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Summary

The antagonistic pleiotropy theory hypothesizes that evolutionary adaptations maximizing the 

fitness in early age increase disease burden after reproduction. This theory remains largely 

untested at the molecular level. Here, we analyzed enhancer evolution in primates to investigate 

the relationships between aging-related diseases and enhancers acquired after the human–

chimpanzee divergence. We report a 5-fold increased evolutionary rate of enhancers that are 

activated in neural tissues, leading to fixation of ~100 human-specific enhancers potentially under 

adaptation. These enhancers show prognostic expression levels and correlations with driver genes 

in cancer, and their nearby genes are enriched in known loci associated with aging-related 

diseases. Using CRISPR/Cas9, we further functionally validated an enhancer on chr8p23.1 as 

activator counteracting REST, a master regulator known to be a transcriptional suppressor of 

Alzheimer’s disease. Our results suggest an evolutionary origin of aging-related diseases: the side 

effects of human-specific, neural-tissue expressed enhancers. Thus, adaptive molecular changes in 

human macroevolution may introduce vulnerabilities to disease development in modern 

populations.
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Introduction

Diseases of aging, such as cancer and Alzheimer’s, represent a major health burden and are 

collectively responsible for nearly 90% of deaths nationwide (Grey, 2007). With longer 

expected lifespans, this burden is increasing. Over recent decades, tremendous efforts have 

characterized the molecular basis of diseases related to aging in order to develop effective 

therapies. Advances in high-throughput technologies have enabled systematic approaches to 

identify hundreds of related vulnerability loci in the human genome (Jeck et al., 2012; 

Ramos et al., 2014). However, our understanding of the evolutionary origin of aging-related 

diseases remain very limited (Daniel Fabian, 2011).

Along with the cell division limit theory (Weismann, 1889) and mutation accumulation 

theory (Medawar, 1952), antagonistic pleiotropy is one of the major theories proposed to 

address the origin of aging-related diseases (Williams, 1957), in which trade-off is the key. 

As first suggested by Charles Darwin, compromise is inherent in every adaptation as a trade-

off (Garland, 2014). George Williams further formulated the hypothesis and argued that if a 

change caused both increased reproduction in early life and aging in later life, then that 

change would be adaptive in evolution (Williams, 1957). If true, this theory should 

particularly apply to the fast adaptations humans have recently experienced, which should be 

accompanied by a series of trade-offs because of limited evolutionary time for fine tuning. 

These trade-offs then would have more profound impacts on the aging-related phenotypes of 

modern human populations than in any time of macroevolution due to our substantially 

increased lifespan over the last two centuries (Finch, 2010) and limited purifying selection, 

which has been weakened by the use of advanced medications (Daniel Fabian, 2011). 

Following this logic, we hypothesize that the adaptive molecular changes recently acquired 

in humans may contribute to the development of aging-related diseases. Since the classic 

paper by King and Wilson in 1975 (King and Wilson, 1975), increasing evidence has 

indicated that our evolution since the human-chimpanzee divergence has been driven more 
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frequently by changes in gene regulatory elements than in protein sequences (Carroll, 2005; 

Haygood et al., 2007; Liang et al., 2008; Shi et al., 2006). Therefore, we focused on 

enhancers, a key class of noncoding regulatory elements (Andersson et al., 2014; Encode 

Project Consortium, 2012), to test our hypothesis.

Results

Accelerated evolution generates human-specific enhancers activated in nervous tissues

Our analysis took advantage of high-resolution, systematic annotation of human tissue-

specific enhancers recently available from the FANTOM project (Andersson et al., 2014), 

which annotated 32748 enhancers showing tissue-biased expression patterns. We aligned 

each enhancer to the other four primate genomes (chimpanzee, gorilla, orangutan and 

macaque, as shown in Figure 1A) and inferred its origin based on the presence/absence of its 

orthologs in these primate species (Table S1, STAR Methods). Then, for a given tissue/cell 

type (n = 106) and a given branch segment (B0, …, B4) along the phylogenetic tree, we first 

calculated the proportion of the enhancers expressed in that tissue and evolved in that branch 

among the ones evolved in that branch, then calculated the proportion of the enhancers 

expressed in that issue among all the enhancers surveyed, and defined their ratio as the 

relative evolutionary rate of enhancers (STAR Methods). In this way, we used the birth rate 

of enhancers in all tissues as the internal control to normalize the effect of branch length, 

allowing a fair comparison across different tissues. Interestingly, we found that the neuronal 

stem cell expressed enhancers and the neuron expressed enhancers were the two fastest 

evolving categories on B4, the branch representing human-specific evolution (Figure 1B, 

Table S2). Because of their similar physiological origins, we combined these two groups of 

enhancers in the subsequent analyses. The evolution of these enhancers accelerated 

gradually and reached a >4-fold increased rate after the human-chimpanzee divergence (B4), 

suggesting that >75% of the enhancers that evolved on B4 are due to their elevated 

evolutionary rate. Importantly, this observed pattern remains the same when considering 

confounding factors (e.g., nucleotide composition, SNP density, and enhancer length) or 

technical issues (e.g., genome incompleteness and alignment errors) that could potentially 

compromise the accuracy of our phylogenetic analysis (Chen et al., 2015; Moyers and 

Zhang, 2016) (Table S3, Figure S1). In total, our analysis revealed 93 non-redundant 

human–specific enhancers activated in nervous tissues (47 and 66 in neuronal-stem-cells and 

neurons, respectively), which hereafter we refer to as hEANTs (Figure 1C, Table S1).

