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Premenopausal breast cancer: potential clinical utility
of a multi-omics based machine learning approach
for patient stratification
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Abstract
Background The breast cancer (BC) epidemic is a multifactorial disease attributed to the early twenty-first century: about two
million of new cases and half a million deaths are registered annually worldwide. New trends are emerging now: on the one hand,
with respect to the geographical BC prevalence and, on the other hand, with respect to the age distribution. Recent statistics
demonstrate that young populations are getting more and more affected by BC in both Eastern andWestern countries. Therefore,
the old rule “the older the age, the higher the BC risk” is getting relativised now. Accumulated evidence shows that young
premenopausal women deal with particularly unpredictable subtypes of BC such as triple-negative BC, have lower survival rates
and respond less to conventional chemotherapy compared to the majority of postmenopausal BC.
Working hypothesis Here we hypothesised that a multi-level diagnostic approach may lead to the identification of a molecular
signature highly specific for the premenopausal BC. A multi-omic approach using machine learning was considered as a potent
tool for stratifying patients with benign breast alterations into well-defined risk groups, namely individuals at high versus low risk
for breast cancer development.
Results and conclusions The study resulted in identifying multi-omic signature specific for the premenopausal BC that can be
used for stratifying patients with benign breast alterations. Our predictive model is capable of discriminating individually
between high and low BC-risk with high confidence (>90%) and considered of potential clinical utility. Novel risk assessment
approaches and advanced screening programmes—as the long-term target of this project—are of particular importance for
predictive, preventive and personalised medicine as the medicine of the future, due to the expected health benefits for young
subpopulations and the healthcare system as a whole.

Keywords Predictive preventive personalised medicine . Breast cancer . Menopause . Patient stratification . Bioinformatics .
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Introduction

Breast cancer (BC) epidemic is attributed to the early twenty-
first century as a multi-factorial disease: about two million of
new cases and a half million of deaths are registered annually
worldwide [1]. The highest incidence of BC has been recorded
in Northern andWestern Europe, North America, Australia and
New Zealand [2]. Since a couple of years, the USA persistently
demonstrate high incidence rates in BC with by 246,660 new
BC cases and 40,450 BC-related deaths in 2016 [3], which
corresponds to a lifetime risk for one in eight women. The
persisting challenge is prevalent postmenopausal BC frequent-
ly linked to ageing, obesity and metabolic syndrome [4].
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However, completely new trends are emerging now: on the
one hand, with respect to the geographical BC prevalence and,
on the other hand, with respect to the age distribution. More
specifically, Eastern and African countries nowadays experi-
ence a dramatic increase in BC incidence and mortality rates
[5, 6]. It has been reported that current BC incidence and related
mortality rates for younger Chinese generations in Singapore
and Taiwan are even higher than those in the USA [7].
Furthermore, recent statistics demonstrate that young popula-
tions are getting more and more affected by BC in both Eastern
and Western countries, particularly women in the third and
fourth decade of life [6, 8–11]. Johnson et al. have reported that
the trend of increasing incidence was observed specifically in
women aged 25–39 years without any significant increase in
older subpopulations [9]. Therefore, the traditional rule Bthe
older the age, the higher the BC risk^ is getting revised now.

Noteworthy, BC occurring at younger age is particularly
unpredictable comprising sporadic BC cases with strongly pro-
moted metastatic spread to the life-important organs [12, 13].
Accumulated evidence shows that young premenopausal wom-
en deal with more aggressive subtypes of BC, have lower sur-
vival rates and respond less to conventional chemotherapy,
when compared with postmenopausal women [9, 14–17].
Moreover, a great number of known BC risk factors are depen-
dent on the menopausal status, which, however, is hardly con-
sidered in most risk assessment models [18]. Hence, the risks
by abnormal (both decreased and increased) BMI are different
for premenopausal and postmenopausal women and, further,
modulate individual outcomes of the BCmetastatic disease [1].

