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SUMMARY

DNA polymerase ε (POLE) is a four-subunit complex
and the major leading strand polymerase in eukary-
otes. Budding yeast orthologs of POLE3 and POLE4
promotePolεprocessivity in vitrobut aredispensable
for viability in vivo. Here, we report that POLE4
deficiency in mice destabilizes the entire Polε com-
plex, leading to embryonic lethality in inbred strains
and extensive developmental abnormalities, leuko-
penia, and tumor predisposition in outbred strains.
Comparable phenotypes of growth retardation and
immunodeficiency are also observed in human pa-
tients harboring destabilizing mutations in POLE1.
In both Pole4�/� mouse and POLE1 mutant human
cells, Polε hypomorphy is associated with replication
stress and p53 activation, which we attribute to inef-
ficient replication origin firing. Strikingly, removing
p53 is sufficient to rescue embryonic lethality and all
developmental abnormalities in Pole4 null mice.
However, Pole4�/�p53+/� mice exhibit accelerated
tumorigenesis, revealing an important role for con-
trolled CMG and origin activation in normal develop-
ment and tumor prevention.

INTRODUCTION

DNA replication in eukaryotes is performed by a large multi-

subunit machine, known as the replisome, which assembles at

thousands of DNA replication origins in a cell-type- and develop-

mental-stage-dependent manner (for review, see Méchali,

2010). Assembly of the eukaryotic replisome begins in G1 phase

of the cell cycle with loading of inactive MCM2–7 double hexam-

ers at origins (for review, see Masai et al., 2010). At the G1-S

transition, DDK- and CDK-dependent phosphorylation drives

assembly of the CMG complex, composed of CDC45,
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MCM2–7, andGINS1–4, which is considered to form the proces-

sive replicative helicase (Ilves et al., 2010; Labib, 2010). Twoma-

jor DNA polymerases, Pold and Polε, are thought to replicate the

lagging and leading strand, respectively (Nick McElhinny et al.,

2008; Pursell et al., 2007). In addition to its catalytic role, Polε

is required for CMG formation and origin activation in budding

yeast; while its N-terminal catalytic domain is dispensable for

viability, deletion of its C-terminal structural domain is lethal in

S. cerevisiae (Handa et al., 2012; Muramatsu et al., 2010; Sen-

gupta et al., 2013; Yeeles et al., 2015).

Mammalian Polε is composed of four subunits: POLE1, homo-

log of S. cerevisiae Pol2, contains polymerase and exonuclease

activities (Lee et al., 1991; Syvaoja and Linn, 1989); POLE2,

homolog of Dpb2, structurally links Polε to the CMG complex

(Li et al., 1997; Sengupta et al., 2013); and two smaller subunits,

POLE3 and POLE4, orthologs of Dpb4 and Dpb3, whose func-

tions are unknown (Li et al., 2000). Dpb3 and Dpb4 are

non-essential in S. cerevisiae, with dpb3D and dpb4D yeast

strains exhibiting increased mutation rates and defective

S-phase progression, respectively (Araki et al., 1991; Ohya

et al., 2000). Both proteins harbor histone fold motifs of the

H2A-H2B family, through which they are thought to interact

with each other and increase Polε binding to double-stranded

DNA and/or provide an interaction surface at the replication

fork (Iida and Araki, 2004; Tackett et al., 2005; Tsubota et al.,

2003). Of note, Dpb4 and its human homolog POLE3 are also

components of the budding yeast ISWI2/yCHRAC and the

human hCHRAC chromatin remodeling complexes, respectively

(Poot et al., 2000; Iida and Araki, 2004). Studies in vitro using re-

combinant proteins have shown that yeast Polε lacking Dpb3

and Dpb4 exhibits reduced processivity on synthetic DNA sub-

strates, which may explain the increased mutagenesis of

dpb3D-dpb4D yeast strains (Aksenova et al., 2010). Biochemical

studies using reconstituted human Polε suggested that POLE3

and POLE4 bind to the catalytic subunit POLE1 at different sites

compared to their yeast homologs and do not significantly

contribute to the rate of DNA synthesis in vitro, which suggests

that POLE3-POLE4 functions in higher eukaryotes might differ

from budding yeast (Bermudez et al., 2011).
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Several clinically recognized human syndromes are caused

by mutations in DNA replication genes, many of them present-

ing with growth failure and skeletal abnormalities, endocrine

and/or immune dysfunctions, and heightened cancer risk (for

review, see Jackson et al., 2014). Recently, mutations of Polε

subunits, POLE1 and POLE2, have been described in human

patients suffering from immunodeficiency and growth restric-

tion (Frugoni et al., 2016; Pachlopnik Schmid et al., 2012).

However, substantive biological and mechanistic insights into

disease pathogenesis remain to be established. Moreover,

mutations of POLE1 in proximity to the proofreading exonu-

clease domain have been identified in several neoplasias

such as colorectal and endometrial cancer, which are associ-

ated with a peculiar hypermutator phenotype (Alexandrov

et al., 2013; Campbell et al., 2017; Kandoth et al., 2013;

Yang et al., 2013).

To unravel the function of Polε accessory subunits in verte-

brates, we report here the generation of a mouse knockout for

the Pole4 gene and describe the functional characterization of

primary cell lines from two human patients harboring destabiliz-

ing mutations in POLE1. While essential for embryonic develop-

ment in a C57BL/6 inbred strain, we found that Pole4 knockout

mice are viable in an outbred background, presenting with a

multitude of developmental growth defects, including craniofa-

cial and skeletal abnormalities and defective B and T cell matu-

ration. Notably, these overlap with the clinical features observed

in patients harboring POLE1/2 mutations. In addition, we show

that Pole4�/� mice and patient cells with POLE1 mutations

exhibit Polε complex instability, which leads to inefficient origin

activation, replicative damage, genome instability, and p53 acti-

vation. Surprisingly, removal of p53 is sufficient to rescue the

complex array of developmental abnormalities in Pole4�/�

mice and restore lymphoid lineage differentiation. Despite this,

p53 haploinsufficiency further exacerbates genetic instability

and leads to accelerated tumorigenesis in the absence of

POLE4. Collectively, our work defines a mouse model of Polε

hypomorphy and extends the group of human genetic diseases

at the cross-road of CMG activation and replication fork

establishment, highlighting the intimate connection between

replication origin activation, genome instability, and cancer

development.

RESULTS

Pole4 Knockout Mice Are Viable in an Outbred Strain
and Exhibit Phenotypes Similar to Human Patients with
Mutations in POLE1 or POLE2

To investigate the role of DNA polymerase ε in a complex organ-

ism, we generated a Pole4-deficient mouse model in the inbred

C57BL/6 genetic background from an existing EUCOMMembry-

onic stem cell line, Pole4tm1(KOMP)Vlcg, in which most of the Pole4

gene has been replaced by a b-galactosidase-neomycin re-

porter cassette (Figure 1A). Sequencing of the first exon revealed

that the deletion cassette is inserted 94 bp after the start of exon

1 (Figure S1A). Based on this information, we developed a gen-

otyping strategy to detect wild-type (WT), heterozygous, and

mutant alleles using a three-primer PCR. POLE4 protein was un-

detectable in mutant embryo extracts by immunoblotting and
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was reduced by �50% in heterozygous cells compared to WT

(Figure 1B).

Pole4tm1(KOMP)Vlcg intercrosses in the C57BL/6 inbred back-

ground gave rise to only 1 viable animal out of 63 expected

(Figure S1B). Further examination of Pole4 embryos in utero

revealed that most embryos die with extensive developmental

defects between 11.5 and 13.5 days postcoitum (dpc)

(Figure S1C; data not shown). Unexpectedly, crossing the

Pole4tm1(KOMP)Vlcg allele into an FVB/sv129 outbred background

resulted in viable Pole4 null mutant mice, albeit at lower than

expected Mendelian ratios, corresponding to 9.3% compared

to 25% expected (Figure 1C). In utero analysis of timed matings

revealed that Pole4 lethality in the FVB/sv129 outbred back-

ground occurs between 13.5 dpc and birth. Pole4 mutant

embryos in this outbred background showed no significant

developmental abnormalities at 13.5 dpc with the exception of

intrauterine growth retardation (Figure 1D, left). At 13.5 and

15.5 dpc, mutant embryos were significantly smaller with a

decreased weight (Figures 1D, middle, and S1D; at 13.5 dpc,

Pole4+/+, 0.16 ± 0.022 g versus Pole4�/�, 0.12 ± 0.027 g; at

15.5 dpc, Pole4+/+, 0.42 ± 0.011 g versus Pole4�/�, 0.30 ±

0.0094 g, respectively). They also exhibited a significantly

smaller mandible, tibia, and pelvis length relative to the femur

length, whereas skull, humerus, and radius had a similar size

compared to WT (Figure S1E). From 3 to 34 weeks postpartum,

Pole4 mutants remained at lower weight and shorter length

compared to their WT littermates (Figure 1D, right; data not

shown), suggesting that these mice have a significant develop-

mental growth defect. To investigate the source of these

developmental issues, we proceeded to characterize the viable

FVB/sv129 outbred Pole4�/� animals.

Breeding experiments over a 5-month period involving a

Pole4�/� animal as one of the breeding pairs showed that these

mice are subfertile, producing significantly less litters and a ten-

dency for fewer pups (Figure 1E, top). Breeding of heterozygous

pairs resulted in an average of 26 litters with 202 pups (1.3 litters

per 21-day-gestation interval and 11 pups per litters), whereas

breeding involving one mutant in a pair produced only 15 litters

with 118 pups (0.95 litters per 21-day-gestation interval and

7.5 pups per litters). Examination of the testes of Pole4-deficient

neonatal mice revealed amarked reduction in the number of pro-

myelocytic leukemia zinc-finger (PLZF)-positive cells per tubules

compared to controls (6.8 ± 2.2 versus 4.1 ± 1.9), suggesting that

the subfertility of Pole4 mutant is likely due to germ cell attrition

(Figure 1E, bottom).

Detailed phenotypic characterization of adult Pole4�/� mice

revealed skeletal defects and craniofacial abnormalities. While

acknowledging the morphological differences between mice

and humans, we noted that similar bone dysplasia and facial

dysmorphism have also been reported in human patients

with mutations of the POLE1 and POLE2 genes (Frugoni

et al., 2016; Pachlopnik Schmid et al., 2012; Thiffault et al.,

2015). In addition to this, we also noticed white patches on

the belly, kinks and curls in their tails, and an unusual gait (Fig-

ure 1F), which were evident in some, but not all, of the

Pole4�/� animals (Figure S1F). Micro-computed tomography

(CT) scans revealed that the tail kinks or curls in the Pole4-

deficient mice are caused by vertebrae fusions (Figure 1G),
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Figure 1. Pole4 Knockout Mice Are Viable in

an Outbred Strain and Exhibit Phenotypes

Similar to Human Patients with Mutations

of POLE1 or POLE2

(A) Schematic representation of the targeting

vector used to generate the Pole4-deficient mice.

The deletion cassette has been inserted 93 bp

after the start of Pole4 exon 1 to replace the entire

Pole4 gene. Green arrows represent primers used

for genotyping.

(B) Left: Pole4 genotyping strategy. Upper band

represents the WT allele; lower band, the mutant

allele. Right: western blot on 13.5 dpc Pole4+/+,

Pole4+/�, Pole4�/� embryos illustrating loss of

POLE4. Tubulin was used as loading control.

