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Abstract
Background Improving the quality of life is part of the global agenda. The focus is predominantly on prevention of socially
significant diseases. Combating dental caries-related diseases is a top priority as it has a huge impact on people’s social lives.
Therefore, the purpose of the work was to study the changes in the molecular composition of saliva from subjects with multiple
caries lesions using spectroscopic methods of analysis to identify potential tissue markers of caries development for predictive,
preventive and personalised medical services.
Objectives and methods The molecular composition of mixed saliva (oral fluid) from subjects with and without multiple caries
was analysed with the use of spectroscopic techniques, FTIR with synchrotron radiation for the excitation. The IR spectra of the
oral fluid as well as the calculated mineral-organic, carbon-phosphate, Amide II/Amide I and protein/thiocyanate ratios were
compared between subjects with and without multiple caries.
Results This complex analysis of the obtained experimental data determined that the molecular composition of the oral fluid from
those with multiple caries differed from those without caries; the organic-mineral balance in the oral fluid of those with multiple
caries shifted towards a reduction in the mineral complexes, accompanied by an increase in the organic component. The
thiocyanate content increased more than twofold, accompanied by increased carboxyl groups of esters, lipids and carbohydrates.
Conclusion The detected features in the IR spectra of mixed saliva as well as the calculated changes in the ratios between organic
and inorganic components can be used as biomarkers of cariogenesis in the oral cavity, as a diagnostic criterion in the analysis of
the oral fluid samples.
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Introduction

Early prevention of diseases using precise monitoring
methods is a key paradigm in healthcare [1]. The focus is

predominantly on socially significant diseases with dental
caries-related diseases being one of the most important ones
due to their huge impact on people’s social lives [2]. The
analysis of modern publication on the development of
cutting-edge medical technologies [3, 4], i.e. on the ap-
proaches to early caries prevention [5–7], suggests that the
topic is a national top priority.

Therefore, a predictive medicine approach to prevent caries
at the stage that is not visually observed is currently one of the
leading directions in fundamental medicine and it is directly
connected to the use of a wider range of physical methods for
monitoring and analysis that are employed in tools for pathol-
ogy prevention [5, 8, 9].

It has been established that saliva represents one of the
most informative fluids of human diseases [10, 11]. Indeed,
proteins, lipids, immunoglobulins, enzymes and various
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metabolites present in saliva can be used as markers for nu-
merous pathologies as a predictive and prognostic tool
[10–16]. In comparison with other bodily fluids, namely, urine
and blood, saliva has a number of indisputable advantages for
clinical diagnostics: saliva sampling is easy and simple, it is
non-invasive, and sample preparation involves few operations
[4, 16]. Moreover, saliva is less complex than blood serum,
which is very important for analysis and interpretation of the
results [12, 17, 18]. One should also note that majority of
tissue markers present in the blood and urine can be detected
in the saliva samples [18–20]. However, some proteins pro-
duced and secreted by salivary glands do not have analogues
in the blood. Therefore, saliva has a high predictive, preven-
tive and personalised diagnostic potential for the examination
of human pathologies [12, 14, 21–23].

Presently, much attention is focused on the use of saliva in
the personalised diagnosis of systemic diseases of organs in
the oral cavity, such as gums, teeth and salivary glands [12, 19,
21, 24]. Integral markers of saliva including pH, circulation
rate, calcium content and microbial profile are often used to
estimate the risk of the dental caries development [7, 24, 25].
However, as it was shown in [26], parameters of saliva de-
scribed above are weakly associated with the dynamics of the
caries development process. Consequently, more efficient di-
agnostic methods should be based on the data concerning the
changes in the molecular composition of saliva in the course
of the pathological processes [25, 27]. Changes in the molec-
ular composition of saliva associated with cariogenesis can be
used as efficient tissue markers of dental caries development
[7, 19, 24, 26]. Such an approach requires the precise analysis
of the biological fluid composition; in this case, the most
suitable technique is Fourier transform infrared spectroscopy
(FTIR) [21, 27–31]. FTIR is non-invasive, rapid, precise and
highly selective allowing the investigation of erosion in hard
dental tissue, its attrition, as well as for the study of different
forms of caries [23, 32, 33]. Also, infrared spectroscopy can
be employed as a preventive and predictive method to define
tooth and gum disease (gingivitis/periodontitis) [31, 34, 35].
IR spectroscopy has been successfully applied for the detec-
tion of tissue marker pathologies [21, 27, 29, 36]. With the
development of spectroscopic express methods of human sa-
liva analysis, screening of diseases at the molecular level at
any early stage is possible [13, 28, 29, 37].