Many risk factors—both genetic and environmental—
are currently considered by BC prediction models.
However, the proportion of BC cases explained by these
factors, particularly, if stratified by menopausal status, is
unknown [19]. Exploratory breast proteomic assessment
has demonstrated menopausal status-specific protein pro-
files and dietary (systemic) based modulation of breast
cancer risk biomarkers involved in hormone and cytokine
signalling pathways [20]. Metabolomic investigations
(plasma folate, vitamin B6, vitamin B12, homocysteine)
revealed alteration of breast cancer risks specifically in
premenopausal women [21]. Finally, subcellular imaging
of chromosomal DNA by the Comet Assay analysis has
indicated differentiation of the Bcomet profiles^ between
younger and older breast cancer patients [22, 23].

Working hypothesis

Based on the above listed facts, we hypothesised that a multi-
level diagnostic approach is crucial for identifying a molecular
signature, whichmight be highly specific for the premenopausal
BC (preBC). Consequently, the multi-omic modalities are con-
sidered as a potent tool for stratifying patients with benign breast
alterations into well-defined risk groups, namely individuals at

high versus low risk for breast cancer development. Further,
particularly systemic alterations can be expected to underlie
the pathomechanisms of preBC. Therefore, pathology-specific
biomarker patterns in blood (but not in breast tissue) were the
main target of the project, in order to create corresponding strat-
ification algorithms. Finally, multi-parametric analysis using
machine learning is essential for the predictive disease model-
ling and thus to generate high clinical utility. Novel risk assess-
ment approaches and advanced screening programmes—as the
long-term target of this project—are of particular importance
from a healthcare economical point of view, due to the expected
health benefits for young patients.

Materials and methods

Patient recruitment and stratification

Eighty-five premenopausal female patients were enrolled in
the study. BC was diagnosed in 24 cases, and 61 patients
demonstrated benign breast alterations (BCfree). All patients
included into the current project were informed about the pur-
poses of the study and have signed their Bconsent of the
patient^. All investigations conformed to the principles
outlined in the Declaration of Helsinki and were performed
with the permission (Nr. 148/05) released by the responsible
ethic committee of the Medical Faculty, Rheinische Friedrich-
Wilhelms-University of Bonn.

Biobanking and biopreservation of blood samples

Venous blood draw was performed individually and prior to the
core needle biopsy has been taken, in order to avoid any potential
changes in molecular profiles related to the invasive approach of
the breast tissue manipulation and drug application (anaesthesia,
etc.). Blood samples (20 ml) were collected from the persons
under investigation utilising anti-coagulation by heparin. One
millilitre of the total blood was separated and centrifuged by a
standard procedure described elsewhere for receiving blood plas-
ma which was stored at − 80 °C until homocysteine measure-
ments were performed. 19 ml of the fresh total blood were used
for the isolation of peripheral leukocytes and, further, aliquoted
for proteomic andCometAssay analysis. All aliquots were stored
at − 80 °C until corresponding experiments were performed.

Isolation of peripheral leukocytes

Peripheral leukocytes were separated using Ficoll-Histopaque
gradients (Histopaque 1077, Sigma,USA) as described previous-
ly [24]. For that, individual samples were diluted with equal
volumes of physiological buffer solution (PBS, Gibco™,
USA). Then, 2 ml of histopaque were placed into 10-ml sterile
centrifuge tubes and 5ml of diluted blood sampleswere carefully
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layered onto each histopaque gradient. Gradients were centri-
fuged at 475 g and 20 °C for 15 min. The leukocytes bands were
removed from the interface between plasma and histopaque
layers of each tube and collected into one 50-ml tube. The total
volume was brought to 50 ml with cold Dulbecco’s modified
Eagle’s medium (DMEM, Gibco™, USA). The cell suspension
was washed three times with DMEM and the total number of
cells determined. Two equal aliquots of the isolated cells were
prepared—one stored at − 80 °C as the dry pellet for consequent
proteomic analyses. Another aliquot of the cells was re-
suspended in PBS-DMSO solution, further aliquoted into
Eppendorf tubes and stored at − 80 °C until subcellular imaging
by Comet Assay analysis was performed.

