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ABSTRACT Small molecule lipid-related metabolites are important components of fatty acid and steroid metabolism—two important
contributors to human health. This study investigated the extent to which rare and common genetic variants spanning the human
genome influence the lipid-related metabolome. Sequence data from 1552 European-Americans (EA) and 1872 African-Americans
(AA) were analyzed to examine the impact of common and rare variants on the levels of 102 circulating lipid-related metabolites
measured by a combination of chromatography and mass spectroscopy. We conducted single variant tests [minor allele frequency
(MAF) > 5%, statistical significance P-value = 2.45 X 107'9] and tests aggregating rare variants (MAF = 5%) across multiple
genomic motifs, such as coding regions and regulatory domains, and sliding windows. Multiethnic meta-analyses detected 53 lipid-
related metabolites-locus pairs, which were inspected for evidence of consistent signal between the two ethnic groups. Thirty-eight
lipid-related metabolite-genomic region associations were consistent across ethnicities, among which seven were novel. The regions
contain genes that are related to metabolite transport (SLC70A7) and metabolism (SCD, FDX1, UGT2B15, and FADS?2). Six of the seven
novel findings lie in expression quantitative trait loci affecting the expression levels of 14 surrounding genes in multiple tissues. Imputed
expression levels of 10 of the affected genes were associated with four corresponding lipid-related traits in at least one tissue. Our
findings offer valuable insight into circulating lipid-related metabolite regulation in a multiethnic population.
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IPIDS are a diverse and omnipresent group of organic

compounds that are not soluble in water (Smith 2006) and
have complex structures due to a number of biochemical
transformations they go through during biosynthesis (Fahy
et al. 2011). Both lipids and lipid-related metabolites have
multiple roles in fetal growth and development, and are im-
portant determinants of adult health and disease as a result of
their contribution to cell membranes, energy metabolism,
and the endocrine system (Kim et al. 2013; Calder 2015;
El-Hattab and Scaglia 2015). We measured and analyzed
102 lipid-related metabolites, belonging to four groups: fatty
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acyls, glycerolipids, glycerophospholipids, and sterol lipids
(Fahy et al. 2009). Fatty acids function to regulate cell mem-
brane permeability, gene transcription, and signaling path-
way regulation (Calder 2015). Glycerolipids are mainly
used for energy storage (Reue and Brindley 2008). Sterol
lipids include bile acids, which, together with their metabo-
lites, participate in digestion and adsorption of lipid solu-
ble nutrients (Maldonado-Valderrama et al. 2011), and have
been shown to possess endocrine effects (Houten et al.
2006; Vitek and Haluzik 2016). Other sterol lipids, such as
cortisol and androsterone, function as signaling molecules,
while their precursor, cholesterol, forms cell membranes to-
gether with phospholipids (Bastiaanse et al. 1997). The mea-
sured metabolites analyzed here included 57 fatty acyls
(represented by fatty esters, fatty acids, and their deriva-
tives), four glycerolipids, 15 glycerophospholipids, 22 sterols,
and their derivatives (including eight bile acids), as well as
carnitine and deoxycarnitine because of their role in fatty
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acid transport (El-Hattab and Scaglia 2015), and inositol-1-
phosphate and myo-inositol because of their role in multi-
ple structural lipids (e.g., phosphatidylinositol) (Kim et al.
2013).

Many genes affecting various lipids and lipid-related traits
have been identified previously by candidate gene studies
(Niemsiri et al. 2015), genome-wide association studies
(Pollin et al. 2008; Illig et al. 2010; Teslovich et al. 2010;
Demirkan et al. 2012; Shin et al. 2014; Draisma et al.
2015), whole exome sequencing (WES) (Fouchier et al.
2014; Peloso et al. 2014; Yu et al. 2016b) and whole genome
sequencing (WGS) (Long et al. 2017; Morrison et al. 2017)
studies. WGS captures common and rare coding variation
across the entirety of the genome, and has been used success-
fully to identify loci playing an important role in clinically
recognized lipid traits, such as HDL-C levels (Morrison et al.
2013). For the current study, sequencing was performed on
1552 European-Americans (EA) and 1872 African-Americans
(AA), to detect new genetic loci associated with the serum
lipid-related metabolome. To our knowledge, this is the first
multiethnic study using WGS and WES data to unravel path-
ways playing a role in the regulation of a broad spectrum of
lipid-related metabolites.

