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ABSTRACT Due to issues of practicality and confidentiality of genomic data sharing on a large scale, typically only meta- or mega-
analyzed genome-wide association study (GWAS) summary data, not individual-level data, are publicly available. Reanalyses of such
GWAS summary data for a wide range of applications have become more and more common and useful, which often require the use
of an external reference panel with individual-level genotypic data to infer linkage disequilibrium (LD) among genetic variants.
However, with a small sample size in only hundreds, as for the most popular 1000 Genomes Project European sample, estimation
errors for LD are not negligible, leading to often dramatically increased numbers of false positives in subsequent analyses of GWAS
summary data. To alleviate the problem in the context of association testing for a group of SNPs, we propose an alternative estimator
of the covariance matrix with an idea similar to multiple imputation. We use numerical examples based on both simulated and real data
to demonstrate the severe problem with the use of the 1000 Genomes Project reference panels, and the improved performance of our
new approach.
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DUE to logistic reasons and privacy concerns, individual-
level genotypic and phenotypic data from large genome-

wideassociationstudies(GWAS)areoftennotpubliclyavailable;
in contrast, GWAS summary statistics, in the formof the z-scores
and/or P-values of single SNPs based on their univariate/
marginal associations with a GWAS trait, are publicly avail-
able. Interestingly, as first demonstrated by Yang et al. (2012),
one can combine GWAS summary statistics with a reference
panel with individual-level genotypic data (that mimic the
original population for the GWAS summary data) to conduct
conditional and joint (COJO) analyses; that is, one can esti-
mate and test the joint effects of multiple SNPs in a genomic
region such as a gene or a pathway, whichmay bemore power-
ful and/or interpretable than the standard/marginal single
SNP-based analysis. In addition, based on a joint regression
model for multiple SNPs, one can conduct COJO analysis:
conditional on (i.e., after accounting for the effects of) other

SNPs, one can estimate and test for possible association of one
SNP (or multiple SNPs), which is useful in sorting out multiple
causal SNPs as in fine mapping (Hormozdiari et al. 2014;
Kichaev et al. 2014; Chen et al. 2015). The usefulness of such
analyses and other ones on some publicly available GWAS
summary data sets has been nicely reviewed in Pasaniuc and
Price (2017).

A critical issue in these approaches with GWAS summary
statistics is to estimate linkage disequilibrium (LD) among the
SNPs in a genomic region using a reference panel, which is
necessary for estimating the correlation or covariance matri-
ces of variousparameter estimates and their associated testing
statistics in any subsequent conditional or joint analysis. As
pointed out by Pasaniuc and Price (2017), “Conditional as-
sociation and imputation using summary statistics crucially
rely on accurate LD information from a population reference
panel. Even in the best case, when the reference population
closely matches the GWAS population, the relatively small
size of reference panels for which LD information is publicly
available (typically hundreds or at most thousands of indi-
viduals) makes accurate estimation of a large number of
LD parameters a challenge.” Although regularization-based
methods for estimating LD or covariance matrices have
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been discussed in other related contexts, as to be shown, it is
unclear how to choose tuning parameters associatedwith any
regularization-based method in the current context of statis-
tical inference, not of estimation or prediction (Pasaniuc et al.
2014; Kichaev and Pasaniuc 2015; Shi et al. 2016). However,
in spite of the obvious importance of the issue, it has been
largely ignored in practice. Although a small reference panel
with a sample size in the hundreds, such as any of the
1000 Genomes Project (1000G) racial/ethnic group-specific
panels, is often used, it is striking that there has been barely
any assessment on its effects on subsequent statistical infer-
ence. As will be shown here, both expectedly and surpris-
ingly, it often leads to dramatically inflated type I error
rates and thus large numbers of false positives. We also point
out that Yang et al. (2012) used a reference sample size of
over 6000,. 10 times larger than that of the popular choice
with the 1000G data in practice. Even though the total sam-
ple size of the 1000G data (1000 Genomes Project Consor-
tium et al. 2015) is . 3000, due to the presence of multiple
populations or ethnic groups, its sample size for a single pop-
ulation is no more than a few hundreds, which is often used
in practice.