The evolutionary acceleration of hEANTs may be due to relaxed purifying selection or 

positive selection. We next examined their functional relevance and selective forces. Gene 

set enrichment analysis indicates that the hEANTs’ closest genes are functionally enriched 

in axon guidance (p =1.8×10−5, FDR = 0.01), a critical function for human brain 

development (Suarez et al., 2014). Since there are no hEANT orthologs in other primate 

genomes, the common methods for assessing the selective force in macroevolution such as 

dN/dS test and McDonald-Kreitman test could not be applied to these human-specific 

enhancers. However, given that the acceleration trend was observed across the whole human 

evolution in the primate lineage (Figure 1C), there is a possibility to detect some signals 

within human populations if some hEANTs were fixed by adaptation recently. For example, 
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the BRCA1 gene under positive selection after the human-gorilla divergence still shows 

Hardy-Weinberg disequilibrium in the European population (Huttley et al., 2000). We 

therefore performed a population genetic analysis based on the 1000 Genomes Project (1000 

Genomes Project et al., 2012) and found that 71% of these hEANTs have negative Fay & 

Wu’s H indexes, a well-established signature of recent positive selection (Fay and Wu, 

2000). This proportion is significantly higher than that for other human-specific enhancers 

or the background enhancers (71% vs. 50%, p = 3.8×10−2; 71% vs. 32%, p = 2.3×10−10; 

Figure 1D), suggesting that positive selection may have played a key role in recruiting the 

hEANTs into the human genome. Interestingly, this adaptation appeared to be specific to 

enhancers, as protein-coding genes specifically expressed in the nervous tissues are 

substantially more conserved than those expressed in other tissues (Figure S2).

Besides the introduction of new enhancers into the human genome, another way to achieve 

evolutionary innovations is to modify existing enhancers by substitutions. We performed a 

comparative analysis between human and chimpanzee enhancers using the macaque as the 

out-group. However, given a very low enhancer substitution rate (dEnhancer = ~0.003) and 

an average enhancer length of ~300 bp, we only detected ~1.2 human-specific substitutions 

per enhancer and thus could not identify specific enhancers that may have undergone 

human-specific acceleration.

Evolutionary mechanisms of hEANTs

To understand how hEANTs originated during the macroevolution, we searched the 

homologous/orthologous sequences (orthologous sequences broken or missing according to 

the UCSC whole-genome alignments) of the 93 hEANTs and their flanking regions (500 bp) 

in other primate genomes using BLAST. We identified four major models of hEANT 

origination (Figure 2). (i) De novo model: for 15 hEANTs, at least 20% of the enhancer 

sequences and the corresponding flanking 500 bp regions have no homologous sequence in 

any of the primate genomes (BLAST e < 10−10), indicating their de novo origin or gene 

transfer from species far apart (Figure 2A). (ii) Duplication model: consistent with the 

notion that duplication is a major mechanism through which new genetic elements originate, 

16 hEANTs are not the best hits when we BLAST the human genome with their best hits in 

other primate genomes as inputs, suggesting them to be recent duplications (Figure 2B). 

This model well explains why they have highly homologous sequences in other primates but 

no orthologs detected in the whole-genome alignment. (iii) Rearrange model: for 11 

hEANTs, their orthologs were separated into at least two fragments locating separately in 

the primate genomes (e.g., on different chromosomes), indicating a human-specific 

rearrangement jointing them into one enhancer (Figure 2C). (iv) Simple sequence repeat 

(SSR) model: we also observed SSR extensions in 23 hEANTs which are often detected as 

breaks by the whole-genome alignment (Figure 2D); hEANT-63 serves as a good example of 

SSR extension in the primate lineage (SSR highlighted in blue Figure 2E).

Interestingly, previous studies have indicated that SSRs usually locate in regulatory elements 

(Usdin, 2008), are unstable and confer hyper transcriptional evolvability in macroevolution 

(Vinces et al., 2009) and diversity within the human population (Gymrek et al., 2016). 

Consistently, we found that the hEANTs strongly enrich SSR, compared with the genome-
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wide background or all enhancers (Figure 2F), well explaining our findings of accelerated 

enhancer evolution. Besides the four simple evolutionary models, 28 hEANTs were 

classified as complex events since they could not be explained by single events, or the 

homologous sequences were deleted in some primates (Figure 2G).