(C) Breeding summary of Pole4+/� mice in-

tercrosses at birth and during embryogenesis.

Numbers and percentages in brackets are ex-

pected numbers and ratios. Pole4-deficient mice

are represented at expected ratios at 13.5 dpc,

whereas only 9.3% Pole4�/� mice are born.

(D) Left: representative images of 13.5 dpc Pole4

embryos. Note the smaller size of Pole4�/� em-

bryo. Scale bar, 1 mm. Middle: weight analysis of

Pole4 embryos at 13.5 dpc. Error bars represent ±

SEM of n = 18 Pole4+/+ and n = 23 Pole4�/�. Sig-
nificance: t test, p = 0.0002. Right: weight analysis

of Pole4+/+ and Pole4�/�mice. Error bars are not

shown to render the graph readable; data are from

males and females with at least five mice

measured at each time point.

(E) Top: breeding ability of Pole4 heterozygous 3

heterozygous versus mutant 3 heterozygous

crosses. Each pair was bred during 5 months, and

the number of litters and pups per litter was

quantified per 21-day gestation. Significance:

t test; litter per 21-day gestation, p = 0.0004; pups

per 21-day gestation, p = 0.21. Bottom: testis tu-

bules of 5-day-old neonates were stained with

PLZF (germ cells; brown) marker. DNA was

counterstained with hematoxylin (blue). Sper-

matogonia cell quantification per tubule. Error

bars represent ± SEM of at least 50 tubules. Sig-

nificance: t test, p < 0.0001.

(F) Representative pictures of 5-month-old

Pole4+/+ and Pole4�/� littermates illustrating

craniofacial abnormalities, belly white patches,

and kinks in the tail.

(G) Micro-CT scan of tail from Pole4+/+ and

Pole4�/� mice. Bar, 2.5 mm.

(H) Brain-weight analysis of Pole4+/+ and Pole4�/� mice. Error bars represent ± SEM of n = 34 Pole4+/+ and n = 41 Pole4�/�. Significance: t test, p < 0.0001.

(I) Rotarod experiment testing 3-month-old Pole4+/+ and Pole4�/� mice coordination. Note the decreased time spent on the rotating rod by Pole4�/� mice

compared to their WT littermates. Error bars represent ± SEM of n = 20 Pole4+/+ and n = 38 Pole4�/�. Significance: t test, p = 0.0002.

(J) Lymphoma-free survival of Pole4mice. Significance: Mantel-Cox test, p = 0.5. n = 36 Pole4+/+ and n = 36 Pole4�/�. Mice culled due to nonspecific phenotypes

(e.g., dermatitis, overgrown teeth, and fits) were excluded from this study.

(K) Frequency of Pole4mice with lymphomas in spleen, thymus, and mesenteric lymph nodes (MLNs). Significance: Fisher’s exact test, p = 0.86 for spleen, p =

0.0652 for thymus, and p = 0.0033 for MLNs.
suggestive of a notochord formation defect (Farkas and

Chapman, 2009).

Pole4�/� mice had reduced brain weight, albeit with a relative

normal ratio between whole body and brain size (Figure 1H;

Pole4+/+, 0.48 ± 0.056 g versus Pole4�/�, 0.35 ± 0.086 g). We

also investigated the unusual gait of these mice by monitoring

their ability to stay upright on a rotating rod. Pole4 mutant mice
fell around 3 s earlier from the rod than their WT littermates (Fig-

ure 1I), suggesting the Pole4 deficiency leads to loss of motor

function/coordination in mice. Importantly, the latter did not

worsen with age, suggesting that this ataxic phenotype is devel-

opmental in origin and not degenerative (Figure S1G). In line with

a developmental defect, cerebellum sectioning of 3-month-old

mutant mice showed a reduced cerebellum size and a severe
Molecular Cell 70, 707–721, May 17, 2018 709
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foliation defect. Whereas WT mice presented with 7–10 lobules,

only 3–6 lobules were detectable in the cerebellum of Pole4�/�

mice, suggesting that cerebellar development is impaired after

loss of POLE4 (Figure S1H). This is further supported by the

lengthening of the roof plate in embryos at 13.5 dpc, which

results in defective midline fusion (Figure S1I).

To determine the long-term effect of POLE4 loss in vivo, we

conducted an aging study on 36 WT and 36 Pole4�/� mice.

Pole4 deficiency did not lead to a reduction in lifespan (Figure 1J)

but did result in increased incidence of lymphomas in the thymus

(around 12% of Pole4-deficient mice compared to 4%WTmice)

and mesenteric lymph nodes (23.5% in Pole4�/� versus 7.7% in

WT; Figure 1K).

Loss of POLE4 Leads to Failed Lymphoid Progenitor
Maturation and p53 Activation
Analysis of hematological parameters showed that Pole4-defi-

cient mice exhibit leukopenia, with a 2.3-fold decrease in the

number of white blood cells, moderate anemia, and thrombocy-

tosis (Figure 2A). We subsequently discovered that leukopenia is

caused by a lymphopenia associated with an increase in the

proportion of granulocytes and monocytes (Figure 2B). To iden-

tify which subset of lymphocytes is affected, we performed flow

cytometry analysis of Pole4 mice splenocytes. As shown in Fig-

ure 2C, Pole4 mutant mice showed a 5-fold decrease of CD4+

and CD8+ T lymphocytes and a 20-fold increase in the number

of CD4 CD8 double-negative precursor cells, compared to WT

controls. As maturation of the T cell precursors occurs in the

thymus, we examined histological thymus sections from WT

and Pole4�/� mice (Figure S2A). We discovered that Pole4�/�

thymus are devoid of cortex and are composed of medulla

only structures, suggesting that T cell maturation is severely

compromised upon POLE4 loss (Figure S2A). Indeed, around

80% of Pole4-deficient mice have absent or a structurally disor-

ganized thymus (Figure 2D).

Pole4 mutant mice also presented with an 8-fold reduction in

the number of B cells, which tended to stay at an immature

IgD-negative stage (Figure 2E). Mutant mice have a smaller

spleen than WT animals and a smaller spleen weight compared
Figure 2. Loss of POLE4 Leads to Failed Lymphoid Progenitor Matura

(A) White blood cell (left), red blood cell (middle), and platelet (right) counts in Pole4

p < 0.0001 for white blood cells (WBCs) and red blood cells (RBCs), p < 0.05 for

(B) White blood cell distribution. Note the lower number of lymphocytes in Pole4

(C) Representative flow cytometry plots of Pole4+/+ and Pole4�/� mice spleen ga

CD8+ single-positive cells and an increase in CD4�CD8� double-negative populat

done in triplicates. CD5 was used as T cell marker

(D) Frequency of Pole4+/+ and Pole4�/� mice presenting abnormal thymus. Note

Significance: Fisher’s exact test, p = 0.026 for thymus absence, p < 0.0001 for t

(E) Representative flow cytometry plots of Pole4+/+ and Pole4�/� mice spleen gat

and an increase in IgD� population. At least 3 animals have been analyzed per c

(F) Top: representative picture of spleen from Pole4mice. Note the reduction in siz

presenting spleen with underdeveloped follicles. n = 36 Pole4+/+ and n = 36 Pole

(G) Left: representative flow cytometry plots of Pole4+/+ and Pole4�/� mice b

demonstrating an increase of HSCs in Pole4�/�mice. Right: Pole4+/+ andPole4�/�

and short-term HSCs and an increase of multipotent progenitors in Pole4�/� mice

done in triplicates.

(H) Western blot analysis of proliferation and apoptosis in Pole4+/+ and Pole4�

3 cleavage in Pole4�/� extracts. SMC1 was used as loading control.

(I) Immunohistochemistry quantification of gH2AX, cleaved caspase 3, and p53 i
to body weight (Figures 2F and S2B). Histological examination of

Pole4�/� spleens revealed that more than 30% of mutant mice

have spleens with inconspicuous and/or underdeveloped folli-

cles, suggestive of impaired B cell maturation. In addition,

mesenteric lymph nodes showed a disorganized structure with

underdeveloped follicles (Figure S2C).

As lymphoid organs are originally seeded by hematopoietic

stem cells (HSCs), we analyzed the HSC compartment in the

bone marrow of Pole4-deficient mice. Contrary to expectation,

loss of POLE4 led to a 3.5-fold increase in the number of HSCs

compared to WT littermates as seen by the increase in the num-

ber of LSK (Lin�Sca1+cKit+) cells in the bone marrow (Figure 2G,

left panel). Long-term (LT-HSC, CD34�Flt3�) and short-term

(ST-HSC, CD34+Flt3–) HSCs were reduced in mutant mice,

whereas the number of multipotent progenitors (MPPs, CD34+

Flt3+) was increased by around 2-fold (Figure 2G, right panel).

By performing cobblestone area forming assays to assess the

differentiation abilities of HSCs, we noticed that Pole4-deficient

HSCs retain the ability to differentiate properly to common

myeloid progenitors, notably into granulocytes and monocytes

progenitors (Figure S2D), which is in accordance with the in-

crease in the number of granulocytes and monocytes previously

observed (Figure 2B). These results suggest that Pole4-deficient

HSCs can differentiate into downstream progenitors, but long-

term HSCs may either fail to self-renew to maintain adequate

HSC numbers or die due to an increased apoptosis.

To distinguish between these possibilities, we assessed

the levels of apoptosis and DNA damage during embryogen-

esis, particularly in the liver, which is one of the main hematopoi-

etic organs during development. Pole4-deficient embryos

(13.5 dpc) presented elevated p53 expression levels and

increased cleaved caspase 3 (CC3) (Figure 2H). Immunohisto-

chemistry experiments on 13.5 dpc embryos showed that

apoptosis (p53 and CC3 staining) and DNA damage (as shown

by gH2AX staining) are increased in both forebrain and liver (Fig-

ures 2I and S2E) in the Pole4mutant, suggesting that HSCs likely

die as a consequence of p53 activation and apoptosis. These

data also suggest that the reduced growth and developmental

alterations (such as dwarf-like craniofacial abnormalities and
tion following p53 Activation
+/+ and Pole4�/�mice. n = 26 Pole4+/+ and n = 41 Pole4�/�. Significance: t test,
platelets.
�/� mice.

ted on T lymphocytes and demonstrating a significant reduction of CD4+ and

ion. At least three animals have been analyzed per condition, and analyseswere

the size of Pole4�/� thymus is greatly reduced compared to WT littermates.

hymus with medulla only. n = 36 Pole4+/+ and n = 36 Pole4�/�.
ed on B lymphocytes and demonstrating a significant reduction of CD19+ cells

ondition, and analyses were done in triplicates.

e following deletion of Pole4. Bottom: frequency of Pole4+/+ and Pole4�/�mice

4�/�. Significance: Fisher’s exact test, p = 0.001.

one marrow gated on Lin-Sca1+cKit+ hematopoietic stem cells (HSCs) and

mice bonemarrow gated on CD34 and Flt3 illustrating a decrease of long-term

. At least three animals have been analyzed per conditions, and analyses were

/� embryos at 13.5 dpc. Note the increased expression of p53 and caspase

n forebrain, and liver section of 13.5 dpc embryos. Significance: t test.
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Figure 3. Pole4–/– Mouse Cells Exhibit Polε

Complex Instability and Heightened Repli-

cation Stress

(A) Western blot analysis of replication proteins

from total, soluble, and chromatin fractions of

Pole4+/+ and Pole4�/� MEFs. Tubulin and histone

H3 were used as loading controls.