Homocysteine measurements (metabolomics)

Total homocysteine was measured via automated HPLC with
reversed phase separation and fluorescent detection [25].
Individual tHcy values were recorded for all the patients anon-
ymously utilising the encoding system.

Clinical proteomics

Two-dimensional poly-acrylamide gel electrophoresis
as the qualification approach

Two-dimensional poly-acrylamide gel electrophoresis (2D-
PAGE) is routinely performed by the proteomic group at the
Radiological Clinic, Breast Cancer Research Centre, Centre
for Integrated Oncology, Rheinische Friedrich-Wilhelms-
Universität Bonn, Germany. For the current project, altogeth-
er, 40 2D-PAGE-images were performed for the protein map-
ping and investigation of the expression patterns in peripheral
leukocytes of patients with benign andmalignant alterations in
breast. Ten individual samples were used per corresponding
group (malignant versus benign ones). Two parallel images
were performed for each sample to confirm the reproducibility
that doubled the final number of the gels analysed. A 200-μg
aliquot of each protein sample was used for each 2D-PAGE
analysis. First-dimensional separation was performed in
immobilised pH gradient (IPG) strips (Bio-Rad, USA) in the
range of IP 4-7, as recommended by the supplier. One hundred
twenty-five-microlitre protein samples containing re-
hydration buffer (8 M urea, 10 mM DTT, 1% CHAPS,
0.25% Bio-Lyte, pH 4–7) were loaded on the IPG-strips and
subjected to 14 kVh overnight at 20 °C in a PROTEAN IEF
Cell (Bio-Rad, USA). After the first-dimensional separation
had been performed, the extruded IPG strips were equilibrated
in gel equilibration buffer I (50 mM Tris-HCl, 6 M urea, 30%
glycerol, 2% SDS, 1% DTT), followed by equilibration in
buffer II (50 mM Tris-HCl, 6 M urea, 30% glycerol, 2%
SDS and 260 mM iodacetamide) for 10 min before loading
them onto poly-acrylamide gels (12% SDS-PAGE) for the

second-dimensional resolution in Mini-PROTEAN 3 (Bio-
Rad, USA). After the electrophoretic separation, resulting pro-
tein spots were visualised by silver staining (Silver Stain
Plus™, Bio-Rad, USA). Differential gene expression was
analysed using the task-dedicated software (Bio-Rad, USA).

MALDI-TOF

Selected spots were cut out from the gels (see the subchapter
BTwo-dimensional poly-acrylamide gel electrophoresis as the
qualification approach^). Sample preparation for the MALDI-
TOF performance was performed as described earlier [26]. The
proteins localised within the individual spots were in-gel
digested by incubating the samples with porcine trypsin
(Promega, USA) at 37 °C overnight. The resulting peptide mix-
tures were then purified by ZipTip C18 according to the recom-
mendations provided by the manufacturer (Millipore, USA).
Elution was performed using 50% ACN/water solution saturat-
ed with CHCA. One microliter of each sample was spotted onto
sample anchor and allowed to dry at room temperature.
Afterwards, 0.7 μl of the re-crystallisation solution (ethanol/ac-
etone/1%TFA in the ratio 60:30:10) were added. The follow-up
analysis was performed using MALDI-TOF mass spectrometer
(Bruker Daltonics) operated in positive ion reflector mode with
an acceleration voltage of 25 kV. For internal calibration, the
trypsin autolysis peptides were applied. Mass spectra were
analysed automatically using Bruker software. The following
search parameters were settled: (a) monoisotopic masses, (b)
mass tolerance of 50 ppm, (c) one missing cleavage per peptide
and (d) possible oxidation of methionine residues. No restric-
tions on Mr or pI were applied. A minimum of four matching
peptides covering at least 15% of the overall sequence was
required for a protein’s identification. Sequence similarity search
was carried out using the BLASTP software.