Association of hEANTs with aging-related diseases

According to the antagonistic pleiotropy theory, we predicted that the hEANTs’ trade-offs 

can cause some deleterious effects on other phenotypic traits and contribute to aging-related 

diseases. To test this prediction, we first focused on cancer, a major group of aging-related 

diseases with the most comprehensive genomic data available through The Cancer Genome 

Atlas (TCGA) (Cancer Genome Atlas Research et al., 2013). We used the expression levels 

of an enhancer calculated from TCGA RNA-seq data as an approximation of its activity in 

patient samples (Andersson et al., 2014) since ChIP-seq data are not available for the large 

patient cohorts. Across 23 TCGA cancer types (Table S4), we focused on 7131 enhancers 

with detectable expression and identified the prognostic enhancers, those whose expression 

was significantly associated with patient survival times (log-rank test or univariate Cox 

model, FDR < 0.05; Table S1, STAR Methods). We observed a 2.0-fold enrichment of 

prognostic enhancers in the hEANTs relative to all enhancers (59.2 vs. 29.8%, Fisher’s exact 

test p = 1.8×10−3 and Binomial test = 1.5×10−3; Figure 3A). Indeed, the number of cancer 

types prognostically associated with a hEANT is much higher than that for an enhancer 

otherwise (0.70 vs. 0.36, p = 0.013). We also examined the associations between the 

hEANTs and somatic copy number alterations (SCNAs) of known cancer genes in the 

TCGA cohorts and identified many associations of hEANTs with the amplifications or 

deletions of cancer driver genes such as TP53, PTEN and EGFR in multiple cancer types 

(Figure 3B). Collectively, these results strongly support active roles of hEANTs in cancer 

development.

To more generally assess the impact of hEANTs on other aging-related diseases, we selected 

five well-known diseases from the PheGenI project (Ramos et al., 2014), including 

Alzheimer’s disease, Parkinson’s disease, hypertension, type-II diabetes and osteoporosis, 

and obtained their vulnerability loci identified from related genome-wide association 

studies. Interestingly, 11 hEANTs’ closest genes are associated with the loci identified for 

these diseases, leading to a 3-fold enrichment (p < 3.7×10−4, Figure 4, Table S5, Table S6). 

In comparison, there is even a depletion (although not significant) of the hEANTs’ closest 

genes for the susceptibility loci of five typical childhood diseases, including asthma, autism, 

juvenile arthritis, sickle cell anemia and type-I diabetes (Figure 4A). As previously reported, 

aging-related disease genes and aging-related genes have limited overlaps in most model 

organisms, indicating their functional differences (Fernandes et al., 2016). Consistently, the 

hEANT’s closet genes show no enrichment for aging-related genes (Figure 4A), suggesting 

that their associations with aging-related diseases were not due to the involvement of the 

general aging process (de Magalhaes et al., 2009).

hEANT-8 promotes Alzheimer’s disease by counteracting REST

To elucidate the molecular mechanism by which a hEANT plays a critical role in aging-

related diseases, we constructed a network of genes co-expressed with each hEANT using 
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the expression data of TCGA brain tumors (i.e., glioblastomas and low grade glioma), as the 

brain is the organ in which hEANTs are supposed to function. Interestingly, we identified a 

well-organized co-expression module containing 121 potential target genes for a hEANT on 

the 8q23.1 region of chromosome 8 (hereafter referred to as hEANT-8) in both cancer types 

(Pearson’s R > 0.3 and FDR < 0.01, STAR Methods, Table S7). We further validated the 

association between the module expression and hEANT-8 using the GTEx dataset of normal 

brain tissues (GTEx Consortium, 2015) (Figure 5A). Further analysis of TCGA copy 

number data revealed that copy number variations of hEANT-8 can lead to module activity 

changes, suggesting its role as an upstream regulator of the module (Figure S3). This 

module is associated with a panel of neural or mental diseases (Schriml et al., 2012) (Figure 

S4). Intriguingly, through the search for motifs enriched on the module genes, we found 

enrichment of the binding motif of REST (Figure 5B, >24 fold, p < 10−16), a well-studied 

transcription suppressor in neurons (Schoenherr et al., 1996), indicating the module genes’ 

functional similarity. To further validate its effects on enhancing the module activity, we 

generated HEK293T cell lines with homozygous hEANT-8 deletion using the CRISPR/Cas9 

genetic perturbation system (STAR Methods) and measured the expression levels of 11 

module genes positively correlated with the enhancer (Figure 5C; top 11 genes, Table S8). 

Out of the 9 genes with a detectable mRNA expression level, 7 genes showed a reduced 

expression after hEANT-8 deletion, and the reductions in 5 of them were statistically 

significant, ranging from 0.60~0.85 (Figure 5D). We also observed similar effects in 

SNB-75, a human brain tumor cell line: 6 out of the 9 hEANT-8 positively correlated genes 

with a detectable mRNA expression level showed a significant reduction after hEANT-8 

deletion (Figure 5E). These results confirmed the causal effects of hEANT-8 on the module 

activity.

Importantly, REST is a key checkpoint for avoiding Alzheimer’s disease when aging. The 

loss of the function of this gene in aged brains would abnormally elevate the expression level 

of its downstream targets, eventually leading to Alzheimer’s disease (Lu et al., 2014). We 

found that hEANT-8 showed expression patterns that were the reverse of those of REST and 

their shared targets, suggesting their opposite cellular functions (Figure 6A). Thus, 

hEANT-8 was predicted to be activated in diseased brains, and indeed this pattern was 

observed in an independent dataset (Scheckel et al., 2016) (one-tail t-test, p < 0.045, Figure 

6B). With its reverse effects of REST, hEANT-8 may contribute to the susceptibility to 

Alzheimer’s disease by abnormally activating the module, which should have been 

suppressed by REST (Figure 6C). These results provide a good illustration of how a hEANT 

is involved in the pathobiology of an aging-related disease.

