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Brief history of tumor-specific mutant antigens and immunogenomics

The underpinnings of modern immunogenomics resulted from hypotheses generated and 

tested by visionaries in cancer immunology during the late 1980s through the 1990’s. Their 

central hypothesis was that cancer cells presented novel, tumor-specific (i.e. mutated) 

peptides on the cancer cell surface bound by the patient’s HLA molecules. By virtue of this 

cell surface presentation, specific T cell immunity might be elicited to these “neoantigens”. 

Supporting evidence for this hypothesis was demonstrated in cancers of non-viral origin by 

Old (Old and Boyse, 1964), Gross (Gross, L. Cancer Res. 3(5): 326–333 (1943), Foley 

(Foley, 1953), and Prehn (Prehn and Main, 1957). This foundational work led to the 

identification and characterization of the role of MHC proteins in antigen presentation 

(Babbitt et al., 1985); (Bjorkman et al., 1987). Concomitantly, methods to grow antigen-

specific cytolytic T lymphocytes (CTLs) in culture also were developed (Cerottini et al., 

1974; Gillis and Smith, 1977), as were the molecular biology procedures to clone and 

express gene products. Thierry Boon’s laboratory combined these new methods to identify 

the first TSA, a point mutation in a protein called P91A (De Plaen et al., 1988). 

Subsequently, Hans Schreiber’s laboratory demonstrated that TSAs also functioned as 

neoantigens using primary UV-induced mouse tumors (Monach et al., 1995). Similarly, 

groups studying human melanomas showed they could identify T cells in the peripheral 

circulation that bound melanoma cells preferentially over normal cells from the same patient 

(Dubey et al., 1997; Knuth et al., 1984; Robbins et al., 1996; Van den Eynde et al., 1989). 

Shortly thereafter, Boon’s laboratory cloned the first human tumor antigen, called MAGEA1 

(van der Bruggen et al., 1991) and Sahin’s group demonstrated an autologous antibody-

based method to clone and identify different human tumor antigens (Sahin et al., 1995). 

While these foundational studies established supporting evidence for the existence of tumor-

specific peptide neoantigens, the lengthy and painstaking nature of these processes was 

unlikely to scale to clinical application for cancer patients.

More recently, these limitations have been alleviated by the application of new sequencing 

technologies and associated computational data analysis approaches. These methods, 
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collectively referred to as “immunogenomics”, have improved the facility with which 

individual cancers can be studied to predict their neoantigens for prognostic purposes or to 

inform immunotherapeutic interventions. Complementary methods have been developed to 

study the changes in the T-cell repertoire, to characterize the gene expression signatures of 

the immune cell types present in the tumor mass, and to design personalized vaccines or 

adoptive cell transfer (ACT) therapies. The now scalable nature of immunogenomic methods 

should permit their widespread clinical application, although there remain issues and 

challenges to be resolved. This primer will highlight the specific methods and describe the 

known strengths and weaknesses in modern immunogenomics.

Somatic mutations generate neoantigens

It has long been known that cancer is caused by alterations to genomic DNA that impact 

protein functions, ultimately disrupting cellular control of pathways and resulting in the 

outgrowth of a tumor mass. Methods using next generation sequencing platforms generate 

data from tumor and normal DNA isolates that, once aligned to the Human Reference 

Genome sequence, can be interpreted to identify somatic alterations (Ley et al., 2008). In 

practice, such analyses aim to identify DNA alterations in known cancer genes, both 

oncogenes and tumor suppressors, that combine to transform the founder cell. For certain 

oncogenes, identified mutations indicate therapeutic interventions that may successfully halt 

the tumor cell growth. By contrast, immunogenomic approaches aim to identify tumor-

specific DNA alterations that predict amino acid sequence changes in all encoded proteins, 

and then evaluate their potential as neoantigens. In practice, most tumor-specific antigens 

identified to-date are highly unique to each patient and generally do not involve known 

cancer genes.

Hence, the widespread use of next-generation sequencing (NGS) instrumentation has 

enabled immunogenomics, providing a facile way to generate data to predict tumor-specific 

neoantigens in a rapid, inexpensive and comprehensive manner (Gubin et al., 2015). NGS 

technologies have rapidly evolved over the past 10 years, resulting in dramatically increased 

amounts of sequencing data produced per instrument run at ever-decreasing costs (Mardis, 

2017). In immunogenomics, since the focus is protein-coding genes, solution hybridization-

based methods are used to select these sequences (“exome”) prior to sequencing (Bainbridge 

et al., 2010; Gnirke et al., 2009; Hodges et al., 2009). Importantly, the concomitant 

development of advanced variant detection algorithms that identify different classes of 

mutations from NGS data has enabled the identification of all classes of somatic variation. 

Accurate detection of variants in this setting is influenced by multiple factors, which are 

presented here in detail.

One important consideration for somatic variant detection is depth of coverage by NGS 

sequencing reads from the tumor. In principle, since tumor samples include variable 

percentages of normal cells, adjustments to the depth of NGS data generated must be 

flexible to ensure that a sufficient representation of tumor-derived sequence reads are 

obtained. Isolating DNA from selected, tumor-rich areas of a biopsy or resection sample is 

ideal, but not always possible, so average read depths of 300–500 fold exome coverage are 

typically attempted to compensate for the normal cell DNA-derived reads. A second reason 
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for high coverage of the tumor-derived DNA is to enable the evaluation of founder clone 

versus subclonal mutations in the resulting data. Here, we define founder mutations as the 

original set of mutations present in the cell that transformed from normal to neoplastic, 

whereas subclonal mutations are acquired as the daughter cells of this founder acquired 

additional mutations during growth of the tumor mass. Based on this definition, founder 

clone mutations in diploid regions of the exome have a proportional fraction of variant-

containing sequencing reads (Variant Allele Fraction or VAF) that is around 50% (adjusted 

for normal DNA contribution), since most somatic mutations are heterozygous. In theory, 

neoantigens that result from founder clone mutations should elicit a T-cell response that 

targets all cancer cells rather than the subset of tumor cells that would be targeted by T-cell 

response to subclonal neoantigens in the vaccine.