Western blot analysis as the quantification approach

Actin and catalase were selected for quantification by 2D-
PAGE followed by MALDI-TOF. The entire procedure for
the Western blot analysis in the project has been described
earlier [27]. Quantification of both protein targets was per-
formed two times for each (blood) sample. The electrophoretic
and blotting are standard procedures described elsewhere.
Primary anti-body incubation was performed at room temper-
ature using a 1:200 dilution of specific anti-bodies to human
catalase 64 kDa (goat polyclonal IgG, recommended for de-
tection of catalase of human origin by Western blotting, sc-
34,282 Santa Cruz, USA) and to human actin 43 kDa (goat
polyclonal IgG, recommended for detection of a broad range
of actin isoforms of human origin, sc-1616 Santa Cruz, USA).
The protein-specific signals were measured densitometrically
using the BQuantity One®B imaging system (Bio-Rad,
USA)—see Fig. 1.
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Comet Assay analysis of the DNA patterns

DNA fragmentation assessment (Trevigen, Inc., Cat. No.
4250-050-K, USA) was performed for each blood sample
(altogether 84) collected by evaluation of the DNA Bcomet^
tail shape and specific migration patterns. Peripheral leuko-
cytes were immobilised in a bed of low melting point agarose,
on a Trevigen CometSlide™. The alkaline electrophoresis
was applied to perform the most sensitive analysis of DNA
breaks. After electrophoretic separation, staining with a fluo-
rescent DNA intercalating dye (SYBR® Green I) was per-
formed. The shape of individual comets was visualised by
epifluorescence microscopy. The evaluation system devel-
oped by the authors has been already published earlier [28],
and it was applied for the qualification and quantification of
DNA fragmentation/damage in this project.

Bioinformatic analysis

NMF-based clustering of premenopausal patients
with benign breast alterations

Sixty-one premenopausal patients with benign breast alter-
ations were clustered into two groups using non-negative ma-
trix factorisation (NMF) [29]. Briefly, NMF is a multi-variate,
algebraic technique, which decomposes a non-negative data
n ×m matrix X into the product of two non-negative matrices
W (n ×m) and H (m × k). In our context, rows in X correspond
to the molecular biomarkers measured in patients that are pre-
sented in different columns. Columns in W are sparse linear
combinations of molecular markers in X, i.e. typically only a
subset of biomarkers (biomarker panel) is used. The column
vectors inWare also called meta-markers. Rows inH indicate,
to which of the k clusters a particular patient can be assigned
to. Consequently, NMF can be used to stratify patients into a
predefined number of k clusters using a signature of multi-
modal biomarkers. Notably, this signature can consist of a
subset of available biomarkers (biomarker panel). To ensure
robustness of our NMF based patient stratification, we repeat-
ed NMF clustering starting from random initial conditions 100

times and then looked at the consensus solution. That means
that we have investigated how often each pair of patients
would fall into the same cluster, yielding a consensus matrix.
Based on the consensus matrix, a final and stable clustering
result was then obtain via hierarchical clustering, as suggested
in [29]. The whole analysis was done with the help of the
implementation in R-package NMF [30].

We varied the number k of clusters in our analysis from 2 to
10 and investigated the silhouette index [31] and the
cophenetic correlation [32] as classical methods to evaluate
clustering solutions. Both measures vary from − 1 to 1, where
1 indicates perfect agreement of the observed distance struc-
ture in the data to the proposed clustering. As indicated in
Fig. 2, both measures favour a solution with two clusters.

Investigating further the two-cluster solution, we depicted
the consensus matrix (reflecting the frequency of each pair of
patients falling into the same cluster), which shows a very
clear block structure (Fig. 3). Further, Fig. 3 shows a full
silhouette plot for the two-cluster solution. Both plots indicate
a very clear separation of both clusters and high agreement
with the observed distance structure of patient samples.