Discussion

George Williams proposed the antagonistic pleiotropic theory that human aging-related 

diseases originate because natural selection would recruit molecular changes benefiting in 

the reproductive age even with late life costs. This theory has not been rigorously tested and 

its molecular mechanism remains largely unclear, even though some interesting cases of 

balancing selection have been reported. For example, the APOE gene has an allele 

generating the Apoe4 isoform that benefits young humans with heighten immune response 

to viruses while contributing to risks of aging-related diseases such as the Alzheimer’s and 
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higher blood cholesterol (Finch, 2010). A recent systematic analysis on aging-related genes 

and aging-related diseases genes found that for most of the model organisms studied 

(Fernandes et al., 2016), aging-related genes and aging-related diseases genes have few 

overlaps. The genetic links between aging and aging-related diseases are due to a small 

fraction of aging-related genes that tend to have a high network connectivity. This findings 

fit the antagonistic pleiotropic theory well and could be explained as that the general aging 

process is conducted by the related genes’ major functions, while the aging-related diseases 

are usually associated with the genes’ negatively pleiotropic functions. Moreover, the 

analysis found that while the aging-related genes tend to be more conserved than the overall 

genome (median dN/dS = 0.091), the aging-diseases genes show a higher dN/dS ratio 

(median = 0.137). The higher dN/dS ratio could be explained by either positive selection or 

relaxation, both of which don’t reject the concept of antagonistic pleiotropic.

In the present study, we followed the famous hypothesis of King and Wilson that human 

adaptations are largely driven by the molecular changes in regulatory elements and tested the 

antagonistic pleiotropic theory in terms of enhancer evolution. Our study identifies a novel 

evolutionary mechanism of how aging-related diseases may originate as the trade-off effects 

of adaptive enhancers recently acquired in human evolution, strongly supporting the theory. 

Our study links the molecular changes that once conferred some advantages in our long-term 

evolution with the vulnerability loci that contribute to the development of aging-related 

diseases in the modern human population, contributing to a deeper understanding of human 

evolution. Our results have several implications. First, a common practice in biomedical 

research is to focus on genetic elements with high conservation. But our observation 

emphasizes the pathological significance of elements newly evolved in our genome when 

studying aging-related diseases, especially those with a signature of positive selection (e.g., 

a non-conserved lncRNA). This notion helps prioritize candidate targets for functional and 

clinical investigations. Second, our study suggests that the genetic network underlying 

aging-related diseases is perturbed by many molecular changes without being subject to 

purifying selection after reproductive age, thereby creating complicated epistasis and endless 

complexity (Chen et al., 2017). This may help to explain the contrasting genetic patterns 

between many aging-related diseases and Mendelian diseases (Antonarakis and Beckmann, 

2006). Finally, because the trade-offs introduced by molecular changes in a gene are not 

necessarily related to the primary function of the gene, our results suggest that the 

pleiotropic effects (sub-functions) of a gene, rather than its major function, should be 

considered when studying aging-related diseases.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Han Liang (hliang1@mdanderson.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

HEK (human embryonic kidney) 293T cell line and SNB-75 cell line were obtained from 

the Characterized Cell Line Core Facility (CCLC) at MD Anderson Cancer Center. Both cell 
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lines were fingerprinted by short tandem repeat (STR) DNA profiling at CCLC. The sex of 

these two cell lines were female. HEK293T cells and the cell lines established based on 

HEK293T were cultured in Dulbecco’s modification of Eagle’s medium (DMEM) with 10% 

fetal bovine serum (Invitrogen) at 37°C and 5% CO2. SNB-75 cells and the cell lines 

established from SNB-75 were maintained in RPMI-1640 with 10% fetal bovine serum at 

37°C and 5% CO2.

METHOD DETAILS

Evolutionary rate analysis of enhancers—The FANTOM project annotated the 

expression patterns of enhancers in the human genome (Andersson et al., 2014). We 

obtained 32748 enhancers showing a tissue-specific expression pattern from http://

enhancer.binf.ku.dk/presets/facet_expressed_enhancers.tgz. Using the UCSC whole genome 

alignment chain files (which considered the synteny and orientation) and the liftOver tool, 

we aligned these enhancers to four primate genomes, including the chimpanzee (Pan 
troglodytes, PanTro4), gorilla (Gorilla gorilla, GorGor3), orangutan (Pongo pygmaeus 
abelii, PonAbe2) and monkey (Macaca mulatta, RheMac3) (Rosenbloom et al., 2015). The 

primate phylogeny is ((((Human, Chimpanzee), Gorilla), Orangutan), Monkey) (Locke et al., 

2011). Enhancers unmapped by the liftOver were considered as missing in a genome of 

interest. We then defined the origin of an enhancer on the deepest branch ahead of the last 

common ancestry that descended to all species with its ortholog. For example, an enhancer 

only aligned to the gorilla genome was considered to originate on B2 (Figure 1A). Table S1 

provides the evolutionary ages (branch) of all 32748 enhancers. For the given tissue TY and 

branch BX, the relative evolutionary rate was calculated as the ratio of the proportion of TY 

enhancers on BX to the proportion of enhancers expressed in TY among all enhancers. We 

only considered the tissue or cell types with >100 enhancers (n = 106). We combined the 

neuronal stem cell expressed enhancers (FANTOM ID CL:0000047) and neuron expressed 

enhancers (CL:0000540) and termed them as enhancers activated in nervous tissue (EANT). 