By comparing the changes in the molecular composition of
saliva obtained by FTIR at the different stages of pathology in
the oral cavity (caries), it is possible to obtain novel data
concerning the course of this disease. This information can
help not only in specification of the mechanisms responsible
for caries development, but also to reveal their relationships
with the processes of de-mineralisation/mineralisation of the
hard dental tissues [38–41], as well as to specify saliva prote-
omics of caries development [11, 24] to elucidate potentially
significant tissue markers.

Therefore, the purpose of the work was to study the chang-
es in the molecular composition of saliva from subjects with
multiple caries lesions using spectroscopic methods of analy-
sis to identify potential tissue markers of caries development.

Materials and methods

Twenty humans aged between 22 and 28 years of age partic-
ipated in this study (10 men and 10 women). All participants
did not take any medicines or drugs, were non-smokers and
did not drink spirits. All of them did not have any records in
their medical cards for a year before making examinations and
experiments. Participants abstained from food and did not
drink for at least 2 h before sampling of their oral fluid.

The first group of participants (5 men and 5 women) was
physically healthy without harmful habits (non-smokers with
caries-free teeth and without gum disorders). The second
group (5 men and 5 women) were conditionally healthy
(non-smokers), regularly snacking on easily digestible carbo-
hydrates between meals. On examination, each participant in
this group had teeth with lesion focuses related with primary
and secondary caries at the stage corresponding to the third
degree according to the ICDAS scale [42]. In addition, they
repeatedly visited dentists in the 3-year period before their
participation in this study for dental caries treatment.

Non-stimulated mixed saliva was sampled during daylight,
to minimise circadian rhythm, 5 min after the preliminary
rinsing of the oral cavity with pure water. The saliva was
placed into 15-ml sterile test tubes for subsequent laboratory
investigation according to the standard technique [29] as
shown in the inset Bа^ in Fig. 1. After sampling, the test tubes
were cooled to 4 °C, then centrifuged before drying in the
oven at 36 °C to remove excess moisture.

The molecular composition of the mixed saliva samples
was analysed by IR spectroscopy. FTIR does not impact on
the sample, providing information related to the sample com-
position rather than changes as a result of being subjected to
this technique [17, 31]. Analysis of the mixed saliva samples
was performed with the Vertex-70 spectrometer (Bruker,
Germany) using an attachment for attenuated total reflection
provided with a diamond prism according to the technique
described in [27]. In addition, samples were subjected to in-
frared microspectroscopy (IRM) beamline at the Australian
Synchrotron, Victoria, Australia, using a Hyperion 3000 IR
microscope (Bruker, Germany) and high-pressure diamond
cell for the analysis of microsamples. IR spectra were recorded
within the range of 4000–500 cm−1. Spectral data processing
(background subtraction, correction for the atmosphere effect,
averaging of the spectra and data integration) and analysis
were performed using the professional software suite OPUS
(version 7.5).
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Ethical approval

All participants provided their written consent for participa-
tion. The Ethics Committee of Voronezh State University af-
firmed the performed examination (number of permission
001.018-2017). The examination was made in accordance
with the approved principles.

Availability of data and materials All data collected are avail-
able by request.

Experimental results

Preliminary analysis of the data obtained by FTIR demonstrat-
ed that the spectra of all samples within a certain experimental
group involved one and the same set of vibration modes. The
use of FTIR for the analysis qualitatively demonstrated that
the molecular composition of the mixed saliva was
characterised by a specific set of vibration modes in the IR
spectra, in agreement with published data on biological fluids
[21, 27–31].

It should be noted that in the present study, the registered
vibration modes in the IR spectra of the individuals within
each group were similar in intensity; therefore, only IR spectra

of the oral fluid averaged over the group are presented. The
procedure of spectra averaging over the experimental group
also allows the elimination of random experimental errors, as
well as the individual features of the participants within each
group [43].

The averaged IR spectra of the mixed saliva samples ob-
tained from those with multiple caries (curve 1) and the
healthy group (curve 2) are presented in Fig. 1(b). The list of
active vibrations in the spectra of the groups and frequencies
of these vibration modes as well as their allocation to a certain
molecular group are presented in Table 1. Analysis of the
obtained data was performed on the basis of the information
from the reference literature, where samples of non-stimulated
saliva (healthy versus containing pathological tissue markers)
were examined by FTIR, in addition to relating phosphate
derivatives to the formation of enamel and dentin, as well as
to the biological fluids in the oral cavity [21, 27–30, 36, 37,
45, 49, 50].