(B) Western blot analysis of replication proteins

from Pole4+/+ and Pole4�/� mice testis extracts.

Tubulin was used for normalization.

(C) Results of the iPOND-SILAC-MS experiment

reported as logarithmic fold change of heavy/light

ratio. Pold and Polεmajor subunits are indicated in

the plot as blue and red dots, respectively.

(D) Pole4+/+ and Pole4�/� cells were labeled with

EdU for 10 min and subjected or not to 30-min

chase in media containing thymidine before being

processed for iPOND. Captured proteins were

analyzed by SDS-PAGE and western blot using

the indicated antibodies.

(E) Analysis of fork symmetry in Pole4+/+ and

Pole4�/� MEFs reported as left/right moving fork

ratio. Data were obtained from three different

Pole4+/+ and Pole4�/� MEF clones; error bars ±

SEM are included. Scale bar, 5 mM.

(F) Bar graphs showing inter-origin distance dis-

tribution in Pole4+/+ and Pole4�/� cells. Data were

obtained from three different Pole4+/+ and

Pole4�/� MEF clones; error bars ± SEM are

included.

(G) Bar graphs showing replication fork speed

distribution in Pole4+/+ and Pole4�/� cells. A total

of �1,000 fiber tracts/condition were analyzed

from three different Pole4+/+ and Pole4�/� MEF

clones; error bars ± SEM are included.
skeletal abnormalities) observed in Pole4�/� embryos and mice

may be due to apoptosis-dependent elimination of cells during

early stages of embryonic development, similar to that previ-

ously described in ATR-Seckel mice (Murga et al., 2009).

DNA Polymerase ε Complex Destabilization Drives
Replication Stress inPole4–/–MouseEmbryo Fibroblasts
To investigate the impact of Pole4 deficiency at a cellular level,

we derived mouse embryonic fibroblasts (MEFs) from WT and

Pole4�/� embryos. Pole4-deficient MEFs exhibited reduced

proliferative potential when grown under a standard 3T3 protocol

and in low-oxygen (5%) conditions (Figure S3A). Furthermore,

EdU/DAPI (5-ethynyl-20-deoxyuridine/40,6-diamidino-2-phenyl-

indole) flow cytometry and immunofluorescence analyses

showed an increased proportion of Pole4�/� cells in the G2
712 Molecular Cell 70, 707–721, May 17, 2018
phase of the cell cycle as well as

increased levels of the replicative stress

markers 53BP1 and gH2AX (Figures

S3B–S3D). Polε has also been shown to

be involved in activation of the intra-S-

phase checkpoint in yeast (Lou et al.,

2008; Navas et al., 1995). However, we

failed to detect a defect in Chk1 or

H2AX phosphorylation after HU or

UV treatment in cells lacking POLE4
(Figure S3E), suggesting that the checkpoint response remains

intact.

To identify the possible source of replicative stress in Pole4�/�

cells, we first analyzed whole-cell extracts by immunoblotting for

the levels of Polε, Pold, Pola, and other components of the repli-

some (Figure 3A). In contrast to controls, the levels of the major

catalytic subunit of Polε, POLE1, were strongly decreased, cor-

responding to less than 5%–10%ofWT levels. We also noticed a

reduction, albeit to a lower level, of the second major subunit,

POLE2 (Figure 3A). This finding differentiates the mammalian

Polε complex from its yeast ancestor, in which the smallest sub-

units, Dpb3 and Dpb4, are dispensable for maintaining Pol2/

Dpb2 stability. This is also reminiscent of Pold3 deletion in

mice, which severely affects the stability of the whole Pold com-

plex, resulting in early embryonic lethality (Murga et al., 2016).



In whole-cell extracts, loss of POLE4 did not significantly

affect the levels of POLD1, POLD2, POLA1 (component of the

Pola complex), or other major components of the replication

machinery, such as GINS3, MCM2, and CDC45, which are

essential components of the processive CMG helicase (Fig-

ure 3A). In addition to this, transient knockdown of POLE4 in

humanHeLa cells was associatedwith loss of POLE3 expression

and vice versa, which suggests that POLE3 and POLE4 are

constitutive partners in mammalian cells and required for each

other’s stability (Figure S3F). Consistent with our cellular studies,

we also observed a strong reduction of both POLE1 and POLE2

protein levels in extracts from testis of Pole4�/�mice (Figure 3B);

this indicates that the Pole4 knockout is a Polε hypomorphic

mouse model, which may explain the subfertility observed in

Pole4�/� mice (Figure 1). Of note, while Pole4+/� cells showed

an �50% reduction of POLE4 protein compared to WT, levels

of POLE1 were not significantly changed, potentially explaining

themilder phenotype observed in Pole4 heterozygousmice, em-

bryos, and cells (Figures S3G–S3I).

To investigate the levels and stoichiometry of protein com-

plexes actively involved in DNA replication, we proceeded to

analyze the levels of replication factors on chromatin in WT

and Pole4-deficient MEFs (Figure 3A, chromatin panel). Consis-

tent with Polε complex hypomorphy, chromatin levels of POLE1

were severely decreased in the knockout cells; this was associ-

ated with a strong reduction in chromatin-bound POLE2

(compared to total extracts), which points to reduced levels of

the whole Polε complex on chromatin. Other replication factors,

such as PCNA and Pold subunits POLD1 and POLD2, as well as

CDC45 and GINS3, were largely unaffected in the knockout cells

(Figure 3A, chromatin panel).

To distinguish between chromatin-bound proteins and pro-

teins actively traveling with the replication fork, we employed

SILAC (stable isotope labeling with amino acids in cell culture)-

based proteomics coupled to iPOND (isolation of protein on

nascent DNA strands) to quantitatively analyze the composition

of replisomes from WT and Pole4�/� MEFs (Dungrawala et al.,

2015; Lopez-Contreras et al., 2013; Sirbu et al., 2011). To this

end, we EdU-pulse labeled WT and Pole4�/� cells, grown in

heavy and light media, respectively, and subjected them to

iPOND and mass spectrometry analysis (Figure S4A). Despite

the strong reduction in total and chromatin-bound levels of

Polε subunits, we did not detect a major imbalance of polymer-

ases at the replication fork, or the accumulation of other acces-

sory TLS polymerases (Figure 3C; data not shown). Similar

results were obtained from the reverse experiment in which

WT and Pole4�/� cells were grown in light and heavy media,

respectively (Figures S4B and S4C). Consistent with our

SILAC-based quantitative measurements, iPOND western blot

experiments showed no significant differences in POLE1 and

POLE2 protein levels at active replication forks between Pole4-

proficient and -deficient cells (Figure 3D). These data suggest

that, once replication forks are established in Pole4�/� cells, a

Polε complex composed of POLE1 and POLE2 remains stably

associated with the replisome and that a POLE1/2 subcomplex

is sufficient to initiate processive DNA replication.

A possible explanation for the reduced levels and altered

stoichiometry of chromatin-bound Polε complex in Pole4�/�
MEFs is that CDC45 and the GINS complex are recruited to

DNA replication origins, but a functional CMG is not efficiently

established, as recently showed by in vivo auxin-degron studies

in S. cerevisiae (Miyazawa-Onami et al., 2017). Consistent with

this hypothesis, Pole4�/� cells obtained from inbred C57BL/6

embryos showed significant reduction in the levels of PCNA

and POLD1 with minimally affected levels of CDC45 and GINS

proteins (Figure S4D). Furthermore, transient knockdown of

POLE1 in human HeLa cells did not affect chromatin levels of

CDC45 or GINS complex component GINS1 (Figure S4E). These

data suggest that Polε hypomorphy might impair formation and/

or activation of a stable CMG complex, resulting in reduced DNA

replication origin activation. Alternatively, reduced processivity,

as observed in the yeast Pol2-Dpb2 subcomplex, lacking

Dpb3 and Dpb4 (Aksenova et al., 2010), could be the primary

cause of replication stress and DNA damage accumulation

observed in Pole4-deficient cells.

To study replication fork activation and progression at a sin-

gle-molecule level, we incubated WT and Pole4�/� cells with

5-chloro-2’-deoxyuridine (CldU) and then 5-iodo-2’-deoxyuri-

dine (IdU) and monitored replication fork dynamics by fiber

stretching assays (Bellelli et al., 2014; Figures 3E–3G). This anal-

ysis revealed a significant increase in the frequency of asym-

metric forks in Pole4�/� cells when compared to WT controls

(Figure 3E). Fork stalling events in response to replication stress

are associated with dormant origin activation and a correspond-

ing reduction of both IOD (inter-origin distance) and fork speed in

mammalian cells, most likely due to compensation mechanisms

based on titration of replication factors and deoxyribonucleoside

triphosphate (dNTP) levels (for review, see Técher et al., 2017).

Fiber stretching analysis revealed a modest increase in both

IOD and fork speed distribution in Pole4�/� MEFs compared to

their WT counterparts (Figures 3F and 3G). The discrepancy be-

tween IOD, fork speed, and fork asymmetry observed in

Pole4�/� cells is reminiscent of that previously described in

mouse cells harboring a Chaos3 allele of Mcm4 (Shima et al.,

2007), which exhibits fork asymmetry in the absence of reduced

IOD due to extensive reduction of chromatin levels of MCM2–7

hexamers and reduced origin activation (Kawabata et al., 2011a).

In contrast toMcm4(Chaos3), Polε hypomorphy was not associ-

ated with reduced levels of chromatin-bound MCM2–7 (Fig-

ure 3A). Thus, we reasoned that Polε instability might lead to

reduced stable CMG formation/activation and, as a conse-

quence, to reduced or altered spatiotemporal activation of

DNA replication origins. Consistent with this notion, we detected

a significant reduction in the total number of initiation events in

Pole4�/� cells compared to WT (Figure S4F). Furthermore,

Pole4�/� MEFs generated from the more severely affected

C57BL/6 inbred background exhibited significantly higher repli-

cation fork extension rates when compared to their WT counter-

parts (Figure S4G). It was previously shown that IOD and fork

speed distributions vary significantly between different mouse

strains; for instance, MEFs from a C57BL/6 strain show reduced

origin activation and a compensatory higher fork speed

compared to cells fromoutbred genetic backgrounds (Kawabata

et al., 2011b). We speculate that this phenomenon might explain

the embryonic lethality of the Pole4 knockout allele in the inbred

C57BL/6 background (Figures 1 and S1). Collectively, these data
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Figure 4. Human POLE1 Patient Cells

Exhibit Polε Instability and Replication

Stress

(A) Western blot analysis of Polε subunits and re-

plisome components from total extracts of con-

trol- (CTR1 andCTR2) and patient-derived (P1 and

P2) cell lines. Tubulin was used for normalization.

(B) Western blot analysis of total, soluble, and

chromatin fractions from P2 mutant and CTR1

cells. Tubulin and histone H3were used as loading

controls.

(C) Analysis of fork symmetry in POLE1mutant (P1

and P2) and CTR1 cells reported as left/right

moving fork ratio. In the top panel, a scheme of the

labeling strategy is presented, together with

representative pictures of symmetric and asym-

metric DNA fibers from CTR1 and P2 cells,

respectively. Scale bar, 5 mM.

(D) Bar graphs showing replication fork speed

distribution in POLE1 mutant and control cells. A

total of �1,000 fiber tracts/condition were

analyzed from triplicate experiments; error bars ±

SEM are included.