We emphasize that the underlying issue discussed here is
quite general and wide-ranging: although our focus is on
COJO analyses of multiple SNPs such as in gene-based testing
and fine mapping, any approach using GWAS summary data
and a reference panel may suffer from the same problem, no
matter it is polygenic risk prediction (Vilhjalmsson et al.
2015), or inferring genetic correlations among complex traits
(Bulik-Sullivan et al. 2015), or Mendelian randomization for
causal inference (Burgess et al. 2013). Very recently Benner
et al. (2017) demonstrated the severe problem in the context
of fine-mapping, while we consider both conditional and
global testing with a group of SNPs. More importantly, we
propose a new method to alleviate the problem. We note
that, even if a reference panel comes from the same popula-
tion of the GWAS data, using the reference data with a small
sample size may still lead to increased numbers of false pos-
itives. Of course, if the reference sample is from a different
population, the situation becomes worse; here we mainly
focus on the former case. The main issue is the ignorance of
the small sample size of the reference panel, and thus its
associated estimation errors or uncertainties. Accordingly,
we propose using an idea similar to multiple imputations
(MIs) (Rubin 1996) to alleviate the problem. We provide
numerical examples based on both simulated and real data

to show the impact of small reference panels, even when they
are drawn from the same GWAS population, and the effec-
tiveness of our proposed MI-type approach.

Methods

To be concrete and general, we focus on the joint analysis of a
groupofSNPs inagenomic regionandon theCOJOanalysis of
oneof theSNPs (after accounting for theeffects of other SNPs)
with a single quantitative trait. For a quantitative trait with a
normal distribution, although an F-test is exact, due to the
large sample size of a typical GWAS, we restrict our attention
to the asymptotically equivalent x2 test.

Suppose that we are interested in L SNPs and one trait,
denoted by Xl ðl ¼ 1 . . . LÞ and Y;which are n3 1 vectors for
n subjects. Given the summary statistics bbl and cvarðbblÞ in
marginal analysis

Y ¼ b0 þ blXl þ e; (1)

as well as C; an estimate of the correlation matrix of the SNPs
from a reference panel, we can obtain the regression coeffi-
cient estimates and their covariancematrix, denoted as bb andbS, respectively (Yang et al. 2012), in the joint model

Y ¼ b0 þ b1X1 þ b2X2 þ :::þ bLXL þ e: (2)

The Wald test statistic is

W ¼ bb9bS21bb: (3)

Under the global/overall null hypothesis H0: b ¼
ðb1 . . . bL Þ’ ¼ 0; W asymptotically (approximately) fol-
lows a x2 distribution with L d.f. When the covariance matrixbS is not invertible, we use the Moore–Penrose generalized
inverse and modify the d.f. as the rank of the covariance
matrix.

From our experience, using the estimated correlations of
the SNPs based on a small reference panelmay lead to inflated
type I errors, since bS may not be accurate enough. From a
different angle, we can regard that using the reference sam-
ple only once to estimate LD among the SNPs ignores the
nonnegligible uncertainty in the resulting estimate due to
the small sample size. To account for the estimation uncer-
tainty, we borrow the idea of MIs (Rubin 1996) and propose a
MI-type method. Specifically, in addition to using the refer-
ence panel to build onemodel and obtain bb and bS;we can use

Table 1 Type I error rates for simulations in a region with eight SNPs, none of which was associated with the trait

nref

H0 : b1 ¼ 0 H0 : b ¼ 0

T ¼ 1 T ¼ 5 T ¼ 10 T ¼ 1 T ¼ 5 T ¼ 10 T ¼ 20 T ¼ 30 T ¼ 50

900 0.0531 0.0504 0.0502 0.0621 0.0518 0.0507 0.0512 0.0509 0.0510
500 0.0559 0.0504 0.0506 0.0694 0.0520 0.0500 0.0507 0.0499 0.0507
379 (1000G A) 0.0548 0.0516 0.0520 0.0092 0.0062 0.0055 0.0057 0.0057 0.0057
Ind 0.0515 0.0515