Predicting patient subgroups via machine learning

To allow future patient stratification utilising the algo-
rithms developed in the current study, Gradient Boosting
Machine (GBM) as a supervised classification algorithm
has been used [33]. A GBM classifier consists of an en-
semble of decision trees of limited depth (here: at most
five). Thanks to this aspect, GBMs is well suited for ap-
plications to multi-variate, heterogeneous data stemming
from different measurement techniques and having differ-
ent numerical scales and distributions—as in our situation.
GBMs assign each decision tree a weight. During the it-
erative training procedure of GBMs, more and more deci-
sion trees are constructed and weighted. The optimal num-
ber of training (boosting) steps has a critical influence on
the prediction performance of a GBM and can, e.g. be
determined via a tenfold cross-validation. Notably,
GBMs do not necessarily use all variables in the data for
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Fig. 1 Western blot imaging of
the expression rates for a actin
and b catalase as demonstrated for
the samples/patients numbered 1–
7 which correspond to the patients
1 and 2 diagnosed with benign
breast alterations, 3–7 breast can-
cer patients, whereby 3–6 are
premenopausal BC and 7 is post-
menopausal BC
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classification, but potentially only a subset. Hence, the
resulting classifier can be sparse. Moreover, it is possible
to extract a measure of importance of each individual var-
iable for the classifier. This measure reflects the relative
reduction of misfit to the training data (the relative loss
reduction more precisely).

Availability of data and materials The datasets supporting the
conclusions of this article are included within the article.
Data on patients are available at a local database of the
Radiological clinic, University of Bonn, Germany, that is
not open for the public.

Results

Identification of pathology-specific biomarker
patterns

NMF was applied as a modern data analytical technique to
robustly identify clusters in multi-variate data (see
BBioinformatic analysis^). One of the features of NMF
clustering is the selection of a suitable biomarker panel that
induces the clustering of patients. In our case, we identified
eight biomarkers, which resulted into a statistically clear
separation of two patient groups with high silhouette indi-
ces (Figs. 2 and 3):

& Hybridome: Homocystein plasma levels at the ratio of
comet patterns CA IV/CA(I–III)

& CA I patterns
& CA II patterns
& CA III patterns
& CA IV patterns
& Combined CA IV/ CA (I–III) patterns
& Actin expression levels
& Catalase expression levels

Reproducibility of the biomarker signature

We asked, how reproducible the identified biomarker
panel was when repeating the NMF clustering on subsets
of the patients. For this purpose, we applied a 10× re-
peated tenfold cross-validation procedure. That means,
we randomly split all patients into tenfolds (subsets)
and sequentially performed NMF clustering on 9/10 of
these data while leaving out 1/10. This resulted into 100
NMF clustering solutions and corresponding biomarker
sets. For all 100 NMF clustering solutions, two patient
clusters were identified based on the silhouette index
(see the description provided previously). Table 1 shows
the frequency by which the previously identified 8 bio-
markers were selected amongst these 100 clustering so-
lutions, indicating specifically their high stability.

Fig. 2 Cophenetic correlation (left) and silhouette index (right) as a func-
tion of the number of NMF clusters. Both plots clearly favour a solution
with two patient groups. The solution of a consensus clustering over 100

NMF runs (purple) is contrasted with the silhouette indices for clustering
the markers (red) and the patients (green)
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Algorithm to stratify future patients

Based on the stratification of 61 patients into 2 clusters
(classes), we evaluated the ability of a supervised machine
learning classifier to stratify new patients into correct
clusters this was done via a 10× repeated tenfold cross-
validation procedure (see previous section). That means
that a classifier was trained on 9/10 of 61 premenopausal
patients with benign breast alterations and predictions of
the patient cluster made for the remaining 1/10 of the
patients. Prediction performance was measured via the
area under ROC curve (AUC), indicating a highly

accurate classification with ~ 91% AUC (Fig. 4).
Notably, for this evaluation, we allowed classifiers to
use all available variables rather than restricting them to
the previously established signature based on the eight
biomarkers chosen. This was done to reduce over-opti-
mism, because the B8-biomarker^ signature had previous-
ly been established on the entire dataset. Still, a prospec-
tive validation utilising external patient cohorts is required
to gain a realistic picture of the generalisability of our
results in future research.