From the obtained experimental data (Fig. 1, Table 1), the
main intensive vibration bands in the IR transmission spectra
of saliva that are present in all spectra are assigned to the
following groups and complexes as follows. The first and
most intensive group of vibrations arranged in the interval of
1078–900 cm−1 were assigned to the molecular bonds related
to the phosphorus derivatives, such as phosphates,

Fig. 1 IR spectra of oral fluid
samples averaged over the study
groups: with (curve 1) and
without (curve 2) multiple caries
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glycerophosphates and phospholipids [27, 49]. The second
largest group of vibration bands localised in the range of
1725–1190 cm1 is related to proteins. One can distinguish
the bands of secondary amides in this group: Amide I (C=O
stretch vibration in the interval 1725–1590 cm−1), Amide II
(N–H bend and C–N stretch in the interval 1590–1500 cm−1)
and Amide III (C–N stretch, N–H bend in the range of 1350–
1190 cm−1), as well as vibrations of CH2/CH3 groups, ar-
ranged in the interval 1480–1350 cm−1 [51].

Along with the vibration modes discussed above, several
modes with the intensity dependent on the presence of dental
caries were observed. The most intensive vibration in this
group of bands is a mode in the range of 2150–1950 cm−1.
According to the data of [29], this mode is related to the
−N=C=S bond of thiocyanate anions that are present in mixed
saliva. Visual analysis of the intensity for this vibration in the
spectrum of the oral fluid obtained from those with multiple
caries demonstrated that it is considerably more intensive than
for the healthy subjects. Thiocyanates are well-known local
antibacterial agents for anaerobic microorganisms [52], thus
protecting against their vital active products, since the antibac-
terial activity of thiocyanates is an order of magnitude higher
than that of hydrogen peroxide. Furthermore, the presence of
thiocyanates in saliva can indicate the local immune status of
the oral cavity [53].

Interestingly, vibrations in the IR spectra in the three
ranges, 1765–1725 cm−1, 1185–1140 cm−1 and 870–
700 cm−1, were observed only in the samples of those with
multiple caries. The first two regions in the oversized scale are
presented in the insets с and d in Fig. 1. Analysis of literature
showed that the vibration band in the range of 1185–
1140 cm−1 (inset d, Fig. 1) is related to carbohydrates present

in the oral fluid. Carbohydrates are involved in the composi-
tion of saliva mucins covering and lubricating the mucous
tunic surface in the oral cavity [54], prevent adherence of
anaerobic bacteria and their colonisation, protecting tissues
from physical damage. The IR band in the range of 1765–
1725 cm−1 (inset с, Fig. 1) corresponds to the vibration of
>C=O and is associated with the carboxylic group of ester
(ester carbonyl) [21, 47, 48]. It is of note that the presence of
esters in the hard dental tissue of humans suffering from dental
caries has been shown [21, 22, 48] and they are more often
observed in carious tissue than in intact tissue [55].

As for the third specific region (as it was noted above), a set
of low-intensive vibration modes was observed in the range of
870–700 cm−1. These vibrations were characterised by a high
relative intensity in comparison with similar bands in the IR
spectrum of healthy participants and are associated with С–Н,
P–O bonds of phosphodiesters and esters, as well as other
lipids and carbohydrates of saliva [56]. The reason for this
increased intensity is due to the higher concentration of lipids
and esters in the saliva as a result of caries development [57,
58]. It should be noted that the concentration of these sub-
stances and their associated molecular complexes is relatively
low in comparison to the protein concentration of saliva.
Therefore, the change in intensity of vibrations in the IR spec-
tra within the range of 870–700 cm−1 with regard to the chang-
es in the range of vibrations related to proteins is also insig-
nificant. It is necessary to note that all predictive and preven-
tive manipulation can be provided only following spectra cal-
culations and determination of statistically significant FTIR
results.

The primary analysis of the experimental IR spectra of the
oral fluid samples allows the direct comparison of the

Table 1 Active vibration bands in the IR-spectra for the experimental and reference data

Substance Vibration modes Wavenumbers, cm−1 Normal Caries References

Carbohydrates
Lipids

С–H starch or out-of-plane vibrations, P–O 700–870 + + [31, 44]

Carbohydrates
Phosphates

Oligo, polysaccharides, glycosilated proteins and
phosphorus derivatives

1025–1078 + + [37, 45]

Mono and oligosaccharides 1029 + + [30]

Derivative of phosphate, glycerophosphate and
phosphatase. Phospholipids,

C–O–P–O–C

1054 + + [36, 37]