Equally important to appropriate coverage depth for accurate prediction of variants is the 

algorithm or set of algorithms used to identify variants from the NGS exome data. The 

factors to consider here include the types of variants one wishes to consider in neoantigen 

discovery. For example, single nucleotide variants (point mutations) are easiest to predict 

with high accuracy because reads containing a single variant are readily aligned to their 

reference genome “match”, and because there are a variety of different algorithms that also 

can detect low VAF variants. Variant detection from NGS reads has been an area of rapid 

development and there are many algorithms to choose from, with variable performance, as 

has been evaluated (Cornish and Guda, 2015; Ghoneim et al., 2014; Krøigård et al., 2016). 

By contrast, variants resulting from insertion or deletion of one or a few nucleotides 

(“indels”) are significantly more difficult to identify due to issues of read alignment by 

standard alignment algorithms, that lead often to lower coverage in these regions for the 

variant-containing sequencing reads (Jiang et al., 2012, 2015; Ratan et al., 2015). However, 

indels may be important to immunogenomics efforts because they can introduce frameshift 

mutations that result in highly divergent amino acid sequences in the resulting protein and 

hence may produce strong predicted neoantigens. Increased read lengths on NGS platforms 

have improved indel detection, as has the use of gapped alignment or split-read algorithms 

that are computationally intensive but better able to align the indel-containing reads to the 

reference genome. Assembly-based realignment approaches also have been developed to 

improve the precision of indel variant detection (Mose et al., 2014; Narzisi et al., 2014).

Another type of somatic variation that can lead to highly altered amino acid sequences and 

as a result, create a neoantigenic peptide, is a structural variant which fuses two protein-

coding sequences. These can result from inversion or deletion of a chromosomal segment, or 

from chromosomal translocations. Detecting these alterations from exome sequencing data 

is quite challenging and error-prone, but RNA-based analysis can identify the resulting 

fusion transcript (Li et al. 2011; Scolnick et al. 2015; Zhang et al. 2016; Kumar et al. 2016), 

and compare the predicted fusion sequence to NGS data from DNA (whole genome or 

exome sequencing) to identify supporting evidence of the genomic event causing the fusion. 

Recently, we adapted this approach for neoantigen prediction with a process called 

IntegrateNEO, using the TMPRSS2-ERG fusions common in prostate cancer to evaluate its 

ability to identify fusion peptide neoantigens (Zhang et al., 2016b). RNAseq data brings 

added value to immunogenomics efforts beyond the detection of fusion peptides, as will be 

described later.
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Once variant detection is completed, each variant is annotated to predict the resulting amino 

acid change(s) that result from the altered DNA sequence (if any). There are widely utilized 

computational tools such as Annovar and VEP available to produce the translated peptides 

from the DNA data. The translated peptides constitute one type of input data for the 

neoantigen prediction software to calculate the class I or class II predicted binding affinities. 

The second type of data needed for neoantigen prediction are the HLA haplotypes of the 

patient, also derived from exome data since these reagents capture the HLA gene loci. 

Heretofore, HLA typing was performed using a PCR-based and Sanger sequencing-based 

clinical assay. The repetitive nature of the HLA genes requires a high stringency assembly of 

these genes, which can be achieved using the >500 bp read lengths from Sanger data. 

Sequence analysis of these regions based on hybrid capture-derived NGS reads, which are 

relatively short (~100bp), requires a stringent alignment of the read data to the IMGT/HLA 

database (Robinson et al., 2001) using a haplotype-resolved algorithm to interpret the HLA 

class I and II haplotypes. There now exist multiple algorithms for accomplishing these data 

interpretations, including Polysolver (Shukla et al., 2015), HLAMiner (Warren et al., 2012), 

and OptiType (Szolek et al., 2014). Typically, one interprets the normal tissue-derived 

exome data to obtain the HLA haplotypes. Clinical analysis of these genes also should 

include repeating the alignment of the tumor-derived exome data and identification of 

mutations in order to identify HLA alleles that are impacted by nonsense mutations, 

deletions, or other similarly deleterious types of somatic alterations that may influence the 

presence of that allele (Shukla et al., 2015). Some algorithms also can use RNA-derived data 

to interpret the HLA haplotypes (Warren et al., 2012).

Another critical component of identifying neoantigens is the in silico prediction of HLA 

class I and II binding affinities for specific peptides. These predictions are quite 

computationally complex and require machine learning-based approaches to establish 

models for the different types of binding site interactions. In particular, each peptide 

interacts with the binding pocket residues of the many different HLA proteins through the 

amino acid side chains of specific residues. Therefore, the binding affinity of any peptide is 

sequence-specific relative to that patient’s HLA proteins, some of which may be common 

and some rare. There also are differences in the binding of peptides by class I or class II 

HLA that impact the precision of neoantigen prediction, as described later. Finally, there is 

considerable debate about an appropriate cutoff value for binding affinity in terms of what 

does or does not constitute a strong neoantigen candidate (Duan et al., 2014)(Bassani-

Sternberg et al., 2016)

The initial approach to computational HLA binding predictions utilized a neural network-

based learning method developed from a training set of experimentally derived binding 

affinities for class I HLA proteins and different peptides. This effort resulted in an HLA 

class I binding prediction software known as netMHC, devised by researchers in the Center 

for Biological Sequence Analysis at the Technical University of Denmark (Lundegaard et 

al., 2008a, 2008b; Nielsen et al., 2003). The predictor has improved over time with the 

availability of training data sets for HLA proteins that are more rare in the population, 

although calculated binding affinities for the most rare HLA alleles in humans remain less 

certain (Wang et al., 2010). An interim approach to address rare HLA class I binding 

calculations was PickPocket, which extrapolated from variants with known binding 
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specificity to those without existing experimental data (Zhang et al., 2009). The most recent 

version is netMHCstabpan (Rasmussen et al., 2016), which uses a neural network approach 

based on a dataset of stability values calculated for different peptide-MHC-1 complexes, 

rather than their binding affinity values, since the stability of their interaction has 

experimentally been shown to be more strongly correlated to T-cell immunogenicity. 