(E) Bar graphs showing inter-origin distance dis-

tribution in POLE1 mutant and control cells. Data

plotted were obtained from triplicate experiments;

error bars ± SEM are included.

(F) Representative scheme of the nucleotide la-

beling strategy together with representative pic-

tures of the replication structures (ongoing forks

and initiation events) analyzed. Scale bar, 5 mM.

(G) Bar graph showing the percentage of initiation

events in POLE1 mutant and control cells. Data

were obtained from triplicate experiments (*p <

0.05; **p < 0.01); error bars ± SEM are included.
suggest that the POLE3-POLE4 subcomplex, while playing an

important role in maintaining Polε complex stability, is not

required for maximal replication rate extension in vivo. Further-

more, our data suggest that loss of POLE4 leads to reduced

and/or imbalanced origin firing potentially due to defective

CMG complex formation and/or activation.

Polε Complex Instability and Replication Stress in
POLE1 Patient-Derived Cells
A number of human Mendelian disorders are caused by muta-

tions in essential genes involved in distinct aspects of DNA repli-

cation (for review, see Jackson et al., 2014). Whole-genome

sequencing of two patients with microcephalic dwarfism, intra-

uterine growth retardation, immunodeficiency, and endocrine

insufficiencies identified compound heterozygous mutations in

POLE1 for the same intronic variant, c.168+32C > G, and a
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further mutation predicted to result in

loss of POLE1 functional transcripts

(C.L., J.E. Murray et al., unpublished

data; see clinical synopsis in STAR

Methods). Since intra-uterine growth

retardation and marked reduction in

postnatal size and lymphopenia are also

seen in the Pole4 mouse model (Figures

1 and 2), we hypothesized that this model
would help in understanding the human disease pathogenesis.

We therefore investigated whether POLE1 patient cells exhibit

the same molecular defects as those observed in Pole4�/�

mouse cells.

To analyze the impact of POLE1 mutations on Polε subunits

levels, DNA replication, and genome stability, primary dermal

fibroblast lines were obtained from the newly identified patients

(P1 and P2). Like Pole4�/� cells, POLE1 patient-derived cell lines

showed reduced proliferative potential in culture and displayed

elevated levels of DNA damage, as measured by 53BP1 and

gH2AX foci accumulation under non-challenging conditions (Fig-

ures S5A–S5C). Immunoblotting revealed that both P1 and P2

patient-derived cell lines showed a strong decrease in the levels

of POLE1, and a significant reduction in the levels of POLE2, but

not POLE3 and POLE4 (Figures 4A and 4B). Other replisome

components were unaffected in both cell lines either in total or
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Figure 5. Defective Origin Activation Leads to Chromosomal Instability in Pole4–/– and POLE1 Patient Cells

(A) Pole4�/� and Pole4+/+ cells were subjected to IR or HU (hydroxyurea) treatment, with the described doses, and cell viability was assessed after 5 days (ns, not

significant; *p < 0.05; **p < 0.01; ****p < 0.0001); error bars ± SD are included.

(legend continued on next page)
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in chromatin extracts. Notably, we observed a stronger reduc-

tion in POLE1 levels, compared to that previously reported in

POLE1 patient-derived lymphoblastoid cell lines (Pachlopnik

Schmid et al., 2012), which may explain the more severe growth

failure observed in P1 and P2 heights.

Analysis of replication fork parameters revealed that POLE1

patient cells showed a significant increase in asymmetric forks

(Figure 4C) and an accumulation of longer, newly incorporated

nucleotide tracts (Figure 4D). IOD distribution was also signifi-

cantly different between non-affected and affected patient cells,

with the latter presenting with significant increased IOD (Fig-

ure 4E). Consistent with this, the overall percentage of initiation

events was significantly reduced in the affected patient cells

(Figures 4F and 4G). These data reveal striking similarities be-

tween Pole4-deficient MEFs and human POLE1 mutant cells

and suggest a common pathogenic mechanism, potentially

involving impaired replication fork establishment.

Reduced Origin Activation Drives Chromosomal
Instability in Polε Hypomorphic Mouse and Human Cells
We hypothesized that if Polε hypomorphic mouse and human

patient cells are compromised for origin activation, they should

exhibit hydroxyurea (HU) and/or aphidicolin (Aph) sensitivity,

similar to Mcm4(Chaos3) mice and patients cells with an MCM4-

NT truncation (Gineau et al., 2012; Shima et al., 2007). Consistent

with this hypothesis,Pole4�/� cells andPOLE1 patient cells were

not sensitive to ionizing radiation (IR) but showed heightened

sensitivity to HU compared to their WT counterparts (Figures

5A and 5B).

Wereasoned thatPolεhypomorphiccellsmight showa reduced

ability to activate DNA replication origins in conditions of replica-

tionstress, suchasHUtreatment, andwouldnot exhibit significant

IOD reduction (Ge et al., 2007; Kubota et al., 2011). Indeed,

Pole4+/+ MEFs and human control cells showed a very low mean

IOD upon HU treatment, consistent with activation of dormant or-

igins. On the contrary, both Pole4�/� and POLE1 patient cells

showed higher IOD values when challenged with HU, which is

consistent with inefficient origin activation (Figures 5C–5E).

To analyze the consequences of reduced origin activation

upon replication stress, we exposed WT and Pole4�/� cells, as

well as control and patient cells, to low Aph doses for 24 hr

and analyzed chromosome spreads by Giemsa staining. As

shown in Figures 5F and 5G, under unchallenged conditions

we failed to detect signs of chromosomal instability in Pole4�/�

and POLE1 mutant cells. However, treatment with low Aph

dose resulted in a dramatic increase in the frequency of chromo-
(B) POLE1mutant (P1 and P2) and control (CTR1 and CTR2) cells were subjected

was assessed after 5 days (ns, not significant; **p < 0.01; ***p < 0.001); error bar

(C) Upper: representative scheme of the hydroxyurea treatment and CldU-IdU lab

inter-origin distances (IODs) from Pole4+/+ and Pole4�/� cells. Scale bar, 5 mM.

(D) Mean inter-origin distance values from HU-treated Pole4+/+ and Pole4�/� ME

(E) Mean inter-origin distance values from HU-treated CTR and POLE1 mutant c

(F) Representative chromosome spreads from Pole4+/+ or Pole4�/�MEFs treated

aberrations such as breaks or radials. Scale bar, 10 mM. Right: bar graph show

Pole4�/� MEFs treated or not with APH (**p < 0.01); error bars ± SD are included

(G) Representative chromosome spreads fromCTR orPOLE1mutant cells treated

aberrations such as breaks or radials. Scale bar, 10 mM. Right: bar graph showin

conditions (*p < 0.05; **p < 0.01); error bars ± SD are included.
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some breaks and rearrangements in Polε hypomorphic cells

(Figures 5F and 5G). Together, these data imply that inefficient

origin activation underlies the replication stress response and

DNA damage accumulation in Polε hypomorphic mouse and hu-

man patient cells.

p53Deficiency Rescues Embryonic Lethality and Drives
Tumorigenesis in Pole4–/– Mice
Since Pole4 null embryos and mice exhibit elevated levels of

apoptosis, we proceeded to test the impact of p53 loss on the

viability and phenotype of Pole4-deficient mice. Strikingly, loss

of one or both alleles of p53 was sufficient to rescue the embry-

onic lethality of Pole4 mutant mice in the inbred C57BL/6 back-

ground (Figure S6A). In contrast to Pole4�/� mice, which are

essentially embryonic lethal in this inbred background, double-

mutant mice were born at submendelian ratios (3.7% born

versus 6.25% expected), were devoid of gross abnormalities,

and displayed a similar size as WT littermate controls (Figures

6A and S6B). Furthermore, the loss of coordination, observed

in rotarod experiments, associated with Pole4 deficiency was

partially rescued by removing both p53 alleles, but not by a sin-

gle copy of p53 (Figure 6B). Loss of both p53 alleles also rescued

the absolute number and proportion of white blood cells (Fig-

ure 6C). Flow cytometry analysis revealed that the numbers of

T cells (CD4+ and CD8+) and B cells in the double mutants

were restored to levels comparable to Pole4+/+ p53�/�mice (Fig-

ures 6D and 6E). Together, these data establish that p53 loss

rescues most of the phenotypes that occur in Pole4-defi-

cient mice.

We showed in Figures 1 and S1 that Pole4 deficiency triggers

p53 activation during embryogenesis and is associatedwith lym-

phoma development. For this reason, we sought to examine the

functional interaction of Pole4 and p53 in lymphoma incidence.

To this end, we monitored cohorts of Pole4+/+ p53+/�, Pole4�/�

p53�/�, Pole4+/+ p53�/�, and Pole4�/� p53�/� mice for

�18 months and performed a Kaplan-Meier analysis to assess

lymphoma-free survival (Figure 6F). Strikingly, removal of a sin-

gle p53 allele in Pole4-deficient mice significantly reduced lym-

phoma-free survival from 480 days in Pole4+/+ p53+/� mice to

226 days in Pole4�/� p53+/� mice. Furthermore, �90% of

Pole4�/� p53+/� mice presented with lymphomas (Figure 6G),

suggesting that haploinsufficiency for p53 contributes to lym-

phomagenesis in the absence of POLE4. These data also sug-

gest that Pole4�/� mice are specifically prone to lymphoma

development since p53+/�mice more frequently develop epithe-

lial cancers (Jacks et al., 1994). Collectively, these data establish
to IR or HU (hydroxyurea) treatment, with the described doses, and cell viability

s ± SD are included.

eling scheme used for fiber stretching assay. Lower: representative images of

Fs (***p < 0.001).

ells.

or not with APH (0.3 mm for 24 hr). Yellow arrows indicate scored chromosomal

ing the main number of chromosomal abnormalities identified in Pole4+/+ or

.

or not with APH (0.3 mm for 24 hr). Yellow arrows indicate scored chromosomal

g the main number of chromosomal abnormalities identified in the described
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Figure 6. p53 Deficiency Rescues Embryonic Lethality and Drive Tumorigenesis in Pole4–/– Mice

(A) Representative picture of Pole4/p53 mice. Note the similar size between Pole4+/+ p53�/� and Pole4�/� p53�/� animals.

(B) Rotarod experiment testing Pole4+/+ and Pole4�/�mice coordination in a p53+/� or p53�/� background. Note the decreased time spent on the rotating rod by

Pole4�/�p53+/� mice compared to their control littermates. Error bars represent ± SEM of n = 27 Pole4+/+p53+/�, n = 18 Pole4�/�p53+/�, n = 6 Pole4+/+p53�/�,
n = 6Pole4�/�p53�/�. Significance: t test;Pole4+/+p53+/� versusPole4�/�p53+/�, p < 0.0001; Pole4�/�p53+/� versusPole4+/+p53�/�, p < 0.0001;Pole4�/�p53+/�

versus Pole4�/�p53�/�, p = 0.0046; Pole4+/+p53+/� versus Pole4�/�p53�/�, p = 0.0031; Pole4+/+p53+/� versus Pole4+/+p53+/�, p < 0.0001.