The nominal significance level was at 0.05; in each set-up, there were 10,000 replications; the genome-wide association study sample size was n ¼ 1000: Ind, individual.
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the data ðT2 1Þ more times to get ðT2 1Þ estimates of the
coefficients, and then inflate the covariance estimates for a
more conservative inference (to battle the issue of inflated
type I errors). We denote the parameter estimate and its co-
variance matrix based on the complete reference panel as bb1
and bS1: In each imputation t ðt. 1Þ; sample nref subjects
from the nref subjects in the reference panel with replace-
ment. Take these subjects as the reference sample to build
a joint model. Estimate the coefficients as bbt and its covari-
ance matrix as bSt: Calculate bb and bS using the following
formulas, then carry out the Wald test (3):

bb ¼ bb1;

Vw ¼ bS1;

Vb ¼
1

T2 2

XT
t¼2

ðbbt 2 ebÞðbbt 2 ebÞ9;

bS ¼ Vw þ ð1þ 1
T
ÞVb;

eb ¼ 1
T2 1

XT
t¼2

bbt: (4)

From our experience, as in MI, usually setting T # 50 should
be enough. We can regard the existing approach of using the
complete reference panel only once as a special case of our
proposed MI-type approach with T ¼ 1.

COJO analysis on an individual SNP can be conducted
based on bb and bS; which may be based on individual-level
data, the complete reference sample, or MI-type estimation.
For example, if we would like to test H0j: bj ¼ 0 against H1j:
bj 6¼ 0; then the Wald test statistic is

Wj ¼ bbj
2�bSjj; (5)

where bSjj is the jth diagonal element of bS: Under the null
hypothesis H0j, the test statistic follows a x2 distribution with
1 d.f.

There are four ways to conduct a COJO analysis on a SNP
(conditioning on other SNPs) or a group of SNPs. The first,
denoted “Ind,” is based on using individual-level data. The
second uses summary statistics but the LD matrix X’X is esti-
mated from the original data (i.e., assuming the availability of
LD from the original data); it was confirmed to give exactly
the same results as that of the first method Ind, and hence is
omitted in the sequel. The third one is the naive method of
using summary statistics with a reference panel to estimate
LD or the matrix X’X only once, i.e., with T ¼ 1: The fourth
method, denoted “Sum-MI,” is our proposed new MI-type
method with T.1:

Alternatively, a general class of approaches to better esti-
mate LD or covariance matrices is to apply regularizations:
one is to truncate the eigenvalues of a matrix based on its
singular valuedecomposition(SVD) (Shi et al.2016),while the
other is to impose a penalty like the ridge penalty (Pasaniuc
et al. 2014; Kichaev and Pasaniuc 2015), which has been stud-
ied in other contexts. The general ideas can be applied here.

Table 2 Type I error rates of the regularization methods for simulations in a region with eight SNPs, none of which was associated with
the trait

nref

Ridge penalty SVD truncation (number of eigenvalues)

l ¼ 0 l ¼ 0:05 l ¼ 0:1 l ¼ 0:2 S ¼ 5 S ¼ 6 S ¼ 7

900 0.0621 0.0248 0.0164 0.0108 0.920 0.0140 0.0362
500 0.0694 0.0270 0.0175 0.0115 0.833 0.0162 0.0400
379 (1000G A) 0.0092 0.0048 0.0048 0.0042 0.127 0.0022 0.0046
Ind (individual) 0.0515

The null hypothesis tested was H0 : b ¼ 0 with the nominal significance level at 0.05; in each set-up there were 10,000 replications; the genome-wide association study
sample size was n ¼ 1000: SVD, singular value decomposition; Ind, individual.

Table 3 Empirical power for simulations in a region with eight SNPs

b1 nref

H0 : b1 ¼ 0 H0 : b ¼ 0

T ¼ 1 T ¼ 5 T ¼ 10 T ¼ 1 T ¼ 5 T ¼ 10 T ¼ 30 T ¼ 50

0.01 900 0.738 0.739 0.739 0.408 0.395 0.393 0.398 0.399
500 0.738 0.737 0.737 0.415 0.388 0.388 0.388 0.389

379 (1000G A) 0.736 0.734 0.738 0.279 0.259 0.257 0.249 0.250
Ind 0.731 0.405

0.015 900 0.970 0.970 0.970 0.808 0.798 0.800 0.798 0.798
500 0.971 0.970 0.971 0.810 0.793 0.794 0.793 0.792