Materials and Methods
Study populations and lipid metabolite measurements

A detailed description of the Atherosclerosis Risk in Commu-
nities (ARIC) study can be found elsewhere (The ARIC in-
vestigators 1989). Participants 45-64 years of age at the
baseline examination were recruited from four communities
(Forsyth County, North Carolina; Jackson, Mississippi; Min-
neapolis, Minnesota; and Washington County, Maryland). A
total of 15,792 individuals, mostly of European and African
ancestry, participated in the baseline examination in 1987-
1989, with four follow-up visits in 1990-1992 (Visit 2),
1993-1995 (Visit 3), 1996-1998 (Visit 4) and 2011-2013
(Visit 5), with a sixth visit ongoing, which began in 2016.
The current investigation was performed on 1850 AAs and
1330 EAs with WES data, and 1679 AAs and 1458 EAs with
WGS data, all of whom had metabolomic measurements on
102 fasting serum lipid-related compounds. Both WES and
WGS were available on a sample of 1657 AAs and 1236 EAs,
while 193 AAs and 94 EAs had only WES data, and 22 AAs
and 222 EAs had only WGS data. WES, WGS, or both were
performed on a total sample of 1872 AAs and 1552 EAs.
Information on the method for baseline metabolites mea-
surements is summarized in the Supplemental Methods.
Briefly, 140 lipid-related metabolites were detected and quan-
tified by Metabolon (Durham, NC), using an untargeted, gas
chromatography—mass spectrometry and liquid chromatography—
mass spectrometry (GC/LC-MS)-based metabolomic quantifica-
tion protocol (Evans et al. 2009; Ohta et al. 2009). In 97 selected
samples, lipid-related metabolites were measured twice (in
2010 and 2014). In order for measured metabolites to be
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included in this analysis, each compound had to have no
more than 25% samples with missing values or values below
the detection limit of the technology, and had to have the
Pearson correlation coefficients between the 2010 and 2014
measurements =0.3 (Cohen 1988), with repeated measure-
ments from 2014 used in the analyses. Therefore, the pre-
sent study is based on an evaluation of 102 lipid-related
metabolites.

Sequencing, variant calling, quality control,
and annotation

All sequencing was done at the Baylor College of Medicine
Human Genome Sequencing Center (HGSC). For WES, exomes
were captured using the HGSC VCRome 2.1 reagent (Bainbridge
etal. 2011) (42 Mb; NimbleGen) and all samples were paired-
end sequenced using Illumina GAII or HiSeq instruments. For
WGS, genomic DNA samples were made into Illumina paired-
end libraries according to the manufacturer’s recommendation
(llumina Multiplexing SamplePrep Guide 1005361 D) and
sequenced on a Hisequation 2000 (Illumina, San Diego, CA)
in a pooled format to generate a minimum of 18 unique aligned
giga-basepairs per sample. As previously reported, variant calling
was completed using the Atlas2 (Challis et al. 2012) suite for
WES, and goSNAP (https://sourceforge.net/p/gosnap/git/ci/
master/tree/) for WGS (Yu et al. 2016a; de Vries et al. 2017).
Detailed methods for the sequencing, variant calling and vari-
ant quality control for both WES and WGS are provided in the
Supplemental Methods.

Whole exome variants were annotated using ANNOVAR
(Wang et al. 2010) and dbNSFP v2.0 (Liu et al. 2013) accord-
ing to the reference genome GRCh37 and National Center for
Biotechnology Information RefSeq. Coding variants were an-
notated to a unique gene as well as the following categories
used for inclusion in gene-based tests: splicing, stop-gain,
stop-loss, nonsynonymous variants, and indels. WGS varia-
tion was annotated across the genome and functional do-
mains using the Whole Genome Sequencing Annotation
(WGSA) pipeline version 5 (Liu et al. 2016). Variants in
eQTL were specified using GTEx annotation, V6p (GTEx
Consortium 2015). All imputed gene expression levels had
a g-value <0.05 (tissue-specific false-discovery rate), indicat-
ing a good fit to the model (Wang et al. 2016). Since the vast
majority of tissue donors in GTEx were EAs (GTEx Consortium
2015), we limited this lipid-related metabolomics analysis of
estimated gene expression to EAs.