EANTs evolved on B4 were referred to as human-specific ENATs, or hEANTs. Table S2 

provides the details about the calculation of relative evolutionary rates in Figure 1B and C.

We used the analysis of covariance (ANCOVA) to study the dependency of evolutionary age 

on a series of factors, including EANT tissue type, GC content, enhancer length, and 

expression level. The evolutionary age was the response variable, where 1 was for enhancers 

on B4 or 0 for otherwise. The independent variable included tissue type (1 for EANTs or 0 

for otherwise), GC content, SNP density and enhancer length. SNP density was calculated 

based on the 1000 Genomes Project (1000 Genomes Project et al., 2012). The other factors 

were transformed into Z-scores first. The ANCOVA was performed using the R package 

anova. We also considered the effects of genome completeness and false alignments. The 

genome completeness data were obtained from the BUSCO database (Simao et al., 2015). 

We artificially introduced a 10% false positive/negative alignment rate by randomly adding/

removing 10% of the human enhancers missed/present in each of the four genomes. The 

resulting data were used to recalculate a relative evolutionary rate on B4. This procedure 

was repeated 100 times to estimate the impact of a 10% false alignment rate on our results.
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We used SNP allele frequencies in the 1000 Genomes Database to detect positive selection 

on the enhancers. Specifically, we obtained from the reference genome, for each enhancer, a 

2-kb sequence in which the enhancer is located in the middle. The allele frequencies of all 

SNPs on this sequence were calculated using the 1000 Genomes Project VCF files (http://

www.1000genomes.org/data#download) and then subjected to Fay & Wu’s H-index 

calculation (Fay and Wu, 2000). For the H-index, the simulation was performed using the 

default settings (http://www.genetics.wustl.edu/jflab/htest.html).

For each protein-coding gene, we measured its conservation level as the (1-dN/dS) after the 

human orangutan divergence (the rhesus and orangutan orthologs were used to infer the 

ancestry status), where dN/dS represents the ratio of the number of nonsynonymous 

substitutions per non-synonymous site (dN) to the number of synonymous substitutions per 

synonymous site (dS). Only genes with alignment >100 amino acids and dS >0.01 (n = 

16001) were considered to ensure the accuracy of the conservation calculation. For each of 

the 54 GTEx tissues, we measured a given gene’s expression bias as the ratio of its 

expression (log2RPKM) in the tissue to its median level across all tissues. We sorted all the 

protein-coding genes by their conservation and evenly divided them into 100 groups. Then 

we calculated the means of conservation and expression bias for genes in these groups and 

examined the correlation (Pearson’s R in Figure S2) between the genes’ conservation levels 

and their expression bias in a tissue.

Evolutionary mechanism analysis of hEANTs—Since the LiftOver tool could not 

provide detailed information on how the hEANTs originated, we searched the hEANTs and 

their flanking 500bp sequences in the four primate genomes using BLAST in order to 

examine their evolutionary mechanisms. We used the e-value of 10−25 as the cutoff of 

positive BLAST results and manually curated all BLAST results in the following five steps. 

(1) We classified the hEANTs (n = 15) without BLAST results in the primate genomes as De 
novo model (Figure 2A). (2) We determined hEANTs (n = 11) generated by rearrangement 

as indicated by their flanking sequences being BLAST to separated genomic regions in the 

primate genomes (Figure 2B). (3) For the other hEANTs, we picked their best hits in the 

four primate genomes and blasted them back in the human genome. If none of the best hits 

in the human genome is the hEANT itself, we classified it as duplication model (n = 16; 

Figure 2C). (4) We subjected the remaining hEANTs to Tandem Repeats Finder (TRF; 

default settings; https://tandem.bu.edu/trf/trf.html) for SSR identification. For 23 hEANTs 

with SSRs in all the genomes involved, we manually aligned them and found that all these 

hEANTs have their SRRs extended in the human genome, explaining why they could not be 

mapped to the primate genomes by LiftOver. Thus, they were classified as SSR model 

(Figure 2D, E). (5) The remaining 28 hEANTs could not be explained by any simple model 

and usually involved more than one of the four models, thereby being classified as complex 

model (Figure 2G). We calculated the SSR rate of hEANTs, total enhancers, and the genome 

background using TRF with default settings. The genome background was calculated by 

randomly generating pseudo-enhancers (n = 32748) with the same length distribution for 

100 times.
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Analysis of cancer genomic data—For enhancer expression analysis, we first re-

annotated the 32748 FANTOM enhancers according to the UCSC gene annotation file 

(refgene.txt) and removed the enhancers that overlapped with known genes or intron regions, 

resulting in a subset of 7,131 enhancers for which the RNA-seq reads can be confidently 

assigned (Table S1). We obtained TCGA RNA-seq BAM files from UCSC CGHub and our 

dataset contained >8,000 tumor samples of 23 cancer types. We obtained patient survival 

data from the Broad Firehose website, from which 8,380 samples have available overall 

patient survival data and 6,837 samples have progression-free survival data for the analysis 

(Cancer Genome Atlas Research et al., 2013) (Table S4). We calculated the RPKM values of 

the enhancers in TCGA samples as previously described (Li et al., 2015). For each cancer 

type, we further filtered enhancers without detectable expression in >10% of the samples. 