Carbohydrates C–O/C–C 1115 − + [29, 45, 46]

Proteins Amide III (CN stretching, NH bending) band
components of proteins

1272 + + [28, 37]

CH2/CH3 1397–1410, 1452 + + [28, 30, 37]

Amide II (CN stretching, NH bending) band
components of proteins

1548–1553 + + [28, 30, 37]

Amide I (C=O stretching) band components
of proteins

1645–1650 + + [28, 30, 37]

Ester carbonyl >C=O stretching 1765–1725 − + [21, 47, 48]

Thiocyanate −N=C=S 2150–1950 + ++ [29, 30]
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presence or absence of vibrations in each group, so if no ref-
erence samples and calibration curves are applied, FTIR only
provides qualitative estimations. Quantitative estimations
based on the FTIR data were used to identify differences in
the molecular composition of the oral fluid between the group
of healthy participants and those with multiple caries as de-
scribed previously by our group [27, 59]. The mathematical
estimation of the changes in the molecular composition of
saliva can be given based on calculations and analysis of four
different ratios (coefficients) between the organic and mineral
components in the oral fluid sample [60].

First, the R1 mineral-organic ratio is sufficient to calculate
the ratio of the integral intensity of the phosphate bands in the
IR spectrum (spectral ranges of 1078–900 cm−1) to the inte-
gral intensity of vibration band 1700–1590 cm−1 associated
with Amide I. Secondly, R2 (carbon-phosphate ratio) can be
calculated from the relation of the integral intensity for the
vibration bands of C=O and CH2/CH3 bonds localised in the
range of 1430–1360 cm−1 to the integral intensity of phos-
phate bands in the IR-spectrum within the region of 1078–
900 cm−1. Thirdly, R3 (Amide II/Amide I) is calculated from
the ratio of integral intensity for the band of Amide II (CN
stretching, NH bending vibrations) in the range of 1590–

1505 cm−1 to the integral intensity of the band of Amide I
(C=O stretching) in the interval of 1723–1590 cm−1. The
fourth coefficient, R4 protein/thiocyanate, that was proposed
in [29], can be calculated from the ratio of the integral inten-
sities of the amide bands (Amide I and Amide II) in the range
of 1700–1500 cm−1 to the integral intensity of −N=C=S vi-
bration bands, arranged at 2150–1950 cm−1, associated with
thiocyanate.

These ratios were calculated using OPUS 7.5 (Bruker),
including a wide set of the functional facilities for processing
and estimation of the data obtained by IR-spectroscopy tech-
niques. The results are presented in Fig. 2, as well as the
relative changes in all four ratios. It is important to note that
the ratios were calculated based on the spectra averaged over
the group of participants in this study.

Discussion

Integrated assessment of the obtained experimental FTIR re-
sults and calculated data presented in Figs. 1 and 2 enabled the
comparison of the molecular composition of the oral fluid of
subjects with and without multiple caries. The results revealed

Fig. 2 Calculated R1-R4 ratios
obtained for the two groups of
participants at examination. a
Mineral-organic ratio (R1). b
Carbon-phosphate ratio (R2). c
Amide II/Amide I ratio (R3). d
Protein/thiocyanate ratio (R4)
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a decrease of the mineral-organic ratio, R1 (Fig. 2a), indicat-
ing a reduction in the number of mineral groups and com-
plexes in the saliva and/or an increase in the organic compo-
nent in the case of the presence of cariogenic bacteria in the
mixed saliva [7, 24]. The considerable increase in the R3
coefficient (ratio of the integral areas of Amide II/Amide I)
for the subjects with multiple caries of ~ 120% (Fig. 2c) sug-
gests that the changes in the composition of the organic com-
ponent in their oral fluid are due to an increase in the number
of CN and NH molecular groups relative to the share of C=O
bonds (Fig. 1, Table 1). According to published data, these
molecular groups are associated with the protein component
and changes of its content can occur as a result of the presence
of pathologic microflora within the oral cavity, as in the non-
stimulated and stimulated saliva [7, 24, 58].

Relative changes in the carbon-phosphate ratio R2 (Fig.
2b) also indicates differences in the molecular composition
of the mixed saliva samples obtained from those with and
without multiple caries. The value of the R2 coefficient for
the participants with multiple caries was ~ 16% higher that the
participants without multiple caries (Fig. 2b). This increase is
due to the decrease in the phosphate complexes and increase
in the bonds associated with C=O and CH2/CH3 in the oral
fluid, which is in good agreement with published data [61,
62].