Genotype-phenotype analyses

For each circulating lipid-related metabolite, observations
outside of the 99% were winsorized, and the levels below
the detectable limit of the assay were imputed to the lowest
detected value in the whole sample. Prior to genetic analyses,
each metabolite was investigated for its goodness-of-fit to
normality. Suberate, azelate, sebacate, and undecanedioate
were not transformed before analysis. Square root and neg-
ative square root transformations were applied to dodecane-
dioate and glycerol-3-phosphate levels, respectively. Other
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Single variant

UGT2B15: androsterone sulfate;
ALMS1P: heptanoate;
FADS2: HODE-9 and HODE-13;

BCHE: hexanoylcarnitine; FDXT: glycocholenate sulfate;
PKD2L1: dodecenoate; ABCC2: glycocholenate sulfate;
SLCO1B1: taurocholenate sulfate, glycocholenate sulfate,

tetradecanedioate; 11.p12.2 (FADS1-2): arachidonate,
dihomolinolenate, eicosapentaenoate (EPA; 20:5n3),
1-linoleoylglycerophosphoethanolamine,
1-arachidonoylglycerophosphocholine (20:4n6),
stearidonate (18:4n3), HETE, adrenate (22:4n6);
ELOVL2: docosapentaenoate (n3 DPA; 22:5n3);
SLC6A13: deoxycarnitine; PKD2L1: myristoleate (14:1n5);

ACADM: hexanoylcarnitine, cis-4-decenoylcarnitine,

decanoylcamitine, octanoylcarnitine;
TMC4: arachidonoylglycerophosphoinositol;

LIPC: 1-stearoylglycerophosphoethanolamine; SLC16A9: camitine;
propionylcarnitine; ETFDH: octanoylcarnitine, decanoylcarnitine;

SLC22A5: camitine; NAT8: aminooctanoate.

SULT2AT1:

pregnen-diol

disulfate
7q22.1: 50-
androstan-

3pB,17p-diol
disulfate

7q22.1:
androsterone
sulfate, epi-
androsterone
sulfate

Sliding window Regulatory

metabolites levels were natural log-transformed. Ethnic-specific
analyses were performed for each lipid-related metabolite
using additive genetic models, adjusting for age, sex, the first
three principal components (PCs), batch and study site (as
needed). Adjustment for estimated glomerular filtration rate
was also performed (Levey et al. 2009), because some lipid-
related traits were associated with this indicator of kidney
function (Yu et al. 2014). Afterward, a transethnic meta-analysis
was performed.

All analyses were carried out separately for common and
rare variants. Single common variant meta-analysis (MAF >
5%) was performed using the inverse-variance-weighted
fixed-effect method (Tang and Lin 2015) for individuals with
WGS data. For rare variants, aggregate tests were conducted
across functional motifs, because in either ethnic group any
one variant was too rare to support single site analyses. An-
notated functional motifs consisted of genes (coding regions),
regulatory domains (including 3'UTR, 5'UTR, promoter and
enhancer elements for each gene), and sliding windows (start-
ing at position 0 bp for each chromosome, 4 kb in length, with
a skip length of 2 kb) (Morrison et al. 2017). Gene-based
analyses were the only analyses performed using the WES
data, with splicing, stop-gain, stop-loss, nonsynonymous

Figure 1 An overview of identified consis-
tent significant genetic association with
lipid-related metabolites. Gene names in
bold indicate novel findings, consistent be-
tween ethnicities; regular font indicate find-
ings that were reported in previous studies.