Another early method developed to generate class I binding predictions was based on a 

stabilized matrix method (SMM) algorithm developed by Peters and Sette (Peters and Sette, 

2005). This approach models the sequence specificity of binding processes as a means of 

predicting outcomes for untested sequences. SMM not only predicted HLA binding but also 

evaluated peptide transport as a function of antigen presentation and proteasomal cleavage 

with the TAP algorithm. Subsequent efforts to develop new class I binding affinity 

prediction softwares have included the use of combined support vector machine-based 

(SVM) and random forest machine-learning approaches (Srivastava et al., 2013), or 

combining the information obtained from amino acid pairwise contact potentials and 

quantum topology molecular similarity descriptors (Saethang et al., 2013) to better model 

HLA class I peptide interactions.

With the requisite information generated by NGS to call somatic variants and interpret their 

impact on protein sequences, and to identify the HLA haplotypes specific to the patient, 

neoantigen prediction softwares can be used to predict both the class I and class II HLA 

binding affinities for each tumor-unique set of peptides. Considerations and specifics for 

these prediction approaches are described in detail below. There are a number of binding 

prediction softwares and associated immunogenomics algorithms available at the Immune 

Epitope DataBase (IEDB) analysis resource (Robinson et al., 2013), which can be found at 

this URL: http://tools.immuneepitope.org/main/. The IEDB web interface permits the input 

of peptide sequences for sequential evaluation by user-configured steps using the software of 

choice to predict neoantigens. Publicly available software pipelines also are available for 

local download and computing of neoantigen predictions by end-users, including pVAC-seq 

(https://github.com/griffithlab/pVAC-Seq) and epidisco (https://github.com/hammerlab).

Class I predictions

Approaches to predict HLA class I neoantigens typically begin by parsing the tumor-specific 

peptides predicted from variant calling as 21mer peptides that encompass the variant amino 

acid(s) placed as near to the center of the 21mer as possible. This is easiest to envisage for 

simple non-synonymous amino acid substitutions, shown in Figure 1a, which then are tiled 

across the variant-containing peptides to define a set of 8mer to 11mers to input for binding 

calculations, based on HLA class I binding characteristics (Figure 1b). These peptide sets 

are parsed along with their corresponding wild type peptide sequences as input data for 

consideration by neoantigen prediction software, along with information about the HLA 

class I haplotypes determined for the patient. The resulting list of neoantigens can be quite 

extensive, depending upon the numbers and types of input peptide sequences and the 

diversity of the HLA haplotypes. The numbers of neoantigens can be winnowed by applying 

several criteria to narrow the potential set of peptides that are considered further in vaccine 

design, if desired. One conventional approach is to only consider variant peptides with a 

strong- to intermediate-binding affinity (typically lower than 500 nM) but this arbitrary cut-
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off is controversial because strong neoantigens can have lower calculated affinities than 

actual. This sometimes is due to the presence of a rare HLA haplotype, for which the neural 

net software provides an inaccurate binding affinity prediction. Thus, for each altered locus, 

one can select the candidate peptide with the single best binding affinity to each 

corresponding HLA allele across all peptide lengths considered, or proceed with all 

candidates for all HLA alleles to additional filtering steps, as follows.

Three important additional filters should be applied to remove false positives, 1) RNA-based 

filtering to remove genes with no evidence of expression, 2) filtering based on exome data 

coverage depth at the variant loci, and 3) filtering based on variant allele fraction(VAF)-

based metrics. The RNA expression filter ensures that each peptide is supported by evidence 

of RNA expression, wherein evidence of RNA expression is considered a reasonable, but not 

absolute, proxy that the gene is expressed in the tumor cell proteome. For the NGS coverage 

filter, a minimum level of normal read coverage depth is required to ensure there is sufficient 

sequencing data coverage from the normal tissue (i.e. supports a true positive somatic 

variant call). Finally, both DNA and RNA data should be evaluated to ascertain the 

percentage of variant-containing reads or variant allele fraction (VAF). As described earlier, 

this criterion helps to inform the final list of neoantigen candidates by providing information 

on whether a specific alteration is shared across all tumor cells (i.e. in the founder clone) or 

is subclonal, based on DNA sequencing data, and ensures that a variant is expressed in the 

tumor RNA. The latter is especially important in tumor types with a high mutation load such 

as those with chemical or UV damage to DNA, since upwards of 50% of mutations are 

typically not expressed in RNA (or protein by inference) for these tumors. With these 

filtering steps completed, a list of high confidence, predicted neoantigenic peptides and the 

HLA class I proteins predicted to bind them, their calculated binding affinity value(s), and 

the binding affinity of the cognate wild-type peptide values can be parsed for further 

consideration in vaccine design or other immunological evaluations such as neoantigen 

burden. In the former case, neoantigen predictions have been tested in clinical trials of 

personalized vaccines, with demonstrated ability to elicit specific T-cell responses 

(Schumacher et al. 2014; Carreno et al. 2015; Tran et al. 2014). In the latter approach, there 

are demonstrated correlations between neoantigen burden and the likelihood of response to 

checkpoint blockade inhibition therapies (Le et al., 2015; Rizvi et al., 2015; Snyder et al., 

2014; Van Allen et al., 2015), and a demonstration that predicted neoantigens also are the 

epitopes targeted by checkpoint blockade immunotherapies (Gubin et al., 2014).