For each cancer type, we identified prognostic enhancers (overall survival or progression-

free survival) using the Cox-regression model and the log-rank test. In the analysis, q < 0.05 

(John Storey’s correction) in any cancer type were considered statistically significant.

For the SCNA-enhancer association analysis, we obtained the copy number information of 

586 cancer driver genes (Cancer Gene Census) in 8948 tumors of 23 cancer types. The 

association between a hEANT expression and a CGC gene was examined using Spearman’s 

rank correlation within each cancer type. Significant correlations were identified (q < 0.01; 

John Storey’s correction) in a given cancer type.

Gene set enrichment and disease-associated gene analysis—We identified the 

nearest coding gene for each of the 93 hEANTs and pooled them as the input for enrichment 

set. Gene set enrichment analysis was based on the online tools on GSEA website (http://

software.broadinstitute.org/gsea/index.jsp), using the default setting (Subramanian et al., 

2005). Gene set collections included in this analysis were CP:BIOCARTA, CP:KEGG and 

CP:REACTOME. For hEANTs-disease analysis on Figure 4, we first obtained a gene-

disease association network in the PheGenI database (Ramos et al., 2014), from which we 

manually selected (i) five typical aging-related diseases, including Alzheimer’s disease, 

Parkinson’s disease, hypertension, type-II diabetes, and osteoporosis; and (ii) five childhood 

diseases as a control, including asthma, autism, juvenile arthritis, sickle cell anemia and 

type-I diabetes. The aging-related gene list was obtained from Human Ageing Genomic 

Resources (Tacutu et al., 2017). We used a chi-squared test to compare hEANT neighbor 

genes with known genes associated with these two groups of diseases to determine the 

significance of the enrichment. Table S5 and Table S6 provide the data related to this 

section.

Case study of hEANT-8 and Alzheimer’s disease—We constructed hEANT co-

expression networks using TCGA glioblastoma (GBM) and low grade glioma (LGG) 

datasets (Table S4). For each hEANT, we identified genes co-expressed (absolute Pearson R 

> 0.3 and FDR < 0.01) in both datasets to form a hEANT-centered co-expression module. 

We found 121 co-expressed genes for the hEANT-8 on chr8:9764051–9764441, while no 

other hEANT had a module size of >5 (Table S7). Disease ontology analysis on the 

hEANT-8 module was based on the R package DOSE using the default setting (Figure S4) 

(Schriml et al., 2012; Yu et al., 2015). We further obtained 1124 samples of different brain 
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regions from the GTEx dataset to validate the co-expression module (GTEx Consortium, 

2015). The overall activity of the module (the x-axis in Figure 5A) in a given sample was 

calculated as the sum of all genes’ log2RPKM values. For the copy number analysis in 

Figure S3, we classified the patients by the copy number of hEANT-8, where patients with 

<0.9, 0.9~1.1 and >1.1 copies of hEANT-8 were grouped respectively as copy number loss, 

copy number neutral and copy number gain. The overall activity of the module was 

calculated as previously described. For the motif analysis, the REST target genes were 

obtained from the GSEA database under the gene set ID V$NRSF_01 which was curated 

from previous studies (Schoenherr and Anderson, 1995; Schoenherr et al., 1996). To 

compare the hEANT-8 expression between normal and diseased brains, we obtained the 

dataset from the GEO (accession number, GSE53697) (Scheckel et al., 2016). The original 

dataset contains brain samples representing different pathological stages of Alzheimer’s 

disease (AD) from a normal condition to serious AD. We filtered two samples from patients 

of extremely old age (≥100 years). For the remaining samples, six with Braak stage = 0 were 

used as the normal control group, while six with Braak stage ≥5 were used as the disease 

group (Braak and Braak, 1991). We used Student’s t-test to assess if the expression of 

hEANT-8 is higher in the disease group.