SLC10AT:
glycocholate

Gene-based

variants, and indels included in the aggregate tests. All ag-
gregate tests contained only rare variants (MAF =< 5%).
Meta-analyses of aggregate test results were performed us-
ing variants with pooled MAF = 5%. Within each anno-
tated functional motif, we carried out a burden test (Li
and Leal 2008), which collapses variants into a single ge-
netic score, using the T5 count method (https://cran.r-project.
org/web/packages/seqMeta/vignettes/seqMeta.pdf). Burden
tests have higher power than alternative sequence-kernel
association tests if a large proportion of the rare variants in
a region are causal, and have the same direction of the
effect (Lee et al. 2012).

For each test, we used a two-step process to define statis-
tical significance and transethnic consistency. In the first step,
the result must be statistically significant in a meta-analysis
across the two ethnic groups after Bonferroni correction for
the number of statistical tests. For the single variant analysis,
the P-value threshold was < 2.45 X 10710 [accounting for
~2,000,000 independent variants (Peer et al. 2008) and
102 traits]; for the gene-based aggregate test the threshold
was = 3.04 X 1078 (accounting for 16,117 genes and
102 metabolites); for the regulatory aggregate test, the
threshold was = 2.37 X 108 (accounting for 20,677 regulatory
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Table 1 Sentinel novel common SNP-metabolite pairs (MAF > 5%) significantly associated in meta-analyses (P < 2.45 x 10~'9), consistent

between ethnic groups

Trait Closest Gene Chr:Position SNP Name R/A? P-Value Beta Location
Androsterone sulfate UGT2B15 4:69491183 rs13121671 G/T 8.91 X 10715 0.19 Intergenic
5-Dodecenoate PKD2L1 10:102075479 rs603424 G/A 1.54 x 10710 —0.09 Second intron
Glycocholenate sulfate FDX1 11:110241999 rs2051466 C/A 1.25 x 10711 0.08 Intergenic
Heptanoate ALMSTP 2:73883072 rs13408433 G/A 428 X 10712 —0.04 First intron
Hexanoyl-carnitine BCHE 3:165481945 rs73165061 G/A 1.91 X 10713 0.14 Intergenic
13-HODE + 9-HODE FADS2 11:61588305 rs174564 A/G 413 x 10716 0.11 Upstream

? Reference allele/Alternative allele.

domains and 102 lipid compounds); for the sliding window
aggregating analysis the threshold was = 7.43 X 10710
(accounting for 102 traits and 659,982 contiguous and non-
overlapping windows). Each aggregation unit had to have at
least one rare variant in both AA and EA, with cumulative
minor allele counts (cMAC) across the two ethnic groups =7
(Li et al. 2015). In the second step, statistically significant
findings from the first step were considered consistent between
ethnicities under the following conditions: (1) the effect
estimate had consistent direction in both ethnic groups,
and either (2) the P-value = 1 X 10~° in both ethnicities,
or (3) the P-value reached an a priori definition of statistical
significance used in the first step in any one ethnic group
and was significant in the other group, after accounting for
the number of significant findings in the first step. This value
was 0.001, 0.006, 0.005, and 0.005 for the single locus
(accounting for 48 findings), gene-based (accounting for nine
findings), regulatory (accounting for 11 findings), and sliding
window (accounting for 10 findings), respectively.

For significant functional motifs that were consistent
between ethnic groups, analyses conditioning on the most
significant rare variant were performed to identify whether
the association with a leading rare variant could explain the
detected association. The association between the geno-
mic region and the lipid-related metabolite was considered
to be novel if it was not reported by previous GWAS or
sequence-based analysis, as verified with the GRASP search
v2.0.0.0, GWAS catalog v1.0 and manual literature review.
All analyses were carried out using the R seqMeta package
(http://cran.r-project.org/web/packages/seqMeta/index.html,
version 1.6.0).