Class II predictions

HLA class II predictions are significantly more difficult to generate with precision due to the 

nature of the HLA class II proteins. Firstly, class II HLA proteins are heterodimers of alpha 

and beta peptides encoded by four different loci in the human genome. Only one of these 

four loci is not highly polymorphic (Robinson, 2003), meaning there is extensive HLA class 

II polymorphism in the general population. This becomes somewhat less complex if 

neoantigen predictions focus on the most frequently expressed class II molecules 

(McKinney et al., 2013). Secondly, certain peptides bind to multiple different HLA class II 

molecules and are responsible for the majority of antigen-specific T-cell responses. These 

so-called ‘promiscuous peptides’ are difficult to predict using computational approaches. 
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Thirdly, the HLA class II binding groove is open on both ends, and although the core 

binding motif is a 9mer amino acid, variable length peptides are allowed to bind. Many of 

the HLA-II polymorphic sites comprise other regions of the binding groove outside the core 

motif binding region, which allows the flanking amino acid sequences on either side of the 

motif sequence to influence its binding affinity. As a result, binding affinities are difficult to 

predict with a high degree of precision. Input data for MHC class II binding predictions 

consist of 15mer representatives of each somatic neoantigen candidate peptide, along with 

the patient’s HLA class II haplotypes. A cutoff binding of <1000 nM may be utilized to 

distinguish strong binders but given the vagaries of binding affinity predictions described 

above, this cutoff may not be appropriate. RNA expression level has been identified as a 

critical filtering parameter for predicted class II neoantigen candidates, whereby those 

peptides corresponding to genes with higher relative expression values from RNAseq data 

analysis are considered to be the strongest candidates (Kreiter et al., 2015).

Computational predictions, based on the aforementioned caveats for both class I and II, 

therefore only offer putative neoantigen candidates that may be subject to a variety of errors 

or sources of inaccuracy. In addition to what we already have described, there are other 

challenges to accurate neoantigen prediction. First, even though RNA evidence supports a 

variant as being expressed, the most accurate evidence of a peptide’s presence in the cell is 

identifying that peptide from mass spectrometry-based proteomic data derived from the 

specific tumor under study. Second, binding affinity calculations are more accurate for the 

common class I HLA haplotypes, less so for rarer haplotypes. Third, a significant biological 

confounder of neoantigen discovery is our inability to predict precisely which of the putative 

neoantigen peptides will be processed in the tumor cell degradasome, then bound to and 

properly presented by HLA molecules on the cell surface. This critical component of T-cell 

activation must occur for the neoantigen to stimulate a specific immune response, yet it is 

presently not possible to computationally predict the processing and presentation of peptides 

by HLA. One way to inform neoantigen prediction methods is using experimental 

measurements of T-cell based immune responses to the predicted peptide epitopes. There are 

conventional methods such as EliSpot (IFN-gamma release) assays (Cole), flow cytometry-

based dextramer assays (Carreno et al., 2015)), and mass spectrometry-based evaluation of 

HLA-bound peptides (Gubin et al., 2014). However, scalable, high-throughput methods are 

in development at present and will require time and testing.

Immune repertoire profiling

Cellular immune responses from T cells and humoral immune responses from B cells are 

stimulated by exposures to antigens, including pathogens, allergens and neoantigens. V(D)J 

recombination in the primary lymphoid organs creates the incredibly diverse and unique 

repertoire of the hypervariable regions of B cell receptors (BCR) and T cell receptors (TCR), 

and somatic hypermutations contribute to additional BCR diversity. During B and T cell 

development, self-antigens are presented to B and T cells to select out self-reacting types, 

and to ensure only B and T cells that recognize and attack foreign antigens are in the 

circulation. T cells only recognize foreign proteins presented on MHC, while B cells can 

also target foreign DNA, lipids, or carbohydrates. Upon recognition of foreign antigens and 

with the presence of co-stimulatory molecules, B and T cells express cell surface activation 
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markers, attack foreign antigens, secrete cytokines, stimulate each other, and proliferate 

(Pasternack, 1994). One goal of immunogenomic studies is to characterize the repertoire of 

B and T cells in patients with cancer, especially before and after immunotherapy-based 

interventions.

DNA sequencing approaches have enabled the characterization of immune repertoires 

(Pasternack 1994; Robins 2013). After a pioneering study introduced the technique 

(Freeman et al., 2009), a plethora of immune repertoire methods have been published and 

commercial solutions are also available. Several studies (Calis and Rosenberg, 2014; Hou et 

al., 2016; Yaari and Kleinstein, 2015) have evaluated the experimental techniques and 

practical advice needed for immune repertoire profiling. Basically, multiplex PCR can 

amplify the recombined V(D)J regions from either mRNA or DNA in the B or T cells. The 

V(D)J, and most importantly, the variable complementarity-determining region CDR3 

sequences, and their respective abundance can be resolved by high throughput sequencing. 

Paired-end sequencing with additional PCR primers in the middle of the fragment permits 

full length TCR repertoire sequencing with short read NGS technology to resolve the V / J 

pairing (Cole et al., 2016). One caveat to this approach is that PCR biases and sequencing 

errors can falsely increase the total repertoire with deeper sequencing coverage, so unique 

molecular identifier barcodes should be used to eliminate such artifacts (Cole et al., 2016), 

although such an approach is presently only available for RNA based repertoire profiling.