CRISPR/Cas9 perturbation of hEANT-8—We designed 2/3 gRNA sequences using 

Cas-Designer (http://www.rgenome.net/cas-designer/) within 150 bp sequences up/down 

stream of hEANT-8, generating 6 gRNA combinations. We chose up/downstream gRNA 

targeting the genomic sequence CCTCTTCTTCCACCTCCCCG/

CGCAGAAGTGCGCTCCACGA to generate hEANT-8 deletion clones. The up/down 

stream gRNAs were cloned into cas9 plasmid (Addgene 48138/64324) with GFP/mCherry 

as reporters. In day 0, each combination of gRNAs was transfected, using lipofectamin 3000, 

into HEK293T cells grown in Dulbecco’s modified Eagle’s medium (DMEM) or SNB-75 

cells (human brain origin) grown in RPMI-1640, both with 10% fetal bovine serum 

(Invitrogen) at 37 °C and 5% CO2. In the day 3, the cells were collected for gRNA efficiency 

examination using genomic PCR. We transfected the gRNA plasmid mixture, and then 

sorted the GFP/mCherry positive single cells into 96-well plates two days after transfection 

using MoFlo Astrios Cell Sorters (Beckman Coulter, for HEK293T cells), or three days after 

transfection using BD FACSAria II Cell Sorter (BD Biosciences, for SNB-75 cells) for 

colony expansion. The hEANT-8 deletion clones were examined using genomic PCR after 

~1 month (HEK293T cells) or ~2 months (SNB-75 cells). Their RNAs were extracted using 

RNeasy Plus Mini Kit (Qiagen), and 1 μg (for HEK293T cells) or 2 μg (for SNB-75 cells) 

total RNAs were reversely transcribed into cDNA with High Capacity cDNA Reverse 

Transcription Kit (Thermo Fisher Scientific). qRT-PCR was performed with SYBR Select 

master mix (Thermo Fisher Scientific) and in Mastercycler RealPlex (Eppendorf). Table S8 

lists the qRT-PCR primer sequences of hEANT-8 target genes. For HEK293T cells, we 

obtained 4 single-cell clones with homologous hEANT-8 deletion, and for each single-cell 

clone, 3~4 experimental replicates were carried out; and for each gene in each replicate, 

qRT-PCR measurements were repeated for 3 times. For SNB-75 cells, we obtained one 

single-cell clone with heterozygous hEANT-8 deletion, and for each gene, qRT-PCR 

measurements were repeated for 4 times. For both HEK293T and SNB-75 cell, 2 out of the 
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11 hEANT-8 positively correlated genes had a baseline expression level lower than our qRT-

PCR detection limit (Ct > 40) and were excluded from the analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

The definitions of significance for the various statistical tests are described and referenced in 

the respective Method Details sections.

DATA AND SOFTWARE AVAILABILITY

Data and Software availability are described in Key Resources Table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Identify a group of human-specific enhancers that are activated in neural 

tissues

• Extensive associations of these enhancers with cancer and other aging 

diseases

• One such enhancer potentially promotes Alzheimer’s disease by 

counteracting REST

• Provide systematic evidence of antagonistic pleiotropy in human evolution
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Figure 1. Accelerated gain of hEANTs during human-specific evolution
(A) The primate phylogeny. B0… B4 donate the branch segments of different evolutionary 

ages. (B) Relative B4 evolutionary rate of all tissues. All enhancers (n = 32748) were 

categorized to be expressed in one or more of the tissue types annotated by the FANTOM 

project. Only the tissue types with >100 enhancers were considered (n = 106). The 

background rate was calculated based on enhancers evolved other than B4. (C) Accelerated 

gain of hEANTs in the primate evolution. P values were calculated using a chi-squared test 

(* for p < 0.05, ** for p < 0.01, and *** for p < 0.0001). Error bars represent mean ± SE. 

(D) Proportion of enhancers with a negative Fay & Wu’s H value (an indication of an excess 

of high-frequency derived alleles). A chi-squared test was used to compare the difference 

between any two groups. Error bars represent mean ± SE. See also Figures S1, S2 and 

Tables S1, S2, S3.
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Figure 2. Mechanistic models of hEANT origination
(A) De novo model. (B) Duplication model. (C) Rearrangement model in which an enhancer 

is created by joining distant genome sequences. (D) Simple sequence repeat (SSR) model in 

which a hEANT evolves through SSR extension. (E) Alignments of hEANT-63 in the 

primate lineage. (F) Enrichment of SSR in the hEANTs. The genome background was 

calculated by randomly generating pseudo-enhancers with the same length distribution 

(STAR Methods). P values were calculated with permutation tests for enhancer/background 

comparison and with chi-squared test for hEANTs/enhancer comparison. Error bars 

represent mean ± SE. (G) A summary of hEANTs evolved through different models.
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Figure 3. The association of hEANTs with cancer
(A) Enrichment of hEANTs in enhancers whose expression levels were significantly 

correlated with cancer patients’ survival times. The analysis only included 7131 out of the 

32748 enhancers on genomic regions without overlaps with any previously annotated 

transcriptional events (e.g., genes, lincRNAs, and microRNAs). Prognostically relevant 

enhancers were identified in at least one of the 23 TCGA cancer types surveyed (q < 0.05, 

Table S4). P value was calculated using a Fisher’s exact test. (B) A network of associations 

between hEANTs and SCNAs of caner driver genes. See also Table S4.
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Figure 4. The association of hEANTs with other aging-related diseases
(A) Enrichment of hEANTs’ closest coding genes in genes associated with aging-related 

diseases and aging-related genes. Aging-related diseases included Alzheimer’s disease, 

Parkinson’s disease, hypertension, type-II diabetes and osteoporosis; childhood diseases 

included including asthma, autism, juvenile arthritis, sickle cell anemia and type-I diabetes. 