PrediXcan was used to perform tissue-specific estimation of
the genetically regulated gene expression levels of 14 unique
genes, with the expression of each gene being estimated in up
to 12 tissues with GTEx V6p (https://github.com/hakyimlab/
PrediXcan downloaded on June 8, 2015) (Gamazon et al.
2015). PrediXcan analysis quantifies the association between
the genetically regulated expression component of an indi-
vidual’s gene expression level and the selected phenotype
(Gamazon et al. 2015). Briefly, prediction models in Pre-
dictDB were built using data from multiple reference transcrip-
tome studies, such as GTEx, GEUVADIS, DGN; 1000 Genomes
imputed genotype data (including variants with MAF > 5%
and imputation certainty >0.8) were used with the weights
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from PredictDB to impute gene expression levels for ARIC
study participants (used variants are reported in Supplemen-
tal Material, Table S12). In EA participants, the association
between the predicted gene expression and the lipid-related
trait was performed using the general linear model (“glm”)
in R, with lipid-related trait level as the outcome, and gene
expression level, age, sex, the first three PCs and estimated
glomerular filtration rate as covariates.

Data availability

Supporting data for the ARIC cohort is available via dbGaP
study accession phs000280. The summary statistics for this
paper are deposited into the dbGaP CHARGE Summary
Results site (Rich et al. 2016) (dbGaP Study Accession:
phs000930). Figure S1 shows proportion of single nucleo-
tide variants by minor allele frequency for sequencing data.
Figure S2 contains Manhattan plots and QQ-plots for the
statistically significant traits with transethnic consistency.
Figure S3 demonstrates distribution of rare variants in EAs
and AAs. Figure S4 pictures predicted levels of FADSI and
FADS2 in skeletal muscle by rs174564 genotypes in EAs.
Table S1 contains basic characteristics of the 102 lipid-related
traits. Common variants significantly associated with lipid-
related traits in EAs, AAs, or in meta-analysis can be found
in Table S2, with sentinel common variant-region pairs sig-
nificantly associated in meta-analysis available in Table S3.
Association of predicted gene transcription levels with
lipid-related phenotypes in EAs is presented in Table S4.
Table S5 contains Whole Genome T5 results significantly
associated in meta-analysis. Rare nonsynonymous exonic
variants of SLCI10A1-glycocholate are listed in Table S6.
Table S7 contains regulatory domain T5 results significantly
associated in meta-analysis. Rare variants and conditional
analyses for the regulatory element of CYP3A43 for three
traits are available in Tables S8 and S9, respectively. Table
S10 has sliding windows T5 results significantly associated
in meta-analysis, with rare variants of the significant and
consistent across ethnicities sliding windows listed in Table
S11. Table S12 contains variants used for gene transcrip-
tion levels imputation in EAs. Institutional Review Board
registration numbers: HSC-SPH-09-0490; HSC-SPH-09-0494.
Supplemental material available at Figshare: https://doi.
org/10.25386/genetics.6050099.
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Table 2 Leading estimated gene transcription levels-metabolite pairs in EAs

Trait Gene Tissue Beta P-value
Androsterone sulfate UGT2B15 Transverse colon 0.65 0.17
Androsterone sulfate UGT2B17 Lung 0.33 0.36
5-Dodecenoate SEMA4G Nerve tibial 0.24 1.9 X 1073
5-Dodecenoate SCD Adipose subcutaneous 0.28 5.14 X 1073
Glycocholenate sulfate FDX1 Whole blood 0.31 293 X 1076
Heptanoate NATS8 Skin sun exposed lower leg -0.20 2.80 X 1072
Heptanoate TPRKB Artery tibial 0.15 1.39 X 1076
Heptanoate ALMST Pancreas —0.08 1.49 X 107>
Hexanoylcarnitine BCHE Heart atrial appendage -0.75 9.57 X 1076
13-HODE + 9-HODE FADS1 Cerebellum -0.17 3.56 X 1072
13-HODE + 9-HODE FADS2 Muscle skeletal 0.34 2.85 X 1077
13-HODE + 9-HODE TMEM258 Muscle skeletal 0.75 1.12 X 108
13-HODE + 9-HODE BEST1 Heart atrial appendage 0.33 229 X 107>
13-HODE + 9-HODE DAGLA Cells transformed fibroblasts -0.26 7.72 X 1074

Results
Sample characteristics

The study sample size comprised 3424 individuals, 1872 AAs,
and 1552 EAs. Individuals tended to be middle aged, with a
greater proportion of females than males in both EAs and AAs.
Characteristics of the study participants as well as the basic
descriptive statistics for 102 lipid-related traits measured as
part of the metabolomic profile for the sample of individuals
having WGS data are summarized in Table S1. Among the
study participants, there were 462,292 exonic variants, and
60,699,789 variants in the whole genomes. Figure S1, A-D
shows the distribution of variants by frequency.