379 (1000G A) 0.970 0.970 0.970 0.722 0.711 0.710 0.702 0.702
Ind 0.970 0.806

The nominal significance level was at 0.05; in each set-up there were 3000 replications; the genome-wide association study sample size was n = 1000. 1000G, 1000 Ge-
nomes Project; Ind, individual.
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Specifically, we can decompose bC; the covariance matrix of the
SNPs, estimated from the complete reference panel (with T=
1), as

bC ¼
XS
s¼1

usdsus9; (6)

where dl; ul are the lth largest eigenvalue and the lth eigen-
vector of bC: Applying the ridge penalty is equivalent to replac-
ing bC with

PS
s¼1usðds þ lÞus9; while the truncation is to

replace bC with
PS

s¼1usdsus9; l$ 0 and 0, S, L are the cor-
responding tuning parameters. Instead of bC; one can
also apply each of the two regularization methods to the
estimatedX’X, the LDmatrix. Thenwe can carry out theWald
test as usual. As expected and to be shown, the performance
of the regularizationmethods critically depends on the choice
of the tuning parameters; however, differing from estimation
and prediction, it is quite difficult and largely unknown how
to choose tuning parameters for a regularization method in
the current context of hypothesis testing.

Data availability

The 2013 lipid data (Willer et al. 2013) is publicly available at
http://csg.sph.umich.edu/abecasis/public/lipids2013/. The
Lung Health Study (LHS) data can be downloaded from the
database of Genotypes and Phenotypes (dbGaP) database
(accession: phs000335.v3.p2) by request. Information on
the WTCCC (Wellcome Trust Case Control Consortium) data
and how to apply for access can be found at https://www.
wtccc.org.uk/info/access_to_data_samples.html. The method
is implemented and freely available in R package jointsum at

https://github.com/yangq001/conditional. The package will
also be available on CRAN soon.

Results

Simulations

To investigate the reference panels’ impact on the testing
performance, we first did some simulation studies. To be as
realistic as possible, we used the individual-level genotypic
data of 2938 subjects in the control group from the WTCCC
data (Wellcome Trust Case Control Consortium 2007). We
randomly chose some SNPs in genomic regions on chromo-
some 19 so that none of the pair-wise (absolute) correlations
were . 0.9. For power study, we needed to specify effect
sizes, so we used the lipid data (Willer et al. 2013) to build
a joint model for triglycerides (TGs) vs. SNPs. Denote its
coefficients by b*: Since the lipid data only contains summary
statistics, we used the correlations of the SNPs estimated from
the WTCCC data. We scaled the significant effects (P-value ,
5e28) while forcing insignificant effects as zero to obtain a
true regression model. Then, we generated a quantitative trait
for the 2938 subjects using themodel (2) with no intercept and
bi ¼ kb*

i if b*
i ðfor SNP iÞ was significant; bi ¼ 0 other

wise, and the error term ewas an independent normal random
variable with mean 0 and variance obtained from the joint
model. For each replication, we randomly chose nref and n
subjects from N ¼ 2938 subjects as the reference panel and
the GWAS sample, respectively.

For the approaches based on summary statistics, in addi-
tion to a subsample of the WTCCC data, we also chose the

Table 4 Empirical type I error rate (with b1=0) and power (with b1 ¼ 0:001Þ for simulations in 100 regions with 5–37 SNPs (17.8 on
average), none or only the first one of which was associated with the trait

b1 nref

H0 : b1 ¼ 0 H0 : b ¼ 0

T ¼ 1 T ¼ 5 T ¼ 10 T ¼ 1 T ¼ 5 T ¼ 10 T ¼ 30 T ¼ 50

0 900 0.089 0.024 0.022 0.162 0.020 0.016 0.014 0.013
500 0.107 0.022 0.020 0.197 0.022 0.014 0.012 0.011

379 (1000G A) 0.171 0.048 0.045 0.352 0.085 0.072 0.064 0.063
Ind 0.053 0.055

0.001 900 0.580 0.579 0.577 0.827 0.742 0.736 0.732 0.733
500 0.605 0.577 0.576 0.847 0.740 0.732 0.727 0.724

379 (1000G A) 0.596 0.597 0.589 0.822 0.759 0.745 0.738 0.735
Ind 0.495 0.794

The nominal significance level was at 0.05; in each set-up there were 3000 replications (30 per region); the genome-wide association study sample size was n ¼ 1000:
1000G, 1000 Genomes Project; Ind, individual.