(C) Hematology analysis of Pole4/p53 mice. White blood cell count (left) and distribution (right). n = 24 Pole4+/+p53+/�, n = 21 Pole4�/�p53+/�, n = 8

Pole4+/+p53�/�, n = 11 Pole4�/�p53�/�. Significance: t test; Pole4+/+p53+/� and Pole4�/�p53�/� versus Pole4�/�p53+/�, p < 0.0001; Pole4+/+p53+/� versus

Pole4�/�p53�/�, p = 0.633 andPole4+/+p53+/� versusPole4�/�p53+/�, p = 0.4245. Note the normal distribution of myeloid population in double mutant compared

to Pole4�/�p53+/� animals.

(D) Representative flow cytometry plots of Pole4/p53 mice spleen gated on T lymphocytes and demonstrating a similar number CD4+ and CD8+ single-positive

cells and CD4�CD8� double-negative population. At least three animals have been analyzed per condition, and analyses were done in triplicates. CD5 was used

as T cell marker.

(legend continued on next page)
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that loss of p53 is able to rescue viability and growth of Pole4-

deficient mice but increase lymphomagenesis.

DISCUSSION

Polε is a fundamental component of the eukaryotic replisome

and mutations of its subunits lead to human genetic disease

and cancer (Campbell et al., 2017; Frugoni et al., 2016; Kandoth

et al., 2013; Pachlopnik Schmid et al., 2012; Yang et al., 2013).

Despite this, the lack of functional and genetic studies on Polε

in mammals has limited our understanding of its role in complex

organisms. Here, we present the first detailed genetic andmech-

anistic characterization of mammalian Polε using a mouse

knockout and human patient-derived cell lines, which has re-

vealed key roles for Polε during development and in human

pathology.

Analysis of embryonic fibroblasts and tissue extracts from

Pole4�/� mice revealed that POLE4 is required to maintain

the stability of the whole Polε complex. Together with the

finding that POLD3 is important for Pold complex stability,

our results suggest an important structural role for the acces-

sory subunits of replicative polymerases in mammals (Murga

et al., 2016). Despite the strong reduction in total protein levels

of Polε, biochemical and proteomic characterization of

Pole4�/� MEFs showed no significant change in the levels of

POLE1 and POLE2 at active replication forks. These data sug-

gest that a POLE1-POLE2 subcomplex is sufficient to initiate

and sustain DNA replication in mammalian cells. At the molec-

ular level, Pole4�/� MEFs exhibit increased fork rates and larger

inter-origin distances associated with accumulation of fork

stalling events. This phenotype can be explained by an overall

reduction in DNA replication origin activation and excludes

defective fork elongation as the initial trigger of replication

stress. This also implies that the POLE3–4 subcomplex is

dispensable for maintaining normal fork rates in mammalian

cells, at least under unchallenged conditions, which differs

from what has been observed in S. cerevisiae both in vivo

and in vitro (Aksenova et al., 2010). We note that a similar

phenotype has been described in MEFs derived from

Mcm4(Chaos3) mice (Kawabata et al., 2011a; Shima et al.,

2007). While levels of chromatin-bound MCMs are unaffected

in our model, Pole4�/� MEFs showed a similar inability to acti-

vate replication origins under conditions of replication stress

and a striking sensitivity to replication inhibitors, such as Aph,

which results in significant chromosomal instability. We specu-

late that, in Pole4-deficient cells, the levels of Polε are sufficient

to sustain normal DNA replication in most tissues and cellular

compartments, while the particular dynamics of embryonic

replicative cycles and lymphocytes precursor proliferation

might affect genome replication and its stability.
(E) Representative flow cytometry plots of Pole4/p53 mice spleen gated on B lym

three animals have been analyzed per condition, and analyses were done in tripl

(F) Lymphoma-free survival of Pole4/p53 mice. n = 16 Pole4+/+p53+/�, n = 16 P

Mantel-Cox test; Pole4+/+p53+/�versus Pole4�/�p53+/�, p < 0.0001; Pole4+/+p53�

p = 0.0746. Mice culled due to nonspecific phenotypes (e.g., dermatitis, overgro

(G) Lymphoma frequency of Pole4/p53 mice. Significance: Fisher’s exact test

Pole4�/�p53�/�, p = 0.1261.
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Human cell lines derived from patients harboring destabilizing

POLE1 mutations showed similar replication profiles, defective

origin activation, and severe sensitivity to replication inhibitors

to that observed in Pole4-deficient MEFs. Similar cellular pheno-

types have also been described in cell lines derived from patients

affected by mutations of GINS1 and an MCM4-NT truncation

(Cottineau et al., 2017; Gineau et al., 2012). We speculate that

all these conditions share a common defect in origin activation

at the crossroad of CMG helicase formation and/or activation.

In our Polε hypomorphic cells, we detected an altered stoichiom-

etry in the chromatin-bound levels of Polε and CMG compo-

nents, such as GINS subunits and CDC45. This was particularly

evident in the C57BL/6 inbred background, which showed

greatly reduced levels of PCNA and Pold subunits on chromatin

fraction (suggesting reduced active forks) despite minimal

changes in CDC45 and GINS subunits. While CDC45 has been

documented to bind to MCMs very early during S-phase and

independently from the GINS complex, in vitro and in vivo data

in S. cerevisiae have shown that Polε is required for stable

CMG formation (Handa et al., 2012; Muramatsu et al., 2010;

Sengupta et al., 2013; Yeeles et al., 2015). Here, we establish

that chromatin binding of GINS components might not be

compromised by reduced Polε levels as recently reported by

Miyazawa-Onami et al. using a Pol2 degron strategy (Miya-

zawa-Onami et al., 2017). While we cannot exclude the possibil-

ity of defective stable CMG formation, our data show that Polε is

required for initiation of DNA replication in mammalian cells. A

role for the budding yeast Polε complex in epigenetic inheritance

at the replication fork has been suggested by telomeric silencing

defects (Iida and Araki, 2004). Recently, the Dpb3-Dpb4 sub-

complex has been directly linked to this phenomenon (He

et al., 2017). Future studies will be needed to address a possible

role for human Polε and its smallest subunits in histones recy-

cling and/or deposition at the replication fork.

At the organismal level, Pole4-deficient mice suffer from intra-

and extra-uterine growth retardation, severe developmental ab-

normalities, lymphopenia, and lymphomagenesis. The growth-

retardation phenotype, craniofacial and skeletal abnormalities,

and reduction in T and B cell levels closely parallel the clinical

phenotypes associated with reported mutations of POLE1 and

POLE2 in humans, despite the obvious anatomical differences

between mice and humans (Frugoni et al., 2016; Pachlopnik

Schmid et al., 2012; Thiffault et al., 2015). Similar anomalies

with selective immunodeficiencies and growth restriction have

also been described in patients with hypomorphic mutations in

GINS1 and a N-terminal truncation of MCM4 (not affecting

MCM2–7 chromatin levels), which suggests a common pathoge-

netic mechanism affecting initiation of DNA replication (Cotti-

neau et al., 2017; Gineau et al., 2012; Hughes et al., 2012).

Notably, the phenotype for this group of genes appears distinct
phocytes and demonstrating a similar number CD19+ and IgD� cells. At least

icates.

ole4�/�p53+/�, n = 13 Pole4+/+p53�/�, n = 11 Pole4�/�p53�/�. Significance:
/� versus Pole4�/�p53�/�, p = 0.3066; Pole4�/�p53+/� versus Pole4�/�p53�/�,
wn teeth, and fits) were excluded from this study.

; Pole4+/+p53+/� versus Pole4�/�p53+/�, p = 0.0051; Pole4+/+p53�/� versus



from Meier-Gorlin syndrome (a form of microcephalic dwarfism

with microtia and patella hypoplasia/aplasia), which is caused

by mutations in genes encoding the pre-replication (PRE-RC)

components ORC1,4,6, Cdc6, and Cdt1; Geminin, and the

pre-initiation complex (PRE-IC) component CDC45 (Bicknell

et al., 2011a; Bicknell et al., 2011b; Fenwick et al., 2016; Guern-

sey et al., 2011).

Our analysis of Pole4-deficient mice suggests that B and T cell

development is affected at its initial step, such as the double-

negative stage of T cell maturation. Double-negative T cells orig-

inate from common precursors migrating from the bone marrow.

While having lost self-renewing abilities, double-negative cells

undergo a significant proliferative burst in the thymus environ-

ment before undergoing successive commitment toward CD4

or CD8 expression (Koch and Radtke, 2011). We suspect that

this stage is particularly vulnerable to replication stress due to

inefficient origin activation. Consistent with this, previous

POLE1 patients did not show alteration of T cell receptor (TCR)

repertoire or immunoglobulin distribution, while switched B cells

and memory B cells were equally affected in their total levels,

which exclude immunoglobulin G (IgG) and TCR rearrangement

defects (Pachlopnik Schmid et al., 2012).

Most of the developmental phenotypes observed in embryos

and adult Pole4�/�mice likely reflect the consequence of activa-

tion of a p53-dependent apoptotic cascade (Figures 1, 2, and 6).

Indeed, genetic ablation of p53 in Pole4�/� animals is sufficient

to rescue the plethora of developmental and immunological de-

fects observed in these mice. These data suggest that embry-

onic replicative stress is the major driver of the phenotypes

described in Pole4�/� adult mice and, most likely, in humans

suffering hypomorphic mutations of Polε and/or CMG compo-

nents. Consistent with the important tumor suppressor function

of p53, rescue of T and B cell maturation was associated with an

increased susceptibility to lymphoma development as observed

in Pole4�/� p53+/� mice.

In conclusion, our analysis of Polε hypomorphy provides amo-

lecular understanding for a new group of genetic conditions at

the crossroad of CMG helicase activation. We also provide

evidence for an essential role for controlled CMG helicase and

origin activation in embryonic development, genome stability,

and tumor suppression.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat Anti-Rat IgG (H+L) Antibody, Alexa Fluor594

Conjugated

Thermo Fisher Cat#A-11007; RRID: AB_141374

Rabbit anti-mouse FITC-conjugated DAKO Cat#F0313

Mouse Monoclonal anti-PCNA Santa Cruz Biotechnology Cat# sc-56; RRID: AB_628110

Mouse Monoclonal anti-Tubulin Sigma-Aldrich Cat#T6074; RRID: AB_477582

Peroxidase-conjugated Goat anti-Mouse IgG (H+L) Thermo Fisher Scientific Cat#G-21040; RRID: AB_2536527

Peroxidase-conjugated Goat anti-Rabbit IgG (H+L) Thermo Fisher Scientific Cat#G-21234; RRID: AB_2536530

Peroxidase-conjugated Goat anti-Rat IgG (H+L) N/A N/A

Rabbit Anti-Mouse IgG (H+L) Antibody, Alexa Fluor488

Conjugated

Thermo Fisher Cat#A-11059; RRID: AB_142495

Goat Anti-Rabbit IgG (H+L) Antibody, Alexa Fluor488

Conjugated

Thermo Fisher Cat#A-11034; RRID: AB_2576217

Rabbit polyclonal anti-53BP1 Novus Biologicals Cat#NB100-304; RRID: AB_10003037

Rat monoclonal anti-Mouse CD5-BV421 clone 53-7.3 BD Biosciences Cat#562739

Rat monoclonal anti-Mouse CD4-FITC clone GK1.5 BD Biosciences Cat#557307; RRID: AB_396633

Rat monoclonal anti-Mouse CD8-PE-CF594 clone

53-6.7

BD Biosciences Cat#562283; RRID: AB_11152075

Rat monoclonal anti-Mouse CD19-FITC clone 6D5 Biolegend Cat#115506; RRID: AB_313641