We used four analytical strategies to assess associations
between the lipid-related traits and genomic variants: (1)
single site common variant analysis; (2) gene-based rare
variant analysis; (3) regulatory element rare variant analy-
sis; and (4) a sliding window rare variant analysis. A total
of 38 metabolite-region relationships were identified to be
consistent across ethnicities with 31 associations reported
previously and seven novel findings (Figure S2 contains
Manhattan plots and QQ-plots for the seven lipid-related traits
identified to be associated with novel regions for each of the
ethnic groups and for the meta-analysis). The distributions of
statistically significant lipid-related metabolite-region pairs
among all analytical strategies are presented in Figure 1; four
pairs were detected by more than one method. In the follow-
ing paragraphs, we present the novel significant and consis-
tent findings for each analytical strategy.

Association with common variants

We conducted a whole genome survey of all common var-
iants in AAs and EAs (MAF > 5%)), followed by a multiethnic
meta-analysis (Table S2). We report sentinel statistically
significant lipid-related metabolite-genomic region pairs
for common variants in Table S3. Among a total of 48 de-
tected lipid-related metabolite-variant pairs, 40 pairs were
reported previously. Six out of eight novel findings had ev-
idence of consistency between the ethnic groups, and these

novel consistent significant metabolite-variant pairs are shown
in Table 1.

All of the six novel findings consistent between the eth-
nicities lie in expression quantitative trait loci (eQTL) influ-
encing the expression levels of 14 surrounding genes in
multiple tissues (GTEx Consortium 2015) (Table S3). We
imputed tissue-specific genetically regulated gene expression
levels for each of the above genes (Table S3), and then in-
vestigated the relationship between each of the estimated
gene expression levels and the corresponding lipid-related
trait (Table S4). Out of 14 genes tested, 10 reached the
predefined statistical significance threshold (P-value = 0.00086,
accounting for 58 tests corresponding to 58 gene-tissue
pairs) in at least one tissue tested (Table 2). These 10 significant
associations were found in four of the six lipid-related traits
tested.

Gene-based results

There were 16,117 genes (cMAC across the two ethnic
groups =7) with at least one annotated variant (splicing,
stop-gain, stop-loss, nonsynonymous variant, or an indel) in
both AAs and EAs, and the distribution of variants ranged
from 1 to 1798, with a median cMAC of 140 per gene (Fig-
ure S3A). Results of the aggregate gene-based tests that
reached the predefined significance levels in the multiethnic
meta-analysis (P-value = 3.04 X 1078) are presented in
Table S5, and contained nine lipid-related metabolite-gene
associations. Among four novel findings, one met the pre-
specified criteria for transethnic consistency. Aggregation of
29 rare coding variants in SLC10A1 was associated with 77%
increase in glycocholate levels (P-valueypra = 6.51 X 10715)
(Table S5), with 21 variants in AAs (cMAF = 5.6%), and
11 variants in EAs (cMAF = 0.5%). Overall, four variants in
AAs and two variants in EAs had P-value = 0.05 (Table
$6), with no individual variants shared by the two ethnic
groups. A graphical representation of the results of the four
analytical strategies as applied to SLC10A1 is shown in Figure
2, where the low P-value for the gene-based analysis can be
clearly seen.
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Figure 2 Results of meta-analyses of glycocholate levels and SLCT0AT by four methods.