For disease association analysis, all genes included in the PheGenI database were used as the 

background gene set. The list of aging-related genes was obtained from Human Ageing 

Genomic Resources. P value was calculated using a chi-squared test. Error bars represent 

mean ± SE. (B) A network showing the connections between hEANTs’ closest genes and 

aging-related diseases. See also Table S5 and Table S6.

Chen et al. Page 19

Cell Syst. Author manuscript; available in PMC 2019 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Regulation of hEANT-8 on a downstream module enriched with REST target genes
(A) The correlation between hEANT-8 expression and the module expression using the 

GTEx samples of the central nervous system (n = 1124). The module’s overall expression 

activity was calculated as the sum of log2RPKM across all 121 module genes in a sample. 

The correlation was measured as Spearman’s correlation coefficient (rho). (B) Enrichment 

of the hEANT-8 target genes (co-expressed module genes) in the REST target genes (genes 

with a REST binding motif). P value was calculated using a chi-squared test. (C) Co-

expression between hEANT-8 and the 14 genes identified in (B). The colors indicate the 

correlations with REST or hEANT-8 expression level. (D) and (E) Expression changes of the 

9 detectable genes whose expression is positively correlated with hEANT-8 in (C) after its 

deletion in HEK293T (D) and SNB-75 cells (E). Relative expression levels were calculated 

as the fold change of the WTs. Error bars show mean ± SE. P values were calculated by t-

test with Storey’s correction of multiple comparison (* for p < 0.05, ** for p < 0.01). See 

also Figure S3, Figure S4, Table S7, Table S8.
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Figure 6. The role of hEANT-8 in promoting Alzheimer’s disease by counteracting REST
(A) Correlation between hEANT-8 and REST using the same data as Figure 5A. (B) A 

higher expression of hEANT-8 in diseased tissues (n = 6) than in normal brain tissues (n = 

6). P value was based on a one-sided t-test. (C) Schematic representation of the hEANT-8/

REST counteractions in the development of Alzheimer’s disease.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Reference genomes (hg19, PanTro4, GorGor3, PonAbe2, and Rh3Mac3) UCSC Genome Browser http://hgdownload.soe.ucsc.edu/downloads.html

TCGA RNA-seq BAM files Genomic Data Commons https://portal.gdc.cancer.gov/legacy-archive/search/f

TCGA somatic copy number alteration thresholded data Firehose Broad GDAC https://gdac.broadinstitute.org/

TCGA gene expression data Firehose Broad GDAC https://gdac.broadinstitute.org/

TCGA patient clinic data cBioPortal http://www.cbioportal.org/

FANTOM enhancer annotation (Anderson et al., 2014) http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_2.bed

Genome completeness data (Simao et al., 2015) http://busco.ezlab.org/

1000 genome project SNP data 1000 Genomes Project Consortium http://www.1000genomes.org/data#download

Phenotype–Genotype Integrator (PheGenI) database (Erin M Ramos et al., 2014) https://www.ncbi.nlm.nih.gov/gap/phegeni

The Alzheimer’s Disease RNAseq dataset (Scheckel C. et al., 2016) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53697

GTEx RNAseq dataset dbGAP https://www.gtexportal.org/home/

Software and Algorithms

LiftOver UCSC Genome Browser https://genome.ucsc.edu/cgi-bin/hgLiftOver

Samtools (Li et al., 2009) http://samtools.sourceforge.net/

Tandem Repeats Finder (G Benson 1999) https://tandem.bu.edu/trf/trf.html

Disease ontology analysis (Guangchuang Yu et al., 2015) https://www.bioconductor.org/packages/3.7/bioc/vignettes/DOSE/inst/doc/DOSE.html

Fay & Wu H-test (Fay and Wu, 2000) http://www.genetics.wustl.edu/jflab/htest.html

Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003; Subramanian et al., 
2005)

http://software.broadinstitute.org/gsea/index.jsp

Experimental Models: Cell Lines

HEK293T MD Anderson Characterized Cell Line 
Core Facility

HEK293T

SNB-75 MD Anderson Characterized Cell Line 
Core Facility

SNB75

Plasmids

pSpCas9(BB)-2A-GFP (PX458) This study Addgene: Plasmid #48138

pU6-(BbsI)CBh-Cas9-T2A-mCherry This study Addgene: Plasmid #64324

Oligonucleotides

sgRNA-L2 target: CCTCTTCTTCCACCTCCCCG This study NA

sgRNA-L3 target: ACTCCCGGTCTCCACGGCTT This study NA

sgRNA-R1 target: CGCAGAAGTGCGCTCCACGA This study NA

sgRNA-R2 target: TAGGTCTGATGTCCGCGGGA This study NA

sgRNA-R3 target: GAAAGACACAAACACCGCCA This study NA

5′ PCR primer for detecting hEANT-8 deletion: 
GCTGAGGTCGAGCTCCTTTT

This study NA

3′ PCR primer for detecting hEANT-8 deletion: 
AAATGGCCTCGAAGCGAGAA

This study NA

PCR primer sequences for hEANR-8 coexpression module genes This study Table S8
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