Computational methods, as summarized in (Greiff et al., 2015a, 2015b) are important 

components for the analysis, annotation, and visualization of immune repertoires. To this 

end, IMGT (Giudicelli et al., 1997) is the most widely cited immunogenetics database and 

provides many useful tools such as V-QUEST and HighV-QUEST (Alamyar et al., 2012) as 

well as statistical metrics (Aouinti et al., 2015) for the analysis and annotation of immune 

repertoire data. VDJtools (Shugay et al., 2015) is a comprehensive analysis framework for T-

cell and B-cell repertoire sequencing data. It includes MIXCR for fast alignment and clonal 

type assembly (Bolotin et al., 2015), MIGEC for removing duplicates and combining 

barcodes (Shugay et al., 2014), and VDJviz for visualization (Bagaev et al., 2016), and 

provides basic statistical analyses for characterizing and comparing different immune 

repertoires.

The initial output from a repertoire profiling analysis is a list of BCR/TCR CDR3 sequences, 

sometimes including the adjoining V and J sequences, each followed by an abundance 

estimate. This output allows samples to be compared and clustered, if desired. For example, 

common CDR3 sequences that are shared among individuals indicate BCR / TCR clones 

that recognize common antigens such as herpes or common cold viruses. In comparison, 

CDR3 clones that are rare among patients but are abundant within a tumor, and more 

importantly for BCR lineage-related CDR3s with small amount of mutations, indicate T/B 

cell recognition of the patient tumor-specific antigens (Saul et al., 2016). Repertoire profiles 

from individuals with similar ethnic backgrounds, lifestyles or environmental exposures are 

often clustered. Two independent metrics, diversity (often measured by the Shannon 

entropy), and evenness (indicative of the degree of clonal expansion), have been proposed as 

important characteristics of immune repertoires (Greiff et al., 2015b). Since V(D)J 

recombination in TCR only happens in children, TCR diversity once established, generally 
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declines with age. In contrast, V(D)J recombination in BCR occurs throughout life although 

at reduced levels in adults, and activated BCR undergoes somatic hypermutation to improve 

the antibody affinity to the recognized antigen, so the BCR diversity distributions assume 

more complex patterns. Although immune-stimulating events such as allergy or vaccination 

could shift the abundance of some clones, the immune repertoire has been suggested as a 

means to monitor an individual’s immune health (Johnson et al., 2014). The utility of this 

metric depends on the accurate measure of clonal abundance, which requires linear 

amplification from multiplex PCR products and additional normalization of TCR/BCR 

expression levels for RNA-based profiles. Furthermore, the method and time-span of sample 

storage can also influence sample quality for repertoire profiling.

While immune repertoires are informative, profiling them over large sample cohorts can be 

expensive. Computational methods have been developed to directly infer immune repertoires 

from unselected bulk tumor RNAseq data, such as TRUST for TCR (Li et al., 2016a) and 

V’DJer for BCR (Mose et al., 2016). The hypervariability of the CDR3 regions of TCR and 

BCR renders the RNAseq reads from these regions unmappable to the human reference 

genome sequence, and somatic hypermutation adds additional challenges to BCR mapping 

and alignment. Both of the aforementioned methods select unmappable RNAseq reads, align 

these unmapped reads to each other with de Brujin graphing methods, de novo assemble 

these alignments into contigs, and use IMGT (Giudicelli et al., 1997) to annotate those 

containing CDR3 motifs as potential BCR or TCR. Although these approaches only recover 

the most abundant of the immune repertoires, they were used to analyze RNA-seq data 

across tumor samples profiled by The Cancer Genome Atlas (TCGA) and resulted in novel 

findings. For example, TRUST revealed increased T cell clonal diversity in tumor types with 

higher mutational loads and potential neoantigens based on their co-occurrence with CDR3-

containing sequences in the tumors (Li et al., 2016a), while V’DJer reported higher somatic 

hypermutation in IgG and IgA than in IgM (Mose et al., 2016).

Published studies have made fascinating observations on how immune repertoires can reflect 

an individual patient’s immune health and predict their response to therapy. The ability to 

reconstruct a more diverse TCR repertoire after autologous hematopoietic stem cell 

transplantation has been observed to predict better transplant outcomes in multiple sclerosis 

patients (Johnson et al., 2014; Muraro et al., 2014). Another study used TCR repertoire 

sequencing to compare each patient’s TCR before and after dendritic cell-based neoantigen 

vaccine dosing, illustrating expanded TCRs for the vaccine peptides that elicited a T-cell 

response (Carreno et al., 2015). For metastatic melanoma patients, the anti-CTLA4 antibody 

Ipilimumab has been shown to increase peripheral blood TCR diversity (Robert et al., 2014), 

and those patients with higher peripheral TCR diversity before treatment were reported to 

respond better to ipilimumab (Postow et al., 2015). In contrast, the anti-PD-1 antibody 

pembrolizumab showed better efficacy in melanoma patients whose pre-treatment tumor-

infiltrating T-cells were less diverse and more clonal (Tumeh et al., 2014). This study also 

demonstrated that more tumor-infiltrating T-cell clones expanded after treatment in the 

therapy responsive group than in the (non-responding) disease progression group. Although 

these pioneering studies were conducted on a limited number of patients, they do suggest 

TCR repertoire as a universal cancer immunotherapy biomarker (McNeel 2016)(McNeel, 

2016). Potentially overall patient immune health from the peripheral TCR and signs of 
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neoantigen recognition and clonal expansion from the tumor TCR before treatment could 

predict better patient response to cancer immunotherapies. As an example, one 

bioinformatics study using a Potential Support Vector Machine-based approach reported the 

ability to predict an individual’s age, health, transplantation status, and development of 

lymphoid cancer based on repertoire profiles (Greiff et al., 2015b).