Rat monoclonal anti-Mouse IgD-APC clone 11-26c.2a BD Biosciences Cat#560868; RRID: AB_10612002

Rat monoclonal anti-Mouse MHCII-APC-Cy7 clone

M5/114.15.2

Biolegend Cat#107628; RRID: AB_2069377

Rat monoclonal anti-Mouse CD135-BV421

clone A2F10

Biolegend Cat#135313; RRID: AB_2562338

Armenian Hamster anti-Mouse CD48-BV711 clone

HM48-1

Biolegend Cat#103439; RRID: AB_2650824

Rat monoclonal anti-Mouse CD150-BV605 clone

TC15-12F12.2

Biolegend Cat#115927; RRID: AB_11204248

Mouse Monoclonal anti-PLZF Santa Cruz Biotechnology Cat# sc-28319; RRID: AB_2218941

Rabbit monoclonal anti-Cleaved Caspase3 Cell Signaling technology Cat#9664; RRID: AB_2070042

Mouse monoclonal gH2AX clone JBW301 Millipore Cat#05-63; RRID: AB_309864

Biotinylated Goat Anti-Rabbit IgG Antibody Vector Laboratories Cat#BA-1000; RRID: AB_2313606

Biotinylated Horse Anti-Mouse IgG Antibody,

rat adsorbed

Vector Laboratories Cat#BA-2001; RRID: AB_2336180

Rabbit polyclonal anti-p53 Vector Laboratories Cat#VP-P956; RRID: AB_2335917

Rabbit polyclonal anti-phospho-Histone H3 (Ser10) Cell Signaling technology Cat#9701; RRID: AB_331535

Mouse monoclonal anti-p53 (1C12) Cell Signaling technology Cat#2524; RRID: AB_331743

Mouse monoclonal anti-Histone H3 Abcam Cat#ab10799; RRID: AB_470239

Rabbit polyclonal anti-SMC1 Abcam Cat#ab21583; RRID: AB_2192477

Rat monoclonal anti-BrdU AbD Serotec Cat#OBT0030; RRID: AB_609568

Mouse monoclonal anti-BrdU Becton Dickinson Cat#347580; RRID: AB_400326

Rabbit polyclonal anti-POLE4 This study N/A

Mouse Monoclonal Anti-POLE2 Abcam Cat#ab57298; RRID: AB_2166739

Rabbit polyclonal Anti POLE3 Bethyl Cat#A301-245A; RRID: AB_890598

Rabbit polyclonal Anti POLE Genetex Cat#GTX132100

Rat monoclonal anti GINS1 Fitzgerald Cat#10R-1766; RRID: AB_10809593

Rabbit polyclonal anti-POLD1 Bethyl Cat#A304-007A; RRID: AB_2620355

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Rabbit polyclonal anti-POLD2 Abcam Cat#ab38338; RRID: AB_2252592

Rabbit polyclonal anti-POLA1 Abcam Cat#ab31777; RRID: AB_731976

Mouse monoclonal anti-MCM2 BD Biosciences Cat#610701; RRID: AB_398024

Rabbit polyclonal anti-CDC45 Santa Cruz Biotechnology Cat#sc-20685; RRID: AB_2078507

Rabbit polyclonal anti-GINS3 ProteinTech Cat#15651-1-AP; RRID: AB_2247477

Rabbit monoclonal anti-pChk1 S345 Cell Signaling technology Cat# 2348; RRID: AB_331212

Chemicals, Peptides, and Recombinant Proteins

CldU Sigma-Aldrich Cat#C6891

EDTA-free Complete protease inhibitor cocktail Roche Cat#COEDTAF-RO

IdU Sigma-Aldrich Cat#I7125

EdU Thermo Fisher Scientific Cat#A10044

Biotin-Azide Thermo Fisher Scientific Cat#B10184

Low melting agarose Sigma-Aldrich Cat#A9414

PhosSTOP phosphatase inhibitor cocktail Roche Cat#PHOSS-RO

Trustain FcX Biolegend Cat#101319

Zombie Yellow dye Biolegend Cat#423104

Methocult StemCell Technologies Cat#M3434

Alizarin Red S Sigma-Aldrich Cat#A5533

Alcian Blue Sigma-Aldrich Cat#A5268

3,30-diaminobenzidine (DAB) substrate Vector Laboratories Cat#SK-4100

Streptavidin Sepharose high performance GE Healthcare Cat#17-5113-01

CuSO4 SIGMA Cat#PHR1477

Ribonuclease A SIGMA Cat# R5125

Sodium L-Ascorbate SIGMA Cat#A7631

BrdU SIGMA Cat#B5002

Propidium Iodide SIGMA Cat# P4170

Benzonase Novagen Cat#71206-3

GIEMSA stain SIGMA Cat#48900

DAPI SIGMA Cat#10236276001

Hydroxyurea SIGMA Cat#H8627

Thymidine SIGMA Cat#T9250

Critical Commercial Assays

FiberPrep (DNA Extraction Kit) Genomic Vision Cat#EXTR-001

Lipofectamine RNAiMAX Thermo Fisher Cat#13778150

QIAprep Spin Miniprep Kit QIAGEN Cat#27106

RNeasy Mini Kit QIAGEN Cat#74106

Mouse Hematopoietic Stem and Progenitor Cell

Isolation Kit

BD Biosciences Cat#560492

ProLong Gold antifade with DAPI Thermo Fisher Cat#P36931

Click-iT EdU Alexa Fluor 488 Flow Cytometry Assay Kit Thermo Fisher Cat#C10425

Experimental Models: Mouse Strains

Pole4tm1(KOMP)Vlcg This study N/A

Trp53tm1Brd Donehower et al., 1992 N/A

Experimental Models: Cell Lines

Mouse Embryonic Fibroblasts Pole4�/� This study N/A

Mouse Embryonic Fibroblasts Pole4�/�p53�/�,
Pole4+/+p53�/�

This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CTR1 and CTR2 (control unaffected patients) This study and C.L., J.E.

Murray et al., unpublished data

N/A

P1 and P2 (POLE1 mutant cells) This study and C.L., J.E.

Murray et al., unpublished data

N/A

Oligonucleotides

ON-TARGETplus Non-targeting Control Pool Dharmacon Cat#D-001810-10

ON-TARGETplus POLE siRNA Dharmacon Cat#L-020132-00

ON-TARGETplus POLE2 siRNA Dharmacon Cat#L-018612-02

ON-TARGETplus POLE3 siRNA Dharmacon Cat#L-008460-01

ON-TARGETplus POLE4 siRNA Dharmacon Cat#L-009850-02

Software and Algorithms

Adobe Photoshop CC Adobe https://www.adobe.com/es/products/

photoshop.html

Cell Profiler Cell Profiler http://cellprofiler.org/

ImageJ NIH https://imagej.nih.gov/ij/

Volocity 6.3 PerkinElmer http://cellularimaging.perkinelmer.com/

downloads/detail.php?id=14

GraphPad Prism 7 GraphPad https://www.graphpad.com/

FlowJo TreeStar https://www.flowjo.com/solutions/flowjo/

downloads
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to and will be fulfilled by the Lead Contact, Simon Boulton (simon.

boulton@crick.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse strains
Mice deficient for POLE4 were generated using an VGB6 ES cell line Pole4tm1(KOMP)Vlcg available from KOMP repository (University of

California, Davis) in which a deletion cassette containing a b-Galactosidase and a neomycin resistance was inserted in exon 1. This

ES line is heterozygous for the Pole4tm1(KOMP)Vlcg insertion and therefore contains a WT allele of POLE4, which is sufficient to provide

normal function of Polε based on our analysis in hetMEF lines. The precise localization of the genetrap vector has been determined by

sequencing using primer 50-AAACCGCACTTCCAATTCTG-30. Pole4tm1(KOMP)Vlcg ES cells were injected into C57BL/6Jax host

blastocysts and implanted into pseudopregnant females. Chimeric mice were obtained and bred to C57BL/6Jax mice. The resulting

heterozygous (Pole4+/�) mice were bred to obtain homozygous Pole4�/�. Genotyping of the offspring was confirmed bywestern-blot

using a homemade antibody and PCR using the following primers (P4-common, 50-GAGAGGCGTGGTCTCTACCC-30; P4-WT,

50-CACCAAGGCCTTTACTCTCG-30; P4-mut 50-ATCTCTCCTCTGCAGGACCA-30). Homozygous Pole4�/� mice were also bred

into an oubred background 129X1/SvJ;129S1/Sv; FVB/N. Trp53tm1Brd were obtained from Allan Bradley (Donehower et al., 1992).

Homozygous Pole4�/� mice were bred to Trp53�/� to obtain double heterozygous mice that were mated together to produce

MEFs and double homozygous mice.

Cell lines
Sources of cell lines used in the study are listed in the reagent and resource table. Primary Pole4+/+, Pole4�/�, Pole4+/+ p53+/+and

Pole4+/+ p53�/� mouse embryonic fibroblasts were cultured at 37�C/ 5% CO2/ 5% O2 in Dulbecco’s modified Eagle’s medium

(DMEM) (Invitrogen) supplemented with 15% fetal bovine serum (FBS; Sigma) and 1% penicillin-streptomycin (Invitrogen). The

sex of the cells was not determined for this study. Human HeLa cells were cultured in DMEM 10% FBS (SIGMA) at 37�C/
5% CO2, while human dermal fibroblasts from controls (CTR1 and CTR2) and POLE1 mutant patients (P1 and P2) were grown in

AmnioMAX C-100 Complete Medium (Thermo Fisher Scientific) at 37�C/ 5% CO2/ 5% O2.

Clinical Synopsis of POLE1 patients
Mutations in POLE1were identified in Patient 1 and 2 by whole genome sequencing of cases with microcephalic dwarfism. A further

6 patients have since been identified from the same patient cohort. All had intrauterine growth retardation (IUGR), and severe
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reduction in post-natal stature. Immunodeficiency, adrenal failure, and male genital hypoplasia were present in some, but not all

cases. Themolecular genetic identification of POLE1mutations and the detailed clinical phenotype of all 8 cases will be documented

in a separate manuscript (C.L., J.E. Murray et al., unpublished data).

Patient 1, was noted to have intrauterine growth retardation at 18/40 gestation on routine ultrasonography, and at birth

weighed 926 g (born at 31 weeks gestation). At age 18; height 109.9cm, �9.6 standard deviations (s.d.) below the mean, head

circumference �5.1sd. He has low-set posteriorly rotated ears, a small chin, and long thin nose with short neck. He has had CMV

pneumonitis, and an EBV-driven hemophagocytic lymphohistiocytosis that resulted in bone marrow transplant. CD4 lymphopenia

and hypogammaglobinemia were evident prior to transplantation. He has also had endocrinological complications with primary ad-

renal failure, hypopituitarism, and insulin resistance. He had also a younger sister who died of HSV infection.

Patient 2 was born at termwith a birth weight of 2.5kg. At age 7, height was 93.8cm,�5.4sd; head circumference�2.7sd. He has a

similar facial appearance to P1, with small low-set ears, micrognathia, and down-slopping palpebral fissures. No increased suscep-

tibility to infections or immunodeficiency has been reported to date, although he has suffered from recurent otitis media associated

with conductive hearing loss. He has recently acquired hearing aids. He also has primary adrenal failure (glucocorticoid deficiency),

an accessory central tooth (extracted), a history of severe infantile eczema, cryptorchidism and hypospadias, and severe feeding

difficulties due to oral aversion alongside a moderate learning disability. He also has documented osteopenia.