Table 5 Numbers of the significant sliding windows for global testing with the LHS data

U j Gap f Ind T ¼ 1 T ¼ 5 T ¼ 10 T ¼ 20 T ¼ 30 T ¼ 50

5111 20 1 5092 0 20 4 0 0 0 0
20 255 0 2 1 0 0 0 0

50 1 5062 0 103 51 17 4 0 0
50 102 0 7 3 2 1 0 0

The nominal significance was at 0.05 with the Bonferroni adjustment, with a cutoff 0.05/# windows. The reference sample size was nref ¼ 379 based on the 1000G
A reference panel. U; j; f , and Gap were the total number of SNPs, window size, the number of windows, and the moving-step/gap size, respectively. 1000G, 1000 Genomes
Project; Ind, individual.
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1000G data as our reference panel. We used the 379 CEU
(Utah Residents with Northern and Western Ancestry) sam-
ples from the1000Gphase I version3Shapeit2Referencedata
from the KGG software website (Li et al. 2012), denoted as
1000G A. We calculated the rejection rates based on 10,000
replications for the null case.

In a representative region with eight SNPs, as shown in
Table 1, in both COJO analyses, using a reference sample of
size 500 or 900 drawn from the same population led to
inflated type I error rates, while our proposed approach
largely corrected the problem with a small T= 10. It is note-
worthy that using the 1000G reference panel also gave an
inflated type I error rate for the COJO analysis in the naive
approach, but yielded very conservative global testing. One

possible explanation for the latter is the possible difference
inherent between the 1000G data and the WTCCC data: the
correlation structures of the eight SNPs in the reference data
were different from that of the WTCCC data, leading to a
huge difference in the test statistics. Since the Wald test sta-
tistic involves the inverse of the correlation matrix, we exam-
ined the eigenvalues of the inverse correlation matrices
estimated from the individual-level WTCCC data and that
from the 1000G reference data: their largest eigenvalues
were 17.1 and 14.6, respectively, explaining why using the
1000G reference data led to a lower rejection rate than that
of the nominal level. For this situation, it is unknown how to
avoid conservative inference; our method cannot avoid it
either.

Figure 1 QQ (quantile-quantile) plots for the Lung Health Study data. j and the gap size are both 20.

Table 6 Numbers of the windows with the first SNP being significant in COJO analysis with the LHS data

U j Gap f Ind T = 1 T ¼ 5 T ¼ 10 T ¼ 30 T ¼ 50

5111 20 1 5092 0 1 0 0 0 0
20 255 0 0 0 0 0 0

50 1 5062 0 2 0 1 1 1
50 102 0 0 0 0 0 0

The statistical significance cutoff was 0.05/# windows. U; j; f , and Gap were the total number of SNPs, window size, the number of windows, and the moving-step/gap size,
respectively. Ind, individual.
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We also considered the two regularization methods. Table
2 shows the results for regularizing X’X. As expected, the
performance critically depends on the choice of the tuning
parameter, which is unknown. The same conclusion can be
drawn on regularizing the covariance matrix Ĉ: For example,
for the SVD-truncation method keeping S = 3, 5, and 7 top
eigenvalues: the empirical type I error rates were (1) 0.002,
0.012, and 0.039, respectively, with the reference panel of
900 subjects and (2) 2e24, 0.001, and 0.005, respectively,
with the 1000G A reference panel.

For empirical power, as shown in Table 3, in all situations
corresponding to the anticonservative inference of the naive
approach, our proposed method barely lost power as com-
pared to the individual-level data-based method. On the
other hand, for the global testing, due to the its conservative-
ness with the use of the 1000G A reference panel (for its
possible difference from the WTCCC data), there was some
power loss from the naive and our new methods based on
summary statistics as compared to the individual-level data-
based method; nevertheless, at least compared to the naive
method, our method lost only minimal power.