Distribution of tumor infiltrating lymphocytes

Large-scale molecular tumor profiling often selects samples with high tumor purity to best 

characterize the molecular signatures of the tumor. While most cancer genomics studies are 

focused on the cancerous cells in the tumor tissue, the impurities, such as stromal cells, 

endothelial cells, and immune cells, could have major impact on the development and 

progression of cancer. With genomic profiling, tumor purity could be estimated from DNA 

copy number (Carter et al., 2012), SNP allele frequency (Li and Li, 2014), RNA-seq 

(Yoshihara et al., 2013), or DNA methylation (Zhang et al., 2015; Zheng et al., 2014) data. 

Interestingly, these methods using orthogonal tumor profiling modalities yield very 

consistent tumor purity estimates, in distinct contrast to the estimates provided by 

pathologists, suggesting that molecular and morphological changes in the tumor do not 

appear simultaneously.

Pertinent to immunogenomic studies of cancer is the evaluation of tumor-infiltrating 

lymphocytes (TILs), which can involve traditional approaches such as flow cytometry and 

multiplex immunohistochemistry. Flow cytometry uses antibodies against proteins uniquely 

expressed on different subpopulations of immune cells to isolate specific subsets of these 

cells from blood or tissues. The resulting cell counts characterize the relative abundance of 

different subpopulations in individual cancer samples and can reveal changes following 

treatment. Flow-cytometry requires relatively large fresh tissue samples for study, but the 

resulting isolated cells, once sorted, can be cultured and profiled. Multiplex 

immunohistochemistry (IHC) can simultaneously capture the expression levels of multiple 

proteins in formalin-fixed paraffin-embedded (FFPE) tissue, with the advantage of capturing 

their spatial organization and co-expression patterns, although the number of proteins that 

can be differentially stained on each tissue slide is limited.

In addition to these conventional approaches, recent computational methods have also 

advanced our understanding of TILs. In a seminal study (Rooney et al., 2015), Rooney and 

colleagues used Granzyme A and perforin expression levels to model the immune cytolytic 

activities in tumors studied in TCGA, observing increased cytolytic activities in tumors with 

higher mutation load, copy number aberration, viral infection, and lower tumor stage. This 

signature-gene based approach has been employed by two recent studies (Angelova et al., 

2015; Şenbabaoğlu et al., 2016) to estimate immune subset abundance based on a collection 

of pre-selected markers. CIBERSORT (Newman et al., 2015) used an expert-selected 

signature of about 500 genes to infer the abundance of 22 different tumor infiltrating 

immune components. In contrast, TIMER (Li et al., 2016b) selected cancer-specific 

signature genes to eliminate the bias from highly expressed genes in cancer cells and 

deconvolved only six immune components to ensure that colinear expression between 

closely related immune cells did not affect the deconvolution accuracy. These studies 
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confirmed previous observations (Bindea et al., 2013; Rooney et al., 2015) and reported that 

CD8+ T cells are associated with better overall survival and fewer relapses, whereas 

macrophages are associated with worse clinical outcome in many cancer types (Li et al., 

2016b)

There have been inconsistent observations on whether the abundance of B cells is associated 

with improved cancer survival (DiLillo et al., 2010; Perricone et al., 2004; Qin et al., 1998; 

Schultz et al., 1990). One potential cause is that B cells at different activation statuses may 

either inhibit or promote T cell functions (Nelson, 2010). Another possible reason is that B 

cells are sometimes enriched at the margin of tumor capsules instead of evenly distributed 

throughout the tumor tissue (Kroeger et al., 2016; Lao et al., 2016; Nelson, 2010; Shi et al., 

2013). Therefore, abundance estimates of B cells may be variable due to the specific tumor 

section under assay. By contrast, TCR-seq of different sections of a large ovarian tumor 

(Emerson et al., 2013) revealed that T cells are spatially homogeneous within the tumor, 

similar to peripheral blood. Therefore, it is possible that the correlation of TIL abundance 

with patient outcome will depend on the homogeneity of TIL distribution for different 

cancer types.

Applications

The culmination of our renewed understanding of the immune system and its interaction 

potential with cancer cells has been a decades-long effort to develop therapeutic approaches 

that boost existing immune responses against neoplastic cells. These efforts span widely 

variable approaches, and a comprehensive review has been recently published that explores 

the broad landscape of cancer immunotherapies (Galluzzi et al., 2014).

Certain types of cancer immunotherapies act to re-invigorate existing immunity that has 

been suppressed in the tumor microenvironment. These so-called “checkpoint blockade” 

therapies were devised to address our fundamental understanding of immunosuppression and 

T-cell exhaustion, and provide a relatively tumor-specific immune response. However, there 

often are attendant side effects of variable severity, because their action targets native 

immune molecules such as CTLA-4, PD-1 and PD-L1. Potentially, more specific targeting 

could result from using putative neoantigens predicted by NGS-based analysis, described 

above, delivered as patient-specific vaccines meant to stimulate an immune response that is 

highly specific for the tumor cells. In this paradigm, several different vaccine types (or 

‘platforms’) have emerged and are actively being tested in pre-clinical and clinical settings, 

as follows (Hirayama and Nishimura, 2016; Overwijk et al., 2013; Vormehr et al., 2015; 

Zhang et al., 2016c).

DNA minicassette vaccines: One vaccine platform is based on piecing together the 

individual coding sequences for each predicted neoantigen peptide into a DNA 

construct that may also contain a specific human promoter element to drive peptide 

production, once introduced into the patient. The vaccine construct, once sequence-

verified, can be electroporated into patient-derived dendritic cells and the DCs then 

re-infused into the patient. Synthetic DNA is relatively cheaply and quickly 

obtained, even with the attendant GMP requirements for sequence verification prior 
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to use in a human vaccine. Hence, concerns about cost and scalability of this 

approach are minimal. One design consideration is that no self-antigens are 

potentially encoded by the junctions between each neoantigen sequence, but this is 

relatively easy to confirm computationally once the proposed vaccine design is 

conceptualized.