Molecular Genetics of POLE1 patients

Patient 1 is compound heterozygous for the truncating mutation, c.2010dupC, p.Phe672Valfster11, and the intronic variant,

c.1686+32C > G.

Patient 2 is compound heterozygous for the same intronic variant, c.168+32C > G in conjunction with an essential splice site mu-

tation, c.62+1G > A.

RT-PCR analysis of patient RNA and in vitro mini-gene splicing studies have established that the +32 intronic variant significantly

impairs splicing of intron 15, resulting in retention of 47bp intronic sequence, that results in a frameshift consequently predicted to

result in nonsense-mediated decay (manuscript in preparation, CL, JM, APJ). Molecular genetic findings predict substantial reduc-

tion of POLE1 protein levels and impaired Pol-epsilon function in both patients.

Footnote: Sequence variants annotated on the basis of reference sequence NM_006231.3/NP_006222.2

METHOD DETAILS

Mice breeding and experiments
At least 3 breedings were continuously mated to establish Mendelian ratios and fertility.

For longevity studies, mice were allowed to age and observed for development of disease. The endpoint of the study was set at

21 months but if they appeared unhealthy or got palpable tumors beforehand, animals were sacrificed. They were then subjected to

full necropsy.

For blood sampling, micewere placed in a heating chamber for 10minutes. Then, tail prick was performed and bloodwas collected

into EDTA coated end-to-end capillaries (Sarstedt, 19.447) and transferred to EDTA coated microvettes (Sarstedt, 20.1278). 10ml of

blood (duplicates) was used to perform a full blood differential on the VetABC+ blood analyzer (Horiba).

All animal experimentations were undertaken in compliance with UK Home Office legislation under the Animals (Scientific Proced-

ures) Act 1986.

Histology, immunohistochemistry
For histology and post-mortem tissues, samples were fixed in 10%Neutral buffered formalin (NBF), paraffin embedded, sectioned at

4mm and stained with hematoxylin and eosin.

For immunohistochemistry, samples were prepared using standard methods. In brief, tissue sections were processed for staining

by microwaving in 0.01M citrate buffer, pH 6. After incubation with primary antibodies (PLZF, Santa Cruz sc28319; p53, Vector

VP-P596; Cleaved Caspase3, Cell Signaling 9664; gH2AX, Millipore 05-636;), samples were incubated with biotinylated secondary

antibody (Vector) followed by incubation with Avidin Biotin Complex (Vector, Biotinylated Goat anti-rabbit IgG BA-1000; Biotinylated

Horse anti-Mouse (Rat adsorbed) BA-2001); slides were developed in 3,30-diaminobenzidine (DAB) substrate (Vector, SK-4100) and

counterstained in hematoxylin. Embryos section images were acquired at 40X using a Aperio AT2 scanner (Leica). Stainings were

quantified using Cell Profiler software. Testis and lymphomas section images were acquired at 20X using an Axio Scan.Z1 (Zeiss)

and stainings were quantified using ImageJ software on serial sections and tubules with similar diameter.

Alcian blue/Alizarin red staining
Embryos were stained following a modified version of the protocol published by Rigueur and Lyons, 2014. Briefly, embryos were

collected at 15.5dpc and extraembryonic membranes were removed. Then embryos were fixed overnight in 70% ethanol at room

temperature and incubated in 95% ethanol for 1 h. Ethanol was replaced by acetone to remove excess of fat and let overnight at

room temperature. Embryos were then stained with 0.03% Alcian Blue (Sigma, A5268) for 24h and then de-stained in 70%

ethanol overnight. They were cleared in 1% KOH for 3h and then counterstained in 0.05% Alizarin Red S (Sigma, A5533) for 4h

at room temperature. Embryos were cleared in 1% KOH overnight and then transferred to 100% glycerol for long-term storage.
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Pictures were taken on a white background using a Stemi SV6 stereomicroscope (Zeiss) and bone were measured using ImageJ

software.

MicroCT scan
Mice were anaesthetized with 2.5% isofluorane and microCT images were taken using a SkyScan 1176 microCT scanner (Bruker

Micro CT, Kontich, Belgium). Anaesthesia wasmaintainedwith 2% isoflurane during the scan. X-ray projection imageswere acquired

using a source voltage of 50kV and a source current of 500mA and a 0.5mm aluminum filter over a 180� trajectory with a rotation step

size of 0.7�. Other imaging parameters were: pixel size = 36.04mm, frame averaging = 2, exposure time = 60ms. Scan time was 3min

35sec per sub scan. Each lower body scan consists of 6 sub scans. Reconstruction was performed using NRecon software (version

1.6.8) Reconstruction parameters: smoothing set to 4, ring artifact correction set to 4 and beam hardening correction set to 35%.

A variable post alignment compensation and dynamic range of 0.001973-0.092057 of the X-ray attenuation coefficient were applied.

Rotarod experiments
Animals in home cage were placed in testing room for at least 1hr before testing to minimize effects of stress on behavior during

testing. Animals from the same cage were placed in separated lane of the apparatus (AccuRotor 4-Channel RotaRod) and trained

to walk on a 5rpm rotating rod for 60 s (3 trials separated by 10 min intervals). Then animals were placed on the rod again and the

apparatus was set to accelerate from 4 to 40rpm in 300 s. Procedure was repeated 3 times separated by at least 10 min intervals.

Any animals that completed a full passive rotation around the rod were trialed a fourth time. The latency to fall was recorded and

plotted on graphs. Young animals were tested at 3-4 months old and aged animals around 12months old. Body weight was checked

to ensure that it won’t affect their gait.

Cobblestone area forming cell assay (CFAC)
2x105 bone marrow cells were plated (in triplicates) for colony-forming assay using MethoCult (StemCell Technologies, M3434)

following the manufacturer’s instructions. Cells were incubated at 37�C with 5% CO2 and 20% O2 for 12 days, before colonies

were identified and counted manually as CFU (Colony Forming Unit) -G (Granulocytes), -M (Macrophages), -GM (Granulocyte,

Macrophage), GEMM (Granulocyte, Erythroid, Macrophage, Megakaryocyte), BFU-E (Burst Forming Unit– Erythroid).

Immunophenotyping
Lymphocyte populations were analyzed by flow cytometry in single cell suspensions from spleen. Briefly, spleens were mashed up

through 70mm cell strainer with the end of a syringe plunger and cells were resuspended as single cells in RPMI + 2%FBS. Non-spe-

cific antibody binding was blocked by using an anti-mouse CD16/32 antibody (Biolegend, Trustain FcX, 101319). Then cells were

stained using the following combination for T lymphocyte analysis (CD5-BV421 (BD, 562739), CD4-FITC (BD, 557307), CD8-

PE-CF594 (BD, 562283) and for B lymphocyte analysis (CD5-BV421 (BD, 562739), CD19-BV510 (BD, 562956), IgD-APC (BD,

560868), MHCII-APC-Cy7 (Biolegend, 107628)). Viability was determined by staining the cells with Zombie Yellow dye (Biolegend,

423104).

Hematopoietic stem cells (HSCs) were analyzed from bone marrow samples. Femur and tibia were crushed in RPMI + 2% FBS in a

mortar and passed through cell strainers to achieve single cells suspension. Then cells were stained using the BD Mouse Hemato-

poietic Stem and Progenitor Cell Isolation Kit (BD, 560492) following the manufacturer’s procedure. Briefly, non-specific antibody

binding was blocked by using an anti-mouse CD16/32 antibody (BD, clone 2.4G2). then the cells were stained with Lin-APC

(CD3, clone 145-2C11; CD45R (B220), clone RA3-6B2; Ly6C and Ly6G (Gr1), clone RB6-8C5; CD11b (Mac1) clone M1/70; TER-

119, clone TER-119), Sca-1 PE-Cy7 (Clone D7), c-Kit-PE (Clone 2B8), CD34-FITC (Clone RAM34), CD135-BV421 (Flt3, Biolegend,

clone A2F10, 135313), CD48-BV711 (Biolegend, clone HM48-1, 103439), CD150-BV605 (Biolegend, clone TC15-12F12.2, 115927).

Cells viability was determined by staining with Zombie Yellow dye (Biolegend, 423104).

Data were collected on an LSRFortessa flow cytometer (Becton Dickinson) and were analyzed with FlowJo software (TreeStar).

Western blot analysis of embryos, mouse tissues and cells
Embryos were snap frozen at�80deg and resuspended in benzonase buffer (50mMTris-HCl pH7.5, 50mMNaCl, 2mMMgCl2, 0.5%

NP-40, 50U/ml benzonase, 1x protease inhibitor, 1x phosphatase inhibitor) and incubated at 4�C for 30 min. NaCl was added to the

sample at a final concentration of 150mM. After 30min incubation, cell lysates were clarified by centrifugation.

Mice tissues were snap-frozen in liquid nitrogen and subsequently lysed in RIPA buffer (150 mM NaCl, 100 mM Tri pH 7.5, 1%

NP-40, 0.1%SDS, 0.5% sodium deoxycolate) containing protease and phosphatase inhibitors (ROCHE) using the precellys 24 tissue

disruptor (Berlin technologies).

Cultured cells from Pole4+/+ and Pole4�/� embryos (MEFs) or control and POLE1 mutant patients were lysed in RIPA containing

protease and phosphatase inhibitors (ROCHE). Lysates were clarified by centrifugation (12.300 rpm 30 min at 4�C) and protein

concentration was estimated by BRADFORD assay (BIORAD). Equal amounts of proteins were loaded on NuPAGE 4%–12%

Bis-Tris gels and transferred onto nitrocellulose membrane. Membranes were blocked in 5% milk in PBST (PBS-Tween 0.1%)

and incubated with primary antibodies and HRP-conjugated secondary antibodies.
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Mouse Embryonic Fibroblasts (MEFs) isolation and culture
Pole4+/� mice in mixed or C57BL/6 background were mated. Pregnant females at 13.5 days gestation were subjected to euthanasia

under anesthesia, followed by uterine dissection to isolate individual embryos. Each embryo waswashed in PBS followed by removal

of head (used for embryo genotyping) and internal organs (heart and liver). The embryo bodywasmincedwith sterile razor blades and

incubated in trypsin at 37�C for 20 min, followed by gentle pipetting of the trypsin digest. Cell suspension was pelleted, resuspended

and plated in 10 cm dishes (now considered passage 0) in DMEM (Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

15% FBS (SIGMA) and 50mg/ml penicillin-streptomycin, 2mM L-glutamine. Once subconfluent, a standard 3T3 protocol was fol-

lowed: every 3 days cells were trypsinized, counted using cellometer Auto 2000 (Nexcelom Bioscience) to determine the number

of Population doublings (PD) and then replated at a fixed density (8x105 cells per 100-mm dish) The accumulation of population

doubling level (PDL) was calculated using the formula DPDL = log(nh/ni)/log2, where ni is the initial number of cells and nh is the

cell number at each passage.