We did another simulation with 100 randomly selected
regions, each including 5–37 SNPs. Most of the regions were
larger than the region in Table 1. As shown in Table 4, again
the naïve method could not control the type I error rate while
the new method performed much better, although the new
method became conservative as T went up. A possible expla-
nation is that the sample size needed to estimate the LD
accurately for a larger number of SNPs should be larger.
With relatively small reference samples, the estimation of

the regression coefficients is unstable, leading to large Vb and
thus less significant test statistics. Nevertheless, the perfor-
mance improved as the reference sample size increased from
500 to 900 with little loss of power.

LHS data

Next, we applied the methods to the LHS data with 4387 sub-
jects and 5112 SNPs on chromosome 19, downloaded from
the dbGaP database (accession: phs000335.v3.p2). Our trait
of interestwas forcedexpiratory volume(FEV)at thebaseline,
FEVAC112. First, to adjust for nongenetic covariates, we built
a linear model: FEVAS112� AGE+ SEX+ PACKYEAR. Then
we treated the residuals as the quantitative trait Y for the
SNPs. We obtained the summary statistics of the marginal
effects for each individual SNP on Y after centering the data
at 0.

After choosing 4132 subjects with complete outcomes and
5111SNPs thatwere present in both the LHS and1000Gdata,
we tested each single SNP and found none of them to be
marginally significant. Then, we used a sliding window ap-
proach to test the association between the trait and the SNPs
inside each sliding window in a joint linear model (with the
trait vs. multiple SNPs). In each window, we selected SNPs
so that none of their pair-wise correlation absolute values was
. 0.95. We used two window sizes of 20 and 50 with two
moving step sizes/gaps of 1 and 20, respectively.

For the global/overall testing, as shown in Table 5, the
Wald test based on the individual-level data detected no sig-
nificant association regardless of the window size and mov-
ing step size; in contrast, the naive method based on the

Table 7 Numbers of the significant sliding windows for global testing with the 2013 lipid data, using subsamples of the LHS data as
reference with nref‡1000; or using the 1000G B data with nref ¼ 503

Chromosome j nref U (f ) T ¼ 1 T ¼ 5 T ¼ 10 T ¼ 30 T ¼ 50

19 10 503 (1000G B) 7366 (735) 57 22 (22) 20 (20) 22 (22) 22 (22)
1000 4364 (435) 38 19 (19) 15 (15) 14 (14) 15 (15)
2000 37 19 (19) 17 (17) 15 (15) 15 (15)
4000 40 17 (17) 16 (16) 15 (15) 15 (15)

20 503 (1000G B) 7366 (367) 59 27 (27) 20 (20) 17 (17) 17 (17)
1000 4364 (217) 35 23 (23) 14 (14) 10 (10) 9 (9)
2000 35 17 (17) 12 (12) 10 (10) 10 (10)
4000 33 18 (18) 10 (10) 11 (11) 11 (11)

The statistical significance cut-off was 0.05/# windows; U; j, and f were the total number of SNPs, window size, and the number of windows, respectively; the moving-step
size or gap size was equal to the window size. The numbers of overlapping SNPs between T = 1 and others are shown in parentheses. 1000G, 1000 Genomes Project.

Table 8 Numbers of the windows with the first SNP being significant in COJO analysis with the 2013 lipid data, using subsamples of the
LHS data as reference with nref‡1000

Chromosome U j (f ) nref T ¼ 1 T ¼ 5 T ¼ 10 T ¼ 30 T ¼ 50 T ¼ 100

19 4364 10 (435) 1000 6 2 (2) 1(1) 1 (1) 2 (2) 2 (2)
2000 8 4 (4) 2 (2) 2 (2) 3 (3) 3 (3)
4000 8 2 (2) 2 (2) 2 (2) 2 (2) 2 (2)

20 (217) 1000 6 3 (3) 3 (3) 1 (1) 2 (2) 2 (2)
2000 6 4 (4) 3 (3) 3 (3) 3 (3) 3 (3)
4000 6 2 (2) 2 (2) 3 (3) 2 (2) 2 (2)

The statistical significance cut-off was 0.05/# windows; U; j, and f were the total number of SNPs, window size, and the number of windows, respectively; the moving-step
size or gap size was equal to the window size. The numbers of overlapping SNPs between T = 1 and others are shown in parentheses.
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summary statistics (T = 1) reported many significant associ-
ations, which (or at least most of which) are most likely to be
false positives. Our new method with T = 30 or larger elim-
inated all the false positives. The QQ (quantile-quantile) plot
in Figure 1 also demonstrates the problem of the naive
method with an inflation factor l = 1.49, much larger than 1,
while the new method might be a bit conservative with an
inflation factor , 1 (Devlin and Roeder 1999).