Peptide vaccines: Synthetic peptides representing computationally identified 

neoantigens can be combined and solubilized in the presence of one or more 

immune-stimulatory adjuvants to create patient-specific peptide vaccines. These 

can be directly injected intramuscularly, intradermally or subcutaneously as a 

means of presenting the neoantigenic peptides during maturation of native dendritic 

cells, which then can prime a robust and specific immune response. Short 

neoantigen peptides of 8–12 amino acids can directly bind to HLAs expressed on 

the surface of antigen-presenting dendritic cells, thereby priming a T-cell specific 

response. Peptide vaccines also can be comprised of synthetic long peptides (25–30 

amino acids) which require uptake, processing and presentation by antigen-

presenting cells in order to elicit an immune response. While GMP-grade peptides 

are expensive to manufacture, this is a scalable enterprise and when coupled with 

the simplicity of the peptide vaccine design, is being applied in clinical trials of 

patient-specific vaccines (W. Gillanders, personal communication).

RNA vaccines: Conceptually similar to DNA and peptide vaccines are RNA-based 

neoantigen vaccines, wherein the RNA encodes the various predicted neoantigens 

that are unique to each patient’s tumor. As with all RNA-based therapeutics, the 

lability of RNA invokes a need to stabilize the RNA molecules and to provide for 

appropriate uptake by antigen presenting cells so the encoded peptides can be 

processed and presented. Cost and scalability of RNA synthesis are similarly 

straightforward as for DNA, so the packaging and stabilization are the challenging 

puzzles for this platform, which is being actively pursued in the research setting.

Autologous dendritic cell vaccines: Dendritic cells (DCs) occupy a unique position 

at the interface of innate and adaptive immunity, and have been shown to effect a 

robust, therapeutically relevant anti-neoplastic immune response. In particular, 

autologous dendritic cells can be isolated from patients and conditioned ex-vivo to 

mature, thereby providing immune-stimulatory functions. When coupled with 

neoantigenic peptides from patient-specific analyses, the resulting dendritic cell 

vaccine can be re-infused and has been shown to elicit neoantigen-specific T-cell 

immunity and an attendant expansion of the neoantigen-specific TCR (Carreno et 

al., 2015; Galluzzi et al., 2014). Emphasizing their specificity for tumor cells, no 

severe adverse events were recorded in this initial trial of patient-specific DC 

vaccines. However, not all of the predicted neoantigens elicited a T-cell response, 

indicating that our ability to predict even class I neoantigens will require additional 

precision, as discussed herein. While these early first-in-human results are exciting, 

the preparation of dendritic cell vaccines requires significant amounts of peripheral 

blood mononuclear cells for dendritic cell isolation, as well as time- and effort-

intensive laboratory work to culture and mature the DCs ex-vivo. Hence, their 

scalability may be in question for broad-based clinical use.
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Besides cancer vaccines, another type of genomics-driven patient-specific cancer 

immunotherapy is adoptive cell transfer (ACT), as pioneered by Rosenberg and colleagues 

(Rosenberg and Restifo, 2015). Basically, T-cells extracted from a cancer patient, either from 

peripheral blood or the resected tumor, can be activated and expanded ex vivo by IL2 

treatment, before infusing them back to the same patient to kill the cancer cells. Preparatory 

lymphodepletion either by chemotherapy or radiation of the patient is an important step done 

prior to infusion, to improve the engraftment and persistence of the adoptively transferred T-

cells, thus increasing durability of tumor regression (Dudley et al., 2002). ACT cells not 

only persist months after infusion, but also expand in the patient. Two additional genomic 

approaches below have been shown to further enhance tumor-specific killing and broaden 

the applicable cancer types suitable for ACT. Despite the cost and the technical and 

logistical challenges of ACT, this personalized immunotherapy has demonstrated promising 

rates and duration of response.

Genetically engineering T-cells: T-cells extracted from patients can be genetically 

engineered to express TCRs that specifically recognize proteins expressed only in 

the patient’s cancer cells, such as the melanoma / melanocyte specific MART-1 

antigen (Morgan et al., 2006) or the cancer-testis antigen NY-ESO-1 (Robbins et 

al., 2011). T-cells also can be engineered by viral transduction to express a chimeric 

antigen receptor (CAR) that uniquely recognizes the B-cell specific CD19 (Kalos et 

al., 2011; Kochenderfer et al., 2010) on the cell surface. Linking the CAR with a 

co-stimulatory domain such as CD137 (Imai et al., 2004; Milone et al., 2009) or 

engineering the cells to express another chimeric costimulatory receptor 

recognizing a second antigen (Kloss et al., 2013) have both improved T-cell 

antitumor activity. Recently a new clinical trial has been proposed, where CRISPR 

technology is applied to further engineer the NY-ESO-1-targeting CAR T-cells. 

Using a small number of CRISPR guide RNAs to knock out the PD-1 gene and the 

cells’ intrinsic TCR, this approach aims to eliminate immune suppression and 

improve the NS-ESO-1 receptor response. If proven effective, genome engineering 

technology could provide new opportunities to manipulate other genes in immune 

cells ex vivo using the CRISPR technology to achieve desired cancer killing 

phenotypes.