Moreover, significant changes in the composition of the
oral fluid occur with regard to the number of −N=C=S groups
which is associated with the presence of thiocyanate in saliva
(Fig. 1d). According to published data, the level of thiocya-
nates in saliva having an antibacterial effect can be enhanced
during pathological processes in the humans [29]. The R4

coefficient showed that the ratio of protein/thiocyanate was,
in fact, decreased twofold, indicating that the chemical bonds
inherent to thiocyanate increased relative to the share of pro-
teins in mixed saliva from participants with multiple caries.
Considering that relative changes of R1 and R3 ratios imply a
noticeable increase in organics (including proteins) in the
mixed saliva, a twofold decrease in the R4 ratio is associated
with a considerable increase in thiocyanate in the saliva of the
subjects with multiple caries. A review of dental literature
revealed that similar changes in the molecular composition
of saliva (an increase of thiocyanate) were observed for
smokers [29, 63].

Regarding the qualitative changes in the composition of
oral fluid from participants with multiple caries, based on
the experimental FTIR data (see Fig. 1), the most significant
and representative are the differences in the IR spectra within
the range of 1765–1725 cm−1 (Fig. 1, Table 1); vibration
bands in this region are related to carbohydrates and ester
carbonyls. These two low-intensive bands are observed only
in the spectra of the oral fluid samples taken from the second
group of participants with multiple caries. The estimations are
in agreement with published results [57, 64], where it was
shown that the saliva composition of esters, lipids and carbo-
hydrates increased during caries development.

All features of the IR spectra of the oral fluid described
above, as well as the changes in the molecular composition
as determined on the basis of the ratios, suggest that the
organic-mineral balance in the oral fluid of subjects with mul-
tiple caries is shifted towards a reduction in the content of the
mineral groups and complexes as well as an increases in the
organic component. These data are in a good agreement with

Fig. 3 Scheme of the experiment and the most indicative changes in the composition of the oral fluid of those with multiple caries occurred in relation to
the number of −N=C=S groups associated with the presence of thiocyanate
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studies concerned with the development of pathologic pro-
cesses in the oral cavity including carious process [7, 19, 24,
25, 57, 58, 62, 65].

However, no one of the antimicrobial agents, including
thiocyanate, as an integral marker of saliva is indicative of
the in vivo diagnosis of future caries development, as they
are relatively weakly associated with the dynamics of dental
caries [52, 66]. Therefore, in our opinion, the complex analy-
sis related to the quantitative and qualitative data on the
changes in the molecular composition of the oral fluid as pre-
sented in this report has the potential to increase the accuracy
of the detection of future carious processes and to improve
preventive diagnostic of this disease.

Conclusion

The use of FTIR, including synchrotron radiation, allowed the
comparison of several features in the IR-spectra, as well as the
determination of mineral-organic, carbon-phosphate, Amide
II/Amide I and protein/thiocyanate ratios, of oral fluid from
subjects with and without multiple caries. The complex anal-
ysis of the experimental data showed that the organic-mineral
balance in the oral fluid of those with multiple caries shifted
towards a reduction in the mineral complexes, accompanied
by an increase in the organic component. The ratio of Amide
II/Amide I was integral to these changes in molecular compo-
sition, increasing by ~ 120% in the group with multiple caries
compared with those without. The most indicative changes in
the composition of the oral fluid of those with multiple caries
occurred in relation to the number of −N=C=S groups associ-
ated with the presence of thiocyanate observed in the IR-
spectrum at 2150–1950 cm−1, which increased twofold.

Moreover, the carboxyl groups of esters, lipids and carbo-
hydrates present in the mixed saliva are typical for the pro-
cesses of caries development (Fig. 3).

Expert recommendations

Multiple caries is a systemic disease caused by the state of
parodentium tissues that affects the overall homeostasis of
the mouth cavity. With a wide range of functions it plays
non-stimulated saliva is a great source of information about
the condition of the mouth cavity organs. It goes without say-
ing that saliva from an individual person has its own features.
This fact gives an opportunity to detect the changes in the
saliva molecular composition and predict and to prevent such
a disease as multiple caries. The usage of non-stimulated sa-
liva is relatively fast, low-cost method and with the combina-
tion of FTIR equipment could give better results in such an
application. Furthermore, the complex data analysis presented
has the potential for application as both tissue markers and as
an effective predictive medical diagnostic approach for the

estimation of cariogenesis in mixed saliva samples, and they
will also contribute to providing individually tailored dental
care. Individual timely prevention considering the data analy-
sis of the condition of saliva microbiota will be beneficial in
reducing the risks of caries development and improving caries
resistance.
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