Immunofluorescence stainings
For indirect immunofluorescence stainings, cells were seaded on coverslips and fixed in 4% paraformaldehyde. After permeabiliza-

tion with 0.5% Triton X-100 (5 min on ice), coverslips were blocked in 1% BSA/PBS and incubated with the following primary

antibodies diluited in 0.5% BSA/PBS: anti-H2AX phosphorylated on Ser139 (gH2AX) (Millipore), �53BP1, (Novus Biologicals), for

1h at room temperature. Coverslips were then washed 3 times in PBS and incubated with Alexa Fluor 488 goat anti-rabbit or rabbit

anti-mouse antibodies (Invitrogen) for 40 min at room temperature. After DAPI counterstaining, coverslips were mounted in Glycerol/

PBS (1:1) and observed with Axio Imager.M2 (ZEISS) using the Volocity 6.3 software.

Chromatin fractionation
Chromatin fractionation experiments were performed as described in Bellelli et al. (2014). Cells in mid-esponential phase of growth

were washed once in ice-cold 1X phosphate-buffered saline (PBS) and lysed in ice-cold CSK (10 mM PIPES, pH 6.8, 100mM NaCl,

300mM sucrose, 1mMMgCl2, 1mMEGTA, 1mMDTT) buffer containing 0.5%Triton X-100 (Pierce Biotechnology) and protease and

phosphatates inhibitors (ROCHE) for 10 min on ice. Chromatin-bound and un-bound proteins were separated by low speed

centrifugation (3,000 rpm, 3 min at 4�C). The pellett (chromatin fraction) was washed in CSK 0.5% Triton and resuspend in Laemmli

buffer 1X. Total fraction was obtained by direct cell lysis in 1X Laemmli buffer. For each fraction, protein amounts deriving from com-

parable number of cells were analyzed by SDS-PAGE and western blotting.

DNA fiber stretching assay
DNA fiber assay was performed as described in Bellelli et al., 2014. Pole4+/+ and Pole4�/� MEFs, as well as human dermal fibroblast

from controls and POLE1 mutant patients, were pulse labeled with 20 mM CldU for 20 min and subsequently pulse labeled with

200 mM IdU for 20 min. Cells were trypsinized, washed in PBS, counted and resuspended at a concentration of 5x 105 in PBS.

2.5 mL of cell suspension were spotted on clean glass slides and lysed with 7.5 mL of 0.5% SDS in 200 mM Tris-HCL, pH 7.4,

50 mM EDTA (10 min, R.T.). Slides were tilted (15� to horizontal), allowing a stream of DNA to run slowly down the slide, air-dried

and then fixed in methanol/acetic acid (3:1) for 15 min at R.T. Acid-treated slides (30 min R.T.) were blocked in 1% BSA/PBS for

30 min at R.T. and incubated with rat anti-BrdU monoclonal antibody (1:1000 overnight; AbD Serotec) and mouse anti-BrdU mono-

clonal antibody (1:500 1h R.T.; Becton Dickinson). After 3 washes in PBS, slides were incubated with a mixture of Alexa Fluor 488

rabbit anti-mouse and Alexa Fluor 594 goat anti-rat antibodies (1:500 R.T.; Invitrogen) for 40 min at room temperature and mounted

in PBS/Glycerol 1:1. Fibers were then examined using Axio Imager.M2 (ZEISS) with 60x oil immersion objective and the Volocity

6.3 software. For quantification, at least 500 replication structures were counted per experiment.

For analysisof interorigin distanceuponHydroxyurea (HU) treatment,Pole4+/+andPole4�/�MEFs, aswell ashumandermal fibroblast

fromcontrols andPOLE1mutant patients, were incubated for 3 hours inmedia containing 100mMHUand subsequently pulsed labeled

first inmediacontainingHU(100mM)andCldU (20mM) for30minand thenHU(100mM)and IdU (200mM) for 30min.Cellswereprocessed

and stained as previously described for standard fiber assay. All fiber stretching assay experiments were performed at least in triplicate.

BrdU and EdU FACS
For EdU/DAPI FACS analysis, Pole4+/+ and Pole4�/� MEFs (passage 3) were labeled and processed using the Click-iT EdU Flow

Cytometry Cell Proliferation Assay (Thermo Fisher). Cells were pulse labeled for 30 min with 10 mM EdU and fixed in 4% paraformal-

dehyde, before being permeabilized in PBS-Triton 0.5% and washed in 1% BSA. Cells were then resuspended in Click-iT reaction

cocktail containing Alexa Fluor 488 Azide and incubated for 30 min at R.T. After being washed, cells were finally counterstained for

DNA content by DAPI (1 mg/ml) and analyzed using a Flow cytometry analyzer LSRII (Becton Dickinson).

ForBrdU/DNAcontent analysis of humandermal fibroblasts derived fromcontrol orPOLE1mutant patients, cellswere pulse labeled

with 10 mMBrdU (SIGMA) for 30min, washed and released or not in normal media for 4, 8, 12 or 16 hours to analyze S-phase progres-

sion. Cell were trypsinized, pelleted and fixed in ice-cold 70%ethanol. After washing, cells were resuspended in 500mL of 2MHCl and

incubatedatR.T for 30minwithoccasionalmixing.Cellswerepelleted,washed to removeexcessiveacidand incubatedwithanti-BrdU

antibody for 20 min at R.T. and rabbit anti-mouse FITC-conjugated (DAKO) for 20 at R.T. in the dark. Cells were finally washed, resus-

pended in PBS-T containing RNase A and Propidium Iodide and analyzed using a Flow cytometry analyzer LSRII (Becton Dickinson).
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Chromosome spreads and GIEMSA staining
Cells in mid-exponential phase of growth were incubated in colcemid (10 mg/ml) for 2-4 hours. After shake off, floating cells were

collected, pelleted and resuspended in 2 mL of media. Upon addition of 4 mL of deionized water, cells were gently mixed and incu-

bated for 6 min at R.T. before being fixed on ice in methanol/acetic acid (3:1). Fixed cells were washed again in fixative buffer and

resuspended 200 mL of fresh fixative buffer and spreaded on clean slides by gentle dropping. Dried slides were subsequently incu-

bated in a solution of 6% GIEMSA/PBS for 7 min, washed in PBS and deionized water. Slides were finally mounted with DPX

mounting media and analyzed using Axio Imager.M2 (ZEISS) with 60x oil immersion objective and the Volocity 6.3 software.

iPOND (isolation of Proteins on Nascent DNA) and iPOND SILAC Mass Spect
iPOND was performed according to standard protocols (Sirbu et al., 2011). Pole4+/+ and Pole4�/� MEFs were pulse labeled with

10 mM EdU (5-ethynyl-20-deoxyuridine, Invitrogen) for 10 min. After washing in normal media, cells were released or not for

30 min in media containing 10 mM thymidine (SIGMA). Cells were then fixed in 1% Formaldehyde (SIGMA) in PBS for 20 min at

R.T. Crosslinking was subsequently quenched by addition of Glycine to a final concentration of 0.125M for 10 min at R.T. Cells

were scraped, pelleted, washed 3 times in PBS and stored at �80. Frozen pellets were resuspended in 0.25% Triton/PBS and incu-

bated at R.T. for 30 min. After washing in 0.5% BSA/PBS and PBS, pellets were resuspended in Click reaction cocktail cointaining

10 mMBiotin-Azide (Invitrogen), 10 mMNa Ascorbate (SIGMA) and 2mMCuSO4 (SIGMA) and incubated for 1h at R.T. Controls were

resuspended in the same buffer containing DMSO instead of Biotin-Azide. After washing in 0.5% BSA/PBS and PBS, pellets were

lysed in RIPA buffer (150 mM NaCl, 100 mM Tri pH 7.5, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycolate) containing protease and

phosphatase inhibitors (ROCHE) and sonicated using a BIORUPTOR sonicator in 1.5 mL Eppendorf tubes (20-25 cycles at 30 s on,

30 s off setting). Lysates were clarified by high speed centrifugation (13.200 rpm, 15 min at 4 C) and incubated with streptavidin

Sepharose beads (GE Healthcare) for 16 hours. After being washed in RIPA and 1M NaCl, beads were resupended in 2X Laemmli

buffer, incubated for 25 min at 99�C and loaded on 4%–12% NUPAGE Bis-Tris gels for SDS-PAGE analysis.

For iPOND SILACMass spectrometry, Pole4+/+ and Pole4�/� embryonic cells were incubated in SILAC DMEM supplemented with

10% dialyzed FBS (SIGMA), 100 mg/L [12C6]arginine, and [12C6]lysine (light) or [13C6,
15N4]l-arginine and [13C6,

15N2]l-lysine (heavy)

with 200 mg/L l-proline, at passage 0, amplified to passage 2 and subjected to iPOND as previously described. To this aim, cells

grown in heavy and light media were fixed, quenched and collected in the same tube to obtain a single mix. After iPOND, pellet lysis

in RIPA, samples sonication and streptavidin beads capture, the immunoprecipitated material was subjected to SDS-PAGE.

Coomassie-stained polyacrylamide gel slices were excised from SDS-PAGE gels using a scalpel into a 96 well plate and processed

for mass spectrometry using the Janus liquid handling system (PerkinElmer). Briefly, the excised protein gel pieces were placed in

individual wells of a 96-well microtiter plate and destained with 50% v/v acetonitrile and 50 mM ammonium bicarbonate, reduced

with 10mMDTT, and alkylated with 55 mM iodoacetamide. After alkylation, the samples were digested with trypsin (Promega), over-

night at 37�C. The resulting peptides were extracted in 1% v/v formic acid, 2% v/v acetonitrile. Digests were subsequently analyzed

by nano-scale capillary LC-MS/MS. Peptide mixtures were separated on a 50 cm, 75um I.D. EasySpray C18 LC-MS column over a

30minutes gradient and eluted directly into the LTQOrbitrap Velos or Orbitrap Fusion Lumos (Thermo Scientific) mass spectrometer.

The mass spectrometer was operated in data dependent mode with the most intense multiply charged precursor ions fragmented in

the linear ion trap using collision-induced dissociation. Raw mass spectrometric data was processed in MaxQuant (Nature Biotech-

nology 26, 1367 - 1372 (2008)) (version 1.5.2.8) for protein identification and SILAC quantification, the database search was per-

formed using the Andromeda search engine against the Mus musculus canonical sequences downloaded from UniProtKB (release

2012_08).

POLE4 Antibody generation
Policlonal anti-POLE4 antibody was generated by immunizing rabbits with full length un-tagged human POLE4 obtained by standard

E. Coli expression methods. Serum was affinity purified by chromatography using a GST-POLE4 column and used at a 1:1000 con-

centration for western blotting. Rabbits immunization and antibody purification was performed by Cambridge Research Biochemi-

cals (Billingham, UK) in accordance with standard rules and procedures.

Analysis of Hydroxyurea and Ionizing radiation sensitivity
Pole4+/+ and Pole4�/� MEFs as well as POLE1mutant and control cells were treated with increasing doses of Hydroxyurea (SIGMA)

for 24 hours or irradiated using a GSR D1 137Cs irradiator with 2 or 4 Gy. After washing, cells were left growing in standard media for

5 days and viable cells were analyzed using Cellometer Auto 2000 (Nexcelom Bioscience).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics, including statistical tests used, number of events quantified, standard deviation standard error of the mean, and statistical

significance are reported in the figures and in the figure legends (Kaplan–Meier plots for survival and significance calculation using

Log-rank (Mantel–Cox) test, unpaired t test for staining quantification statistics). Statistical analysis has been performed using

GraphPad Prism7 software (GraphPad) and statistical significance is determined by the value of p < 0.05.
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