Clinical interpretation of the results

We trained the final machine learning classifier with all
61 patients and 8 NMF selected biomarkers that resulted
in the stratified patient clusters. Then, we applied this
classifier to 24 premenopausal breast cancer patients.
Fourteen of these patients were predicted to fall with
high probability (> 90%) into one of our clusters. That
means these 14 BC patients revealed a significant sim-
ilarity to the 61 patients with benign breast alterations.
Moreover, 11/14 (79%) patients fell into the cluster 2,
indicating a higher similarity to patients in this sub-
group. Hence, we interpreted patients in cluster 2 as
the BC high-risk subgroup.

Table 1 Frequency of
NMF selected
biomarkers within a 10×
repeated tenfold cross-
validation procedure

Marker Selection
frequency

Hcy + CA I–IV 94.00%

CA I 100.00%

CA II 89.00%

CA III 68.00%

CA IV 99.00%

CA I–IV 99.00%

Actin 98.00%

Catalase 92.00%

Fig. 3 Left: silhouette plot of two patient subgroups with 37 and 24
patients, respectively. The x-axis shows the cluster silhouette for each
patient on the y-axis. The cluster silhouette is a measure of how similar
each patient is compared to patients in its own cluster and the closest
patient from other clusters. The silhouette measure ranges from 0 to 1,
where 1 indicates a perfect agreement of the assumed cluster assignment
with patient distances. The average cluster silhouette for all patients in

cluster 1 and 2 is shown. The overall average silhouette index was 1.
Right: consensus matrix with super-imposed dendrogram of hierarchical
clustering. The consensus matrix depicts the relative frequency of two
patients falling into the same cluster across repeated NMF runs. A clear
separation of two patient subgroups (red blocks) can be seen. Patients in
these groups frequently fall into the same cluster.
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In agreement to this finding, Fig. 5 shows a principal com-
ponent plot, which visualises two well-separated clusters
(green and blue).Within the green cluster, there is clearly an
enrichment of cancer samples (red) achieved.

Relative influence of the individual biomarkers in the panel

We assessed the relative influence of each of the eight
biomarkers that were found to have a power to stratify
the patients between high- and low-risk clusters by our
machine learning classifier (see Table 2). Table 2 shows,

whether the corresponding biomarker increases or de-
creases the relative chance of a patient to be stratified into
the high risk cluster. The latter was assessed by inspecting
partial dependencies of variables [33].

Boxplots of individual features are shown in Fig. 6.
Notably, each of the 8 biomarkers selected demonstrates
univariately a clear difference between high- and low-risk
patient groups that is statistically significant (false discovery
rate < 0.05, Banjamini-Yekutieli method [34]) in all cases test-
ed (Wilcoxon rank test). Further, Fig. 7 demonstrates
individualised patient profiles relevant for their clinical utility.

Fig. 4 Prediction of correct
patient cluster assignment: The
boxplot shows the distribution of
10 AUC values resulting from 10
repeats of a tenfold cross-
validation procedure. Within each
cross-validation loop, a GBM
classifier was trained on 9/10 of
the available patient data and
tested on the hold out rest. A 50%
AUC indicates chance level and a
AUC of 100% a perfect predic-
tion performance

Fig. 5 Principal component plot depicting both identified patient
subgroup and 14 breast cancer patients. Shown is the projection of
patients (indicated by numbers) on the first two principal components

of the biomarker signature space. The first two principal components
explain 19.6 and 9.2% of the total variance
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Discussion

Premenopausal breast cancer context

As stated in the BIntroduction^, the management of
premenopausal breast cancer (preBC) is challenging,
due to increasing prevalence, no specialised screening
programmes, underdeveloped predictive diagnostics and
targeted prevention. The area attracts more and more
attention that is reflected by the PubMed statistics dem-
onstrating a permanently increasing annual number of
the field-dedicated papers starting with only one paper
in 1971 up to 270 PubMed-registered papers in 2016.
However, altogether, there are currently only 366 and
60 papers which could be found as specifically dedicat-
ed to the BpreBC risk assessment^ and BpreBC

