowledge, their method has not yet been

applied to cancer data.

Skaltsa et al. [20] used a separate logistic model in a

three-part approach to estimate EQ-5D-3L utilities from

the FACT-P questionnaire in patients with prostate cancer

(mean utility 0.688 ± 0.0282) and compared it with a

single linear generalized estimating equation (GEE)

regression and with a three-part model consisting of a

logistic regression and two separate GEE regressions with a

breakpoint fixed at 76 points of the total FACT score. The

latter showed the best performance, with an RMSE of

0.162 and an MAE of 0.117 and a high R2 of 0.718, with

the predictive fit decreasing for utility values below 0.50.

Their results are largely in agreement with ours, high-

lighting the different nature of the data-generating process

in patients in poor, good and perfect health.

4.2 Study Limitations

Our study compared alternative regression methods for

mapping purposes in the cancer field. Nevertheless, it

suffers from several limitations.

First, the UK EQ-5D-3L tariff was used in in all of the

datasets to enhance comparability. It is possible that using

the original tariffs from other countries would lead to some

changes in the results, although comparisons of EQ-5D-3L

tariffs, at least within European countries, show them to be

quite close [21]. This effect would be expected to be more

pronounced for non-European EQ-5D-3L tariffs [22, 23].

Second, some previous published studies used earlier

versions of the QLQ-C30. Although the differences

between the different versions of the QLQ-C30 are rela-

tively small and relate only to two or three of the function

scales, this may also possibly influence the external validity

of the mapping algorithm. Regardless, QLQ-C30 version 3

is currently the most widely used.

Third, our sample is relatively small and does not

include repeated measurements, which could introduce

more variability and a possible time trend.

Fourth, we did not try to compare direct regression to

indirect response mapping methods for mapping purposes,

nor did we try to test our results on another independent data

sample as thiswas outside the scope of the current study [24].

4.3 Scope of Applications

Although a linear piecewise three-part model approach

looks promising and is relatively easy to use, more com-

parative research is needed with similar data both in lung

cancer and in other cancer types to assess the stability and

replicability of our results regarding the use of three-part

models for the purposes of mapping QLQ-C30 scores to

EQ-5D-3L utilities [24].

5 Conclusions

As yet, no preferred mapping method is advocated in the

literature, so our primary goal was to compare whether some

published or recommended single regression methods for

Table 7 Non-small-cell lung cancer regression goodness-of-fit data

Methods Observed OLS Tobit CLAD Simple

beta

ZOIB01 NMIX model 2

components

Three-part piecewise

linearb

RMSE – 0.184 0.208a 0.197 0.174 0.183 0.186 0.104

MAE – 0.135 0.135 0.144 0.135 0.136 0.152 0.073

BIC -23 ?31 NA -187 ?68 -115 ?123

-22

-281

# Obs Abs error[0.05 – N = 130 N = 125 N = 124 N = 122. N = 131 N = 148 N = 87

# Obs[ 1 0 0 2 0 0 0 0 0

# Obs\ 0 (negative

utilities)

8 1 12 0 0 0 0 6

abs absolute, BIC Bayesian information criterion, CLAD censored least absolute deviation, MAE mean absolute error, NA not applicable, NMIX

normal mixture, obs observed, OLS ordinary least squares, RMSE root mean square error, ZOIB zero–one inflated beta
a Sigma
b logistic, OLS\ 0.50, OLS C 0.50
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mappingQLQ-C30 to the EQ-5D-3Lwould yield reasonably

accurate predictive results in a selected dataset and whether

we could improve on this using a three-part approach.

Our results indicate that the best approach is a piecewise

mix of two separate OLS and one binary logistic regres-

sion, while—surprisingly—OLS still had the best predicted

overall mean utility.

We conclude, nevertheless, that direct mapping regres-

sion methods based on a single distribution should be used

with great care, especially for low and very high utilities, as

these methods generally do not adequately represent the

specifics of the tri-modal distribution of EQ-5D-3L pref-

erence values.

Therefore, EQ-5D-3L mapping methods based on three

components or three-part models should be preferred

[25, 26] and further investigated with emphasis on the

upper ceiling problem.

Whether our results can also be extended to other cancer

QOL scales such as the widely used FACT questionnaire or

to generic utilities measures other than the EQ-5D-3L and

in other cancer types remains to be assessed. Whether our

findings also apply to the more recently developed five-

level scale (EQ-5D-5L) is unknown.
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