Similarly, Table 6 shows that in the COJO analysis on the
first SNP inside each window, the individual-level data-based
method identified no significant association. Again, the naive
method with summary statistics detected three significant
ones, most likely false positives; two or all three could be
eliminated by the new method.

Lipid data

We applied the methods to the 2010 and 2013 lipid data
(Teslovich et al. 2010; Willer et al. 2013), testing the associ-
ation between TGs and SNPs on chromosome 19 that are
present in both data sets. To save space, we only present
the results for the 2013 lipid data in the following. We chose
7366 SNPs that were present in both the lipid data and the
1000G phase 3 data with 503 subjects from the European
population as the reference panel (denoted as the 1000G B
reference panel in the following), with minor allele frequen-
cies larger than 0.01. First, we looked at the marginal P-values
of each SNP, and found 86 of the 7366 SNPs with P-values
, 0.05/7366, and 911 with P-values , 0.05. The estimated
inflation factor was 1.0.

In addition to the 1000G B reference panel, we also used
various subsets of the LHS data as a reference panel. We
randomly sampled nref ¼ 1000 to 4000 subjects from the
4136 subjects in the LHS data as the reference data before
applying the sliding window approach to the 4364 overlap-
ping SNPs in the 2013 lipid data. As shown in Table 7 for
global testing, as expected, the naive method gave much
larger numbers of significant associations than that of the
proposed new method, in which T = 30 or larger seemed
to give stable results. The same conclusion can be drawn
for the COJO analysis as shown in Table 8. In summary, we
expect that the naive method gave too many false positives.

Discussion

Using simulated and real data, we have convincingly shown
the severe problem of inflated type I error rates in integrating
GWAS summary data with small reference panels for COJO
analyses,whichhavebeenwidely applied in the last fewyears,
ranging from gene-based testing with one or more traits
(Kwak and Pan 2016, 2017; Deng and Pan 2017) to fine
mapping. In particular, as a gene-based testing approach to
integrating eQTL (expression quantitative trait loci) data with
GWAS summary data, the recently proposed transcriptome-
wide association studies are expected to share the same prob-
lem with small reference panels (Gamazon et al. 2015; Gusev
et al. 2016; Xu et al. 2017). We emphasize that, although

we have focused on conditional and global testing on a
group of SNPs, the same issue of using small reference
panels persists in many new and existing applications: to
name a few, fine mapping (Benner et al. 2017), polygenic risk
prediction (Vilhjalmsson et al. 2015), inferring genetic corre-
lations among complex traits (Bulik-Sullivan et al. 2015), and
Mendelian randomization for causal inference (Burgess et al.
2013). Although standard reference panel samples, as for the
1000G data, are continuing to grow with increasing sample
sizes, the current and almost exclusive use of the popular
1000G reference panels is expected to suffer from the small
sample issue as demonstrated here. Furthermore, evenwith a
larger reference panel, if a GWAS sample size is larger
(Benner et al. 2017) or if we expand the SNPs to be tested
to cover less frequent or rare ones and/or those in high LD, as
in fine mapping with sequencing data, the problem may still
arise. Our proposed method, or its idea, could be applied
(possibly after suitable modifications) to at least check
whether the problem is severe in a given situation. Finally,
we note that it is unclear how to deal with the problem if
there are genotypic discrepancies between the reference
panel and the GWAS data, which may happen in practice,
especially withmeta-analyzedGWAS summary statistics with
multiple racial/ethnic subpopulations, for which any refer-
ence sample from a single population may not suffice (for the
mixed GWAS population). In this case, perhaps the most
straightforward solution is to conserve and share the LD
structure from the original GWAS data. This problem is
similar to meta-analysis of rare variants with sequencing
data (Lee et al. 2013). We hope that this study, along with
Benner et al. (2017), will raise the awareness of and attention
to this important and urgent problem in light of the increas-
ing use of GWAS summary data and (small) reference panels.
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