prediction^, respectively. This is an astonishing low
amount of publications demonstrating evident deficits
in the field-related research activities. Large-cohort
studies continue to report on first-degree family history
of BC (germline mutations resulting in familial BC
comprising 5–10% of all BC cases), the extremely or
heterogeneously dense breast tissue, anthropometric pa-
rameters, overweight/obesity, decreased physical activi-
ty, abnormal alcohol consumption, history of benign
breast biopsy and disease-predisposing reproductive his-
tory as the main risk factors for both pre- and postmen-
opausal BC (postBC) with some more significance for
one or another depending on the factor and population
[1, 19, 35]. Far more clarity has been achieved for patient
profiling of postBC, since the majority of BC patients com-
prises postBC in Western countries [4]. However, this finding
does not hold true for some other world regions such as
African countries: in Central Sudan, about 63% of all breast
cancer cases are represented by preBC and 34% have been
registered for women with five or more childbirths [36]. No
clarity has been reached so far for patient profiling of preBC
resulting in poorer prognosis and higher mortality rates typical
for preBC compared to postBC. Moreover, the menopausal
status is hardly considered in most currently applied risk as-
sessment models [18]. Consequently, more effective diagnostic
approaches, better adapted screening programmes and targeted
treatments are of highest priority for research and medical ser-
vices in the overall BC management. This, however, requires
reliable preBC risk assessment based on multi-level diagnos-
tics and comprehensive biomarker panels.

Hcy / CA IV/(I+II+III) CA I CA II CA III

CA IV CA IV/(I+II+III) Ac�n expression level Catalase expression level

Fig. 6 Boxplots depicting the distribution of individual variables in low risk (cluster 1) and high risk (cluster 2) patient subgroups. All markers show a
statistically significant difference between high- and low-risk groups after multiple testing corrections

Table 2 Relative importance of NMF selected biomarkers in a GBM
classifier distinguishing between two clusters as high- versus low-risk patients

Marker Relative importance In high risk

CA I 39.7973 Up

Catalase 19.4992 Up

Hcy + CA I–IV 13.6948 Up

Actin 12.6924 Up

CA IV 6.6395 Down

CA III 3.9636 Down

CA II 3.6177 Down

CA I–IV 0.0956 Down

182 EPMA Journal (2018) 9:175–186



Advantages of the diagnostic approach proposed
here

The diagnostic approach presented here is based on a multi-
omic approach utilising blood samples, which underwent sub-
cellular imaging by Comet Assay DNA anaylsis, disease-
specific profiling of selected proteins and hybridome ap-
proach based on the comet patterns and homocysteine pro-
files. It was an intention of the authors to create the model
based on a panel of biomarkers that fulfil two criteria:

1. They are complementary to each other with respect to
their individual biological functions, which by differential
patterns can be attributed to the tumour development and
progression.

2. They represent possibly disease-specific and systemic
biomarker patterns, which can be of particularly great
clinical utility by creating risk assessment modalities
based on blood tests correlated with tumour development
in women predisposed to preBC before the clinically
manifested disease.

Biological interpretation of the biomarkers selected

– Oxidative stress resulting from an imbalanced production
of reactive oxygen species (ROS) plays a key role in
carcinogenesis. Several mechanisms underlie this func-
tional link including an excessive damage to

chromosomal DNA accompanied with ineffective repair
[37], mitochondrial DNA damage and/or misguided re-
pair [38], insufficient energy production and self-
promotion of the Bvicious circle^ towards the formula
Bless energy = less repair but more ROS =more damage^.
Catalase (Cat) is a primary antioxidant operating down-
stream in the SOD-Cat cascade detoxifying the most ag-
gressive species, namely O2·

− (superoxide radical) and
H2O2 (hydrogen peroxide). Consequently, both signifi-
cantly increased and/or decreased levels of Cat are strong-
ly indicative for imbalanced production of ROS [39].

– Although its role in BC pathology is inconsistent in the
literature, homocysteine (Hcy) has been reported as a
proliferation [40] and angiogenesis stimulating metabo-
lite [41]. Moreover, Hcy induces metalloproteinase-2 in a
dose-dependent manner [42], which is a prognostic
biomarker for tumour aggressiveness and poor out-
come in BC patients [43]. Furthermore, Hcy profiles
in blood plasma can be regarded as readout of vi-
tamin B12 and folate states, which are crucial for
DNA synthesis. Contextually, DNA integrity has
been assessed by the Comet Assay analysis. To this
end, our previous studies demonstrated altered com-
et patterns as an attribute of BC in general [22].
Finally, the Bhybridome^ constructed as the ratio
of the Hcy levels in blood plasma and the corre-
sponding comet patterns in peripheral leukocytes
has demonstrated statistically significant differences
between low- and high-risk clusters (Fig. 6).