Expanding tumor-specific T-cells: Instead of engineering the autologous T-cells ex 
vivo, this approach separately culture tumor-infiltrating T-cell clones or 

subpopulations, then select those reacting against tumor cells for massively 

expansion before patient infusion. With the emergence of exome-sequencing, 

scientists can call somatic mutations from the tumor and computationally predict 

immunogenic neoantigens. Testing the immunogenicity of these mutations in 

parallel uses minigenes constructs (described above) encoding the mutated peptides 

into expression vectors and the in vitro transcribed RNA from the vectors can be 

electroporated into antigen presenting cells (APC). Culturing the tumor-infiltrating 

T-cells for reactivity against these APCs selects the tumor-specific T-cells and 

identify the immunogenic mutant minigenes (Robbins et al., 2013). Compared to 

genetically engineered T-cells, the final T-cells infused into patients using this 

approach are comprised of populations of different T-cells recognizing different 
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neoantigens. While most of these neoantigens are hypothesized to be passenger 

mutations, recently the Rosenberg group identified four T-cell clones that 

specifically react to the KRAS G12D mutation in colon cancer (Tran et al., 2016), 

thereby drugging the undruggable.

Future perspectives

As high throughput technologies improve and our immunology knowledge grows, the future 

of immunogenomics-based application to cancer appears quite promising and likely will 

continue to broaden. Technological and computational innovations will be instrumental to 

overcome existing challenges and move the field forward. First, despite the advances offered 

by algorithms such as NetMHC-pan, both the accuracy of MHC presentation prediction, 

especially for rarer alleles, and of MHC class II presentation await improvements. In 

addition, most studies use MHC presentation of somatic mutations as a proxy to predict 

immunogenicity, although it is unclear which presented somatic mutations will elicit 

immune responses. Experimental assays such as EliSpot are currently used to validate the 

predicted neoantigens, although such assays are still conducted in a low throughput fashion.

Second, TIL deconvolution methods such as CIBERSORT and TIMER use reference 

expression profiling data on sorted immune components from peripheral blood. These 

methods could be combined with Nanostring-based measures of immune marker genes in 

addition to bulk tissue RNA-seq data for inexpensive profiling of large archival tumor 

cohorts. However, expression of immune cells in tumors might differ significantly from that 

in peripheral blood, which could influence the accuracy of these inference methods. Recent 

developments in single cell analyses techniques, such as CyTOF (Newell et al., 2012) and 

single-cell RNA-seq (Klein et al., 2015; Macosko et al., 2015; Tirosh et al., 2016), might 

offer more quantitative alternatives. However, for very detailed TIL deconvolution on large 

sample cohorts, the required starting tumor material and cost of single cell experiments need 

to decrease significantly for widespread use.

Third, monitoring an individual patient’s immune repertoire in peripheral blood or tumors 

provides insights into their immune health as well as their response to allergens, vaccines or 

therapies (Robins, 2013). However, there are still many challenges ahead, such as how to 

identify the specific TCR / BCR that recognize each specific somatic mutation and how 

accurate is immune repertoire at predicting patient response to immunotherapy. Other 

challenges include how to robustly estimate the total immune repertoire in different samples 

from the same individual, normalize bias from minor immune events, and distinguish 

immune repertoire signals from normal versus pathogenic immune events.

Last but not least, predicting response to immunotherapies, including tumor killing effects 

and autoimmune side effects, is still an open question. So far, higher T cell infiltration 

(Taube et al., 2012; Tumeh et al., 2014), higher PD-1 or PD-L1/L2 expression (Garon et al., 

2015; Herbst et al., 2014; Taube et al., 2012), higher neoantigen load from BRCA or somatic 

mutations in DNA repair pathway genes (Hugo et al., 2016; Snyder et al., 2014; Van Allen et 

al., 2015), or microsatellite instability (Le et al., 2015), higher peripheral baseline TCR 

diversity (Postow et al., 2015), lower tumor infiltrating TCR diversity (Tumeh et al., 2014), 

Liu and Mardis Page 14

Cell. Author manuscript; available in PMC 2018 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lack of mutations in interferon gamma (INFG) (Gao et al., 2016), beta-2-microglobulin 

(B2M) (Zaretsky et al., 2016), or JAK1/JAK2 (Zaretsky et al., 2016) have been associated 

with better response to immunotherapies in various cancer types. A comprehensive model 

that integrates all of these factors to accurately predict patient response to immunotherapy is 

still lacking, and likely will require much more data to train and refine. In addition, methods 

to predict the optimal combination of immunotherapies or with other targeted, chemo, or 

radiation therapies for individual patients still await development. Despite all the 

aforementioned challenges, the exciting results obtained to-date from cancer 

immunotherapies will continue to motivate the biomedical research community to overcome 

these challenges and explore new frontiers.
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Fig 1. An Overall Workflow for Neoantigen Discovery and Personalized Cancer Vaccine Design
Starting from next-generation sequencing of DNA exomes to compare tumor to normal 

DNA, and of tumor RNA to evaluate gene expression, this figure illustrates the steps 

outlined in the primer to identify tumor-specific mutant antigens (neoantigens) from NGS 

data, to evaluate the neoantigens, and to design a personalized neoantigen vaccine.

Liu and Mardis Page 23

Cell. Author manuscript; available in PMC 2018 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Idealized Selection of Mutant-Containing Peptides for Neoantigen Prediction
(A) The localized peptides that tile across and contain the mutated amino acid substitution 

are identified and parsed into the neoantigen prediction pipeline. Each peptide is considered 

for HLA binding strength relative to its non-mutant (wild-type) counterpart.

(B) Shown is the top scoring candidate peptide that was selected across all specified k-mers 

and between all HLA types that were input to the neoantigen prediction pipeline.
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Fig 3. Structure and Diversity in the T Cell Receptor
(A) The mature T cell heterodimer, consisting of α- and β-subunit chains. The α subunit 

chains consist of variable (V), joining (J), and constant (C) regions, whereas the β subunit 

includes an additional diversity (D) region.

(B) V-D-J recombination and post-transcriptional processing of a TCR-β subunit chain.
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