Low risk

High risk

Fig. 7 Heat map of patients—the x-axis displays individualised patient
profiles (patients involved are listed on the y-axis); characteristic patterns
of following biomarker are presented: CA IV, CA IV/I + II + III, CA II,
CA III, actin expression, catalase expression, CA I, and hybridome Hcy/
CA(I–IV). The colour code displays the row-wise normalised magnitude
(e.g. expression levels for proteins) of each marker (z-score): green =

high, red = low. Example: indicated with the red arrow patient is at high
BC risk; in this case, low levels of CA IV, CA IV/I + II + III, CA II and
CA III, but high levels of actin, catalase, CA I, and Hcy / CA (I–IV) have
been demonstrated that is characteristic for the profile of the Bhigh risk^
cluster. The patient at low risk for BC indicated with the green arrow
shows exactly opposite patterns
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– Finally, rearranged filamentous actin networks have been
found as relevant for the cytoskeletal architecture of ag-
gressive breast cancer cells which allows for cell migra-
tion and tumour invasion [44]. Altered expression rates of
actin have been demonstrated in both breast cancer tissue
and circulating leukocytes of BC patients [26].
Dysregulation of actin expression patterns might be ge-
netically predisposed and could, therefore, be highly in-
dividual and systemic.

Systemic molecular patterns

Systemic metabolism has been shown to impact molecular
patterns in breast tissue. However, breast tissue respon-
siveness is highly individual as demonstrated by energy
restriction studies, which did not provide any interpreta-
tion for the control mechanisms decisive for the individual
responsiveness [45]. Unfortunately, our knowledge regard-
ing systemic interrelationship of individual risk factors is
still rudimentary that strongly limits the predictive power
of currently applied risk assessment models based on mod-
ifiable risk factors such as environment, dietary habits and
behaviours predisposing to sporadic BCs. To this end, spo-
radic BCs comprise (over) 90% of all BC cases.
Consequently, the greatest advantages of the preBC model
presented here are (1) the use of blood samples reflecting
systemic effects in the body and (2) correlation of the iden-
tified biomarker panels with the high- (disease similar)
versus low (disease dissimilar)-risk clusters.

The main message The approach seems to be highly promis-
ing for both positive and negative predictive diagnosis that
allows, on the one hand, to trigger timely preventive measures
and, on the other hand, to avoid unnecessary treatments such
as biopsy, preventive chemotherapy and other procedures.

Concluding remarks

Using a multi-omic data approach the current project revealed
two clearly and robustly separated clusters with high versus
low BC-similarity in premenopausal, BC-free individuals.
These clusters were induced by a highly reproducible subset
of only eight biomarkers. Moreover, we developed a machine
learning model, which is in principle able to predict any pre-
menopausal woman as a member of either high or low BC-
risk group based on the established biomarker panel.

As highlighted previously, the reported high and low
BC-risk subgroups in premenopausal, BC-free patients
require further validation via large-scale patient studies.
We consider our present results as encouraging; howev-
er, the reproducibility level is currently difficult to

estimate. Bringing our biomarker panel together with
the developed stratification algorithm into clinical prac-
tice will require a prospective clinical trial. Such a
study would have to demonstrate that the predicted
high-risk individuals more frequently disease on BC
during their lifetime compared to the low-risk individ-
uals according to the evaluation system elaborated here.
The ratio of lifetime risks in both clusters has then to
be seen in relation to the stratification costs, in order to
come to a final judgement with respect to the clinical
utility of the proposed approach. Therefore, the present-
ed work is to be considered as the first encouraging
step made to benefit potentially affected patients, health
care and society at large.
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