Regulatory domain-based results

Among the 20,677 annotated regulatory domains (meta-analysis
cMAC =7) that have at least one annotated variant in both
AA and EA, we observed a distribution of 1-843 variants per
domain and a median cMAC of 762 (Figure S3B). Statistically
significant multiethnic meta-analysis burden test results
(P-value = 2.37 X 1078) for the regulatory domains are
shown in Table S7. Three significant consistent lipid-related
metabolite-genetic region associations were observed involv-
ing steroid metabolites and regulatory domains for the gene
CYP3A43 (Table 3). The aggregation test for this gene con-
tained 5'UTR, 3'UTR and nearby enhancer elements (Table
S8). All three significant sulfated steroids with transethnic
consistency (androsterone sulfate, epiandrosterone sulfate,
Sa-androstan-38,178-diol disulfate) are dehydroepiandros-
terone metabolites (Labrie et al. 2005), which had a moderate-
to-strong correlation among their levels (0.67 < r < 0.95).
Figure 3 displays the detected region and the results for
androsterone sulfate levels. There is a single variant
(rs118168183) in an annotated enhancer located in the last
intron of the CYP3A7-CYP3AP] transcript that is acting as a lead
or driver SNP for the burden tests (MAFg, = 0.023; P-valuegp
= 5 X 10725 and MAFa, = 0.004; P-valueay = 2.95 X 104
for all three sulfated steroids) (Table S8). Conditioning on
this lead SNP greatly attenuated the observed burden test
P-values so that they were no longer significant (P > 0.05)
(Table S9).

Sliding window-based results

A total of 1,319,963 4-kb overlapping windows (meta-analysis
cMAC =7) with at least one rare variant in both AA and EA, had
a distribution of 1-749 variants per window (Figure S3C) with
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median cMAC of 1656. Multiethnic burden test meta-analyses
revealed 10 statistically significant (P-value = 7.43 X 10719)
lipid-related metabolite-region pairs, including two novel
findings. Four region-metabolite pair associations were consis-
tent between ethnicities (Figure 1 and Table S10). Aggregation
of rare variants in a window, located downstream of SULT2A1
was associated with decreased pregnen-diol disulfate levels
(P-valueypra = 1.28 X 10716) (Table S10). The window
contains a total of 96 rare and low frequency variants, with
64 variants in AA, and 57 variants in EA (Table S11). Overall,
15 variants in AAs and 12 variants in EAs had a P-value = 0.05,
with seven variants belonging to a 3'UTR, and six variants—
shared between the ethnicities. The most statistically signifi-
cant variant among all the variants, rs296383, belongs to
an eQTL increasing SULT2A1 expression in the adrenal
gland (GTEx Consortium 2015).

Discussion

We performed a multiethnic study using WGS and WES data
to identify loci influencing a broad spectrum of the lipid-
related metabolome. Seven novel lipid-related metabolite-
region significant signals with transethnic consistency were
identified, with six associations from single variant tests and
one association from gene-based tests. All six consistent
significant single variant tests resided in the nonprotein-
encoding region of the genome. There was one significant
and consistent association influencing three sulfated ste-
roids that was identified by analysis of annotated regulatory
elements.

The analysis strategy to identify novel discoveries in this
study is, by its very nature, conservative because it was
defined a priori to include three criteria: (1) sufficient sequence



Table 3 Regulatory domains significantly associated (P < 2.37 x 10~8) in meta-analysis and consistent between ethnic groups

Trait Chr Gene cMaf #Var P-Value Beta

Sa-androstan-38,178-diol disulfate 7 CYP3A43 0.052 8 1.06 X 10712 —0.371
Androsterone sulfate 7 CYP3A43 0.052 8 3.33 X 10771° —0.388
Epiandrosterone sulfate 7 CYP3A43 0.052 8 5.11 X 10710 —0.243

variation in both ethnic groups, (2) statistical and nominal
significance in both groups, and (3) consistency of the di-
rection of effect. It is possible, indeed likely, that statisti-
cally significant findings in one ethnic group are real or true
findings, but were not consistent according to the criterion
set forth here because of lack of sufficient genetic variation
in the other group. For example, although the association
between glycochenodeoxycholate and SLC10A1 does not
meet our criteria for consistency, this is likely due to the fact
that the variant leading the association in AAs (rs61745930)
is monomorphic in the sample of EAs. At the same time, we
observe consistent direction of the effect of glycocheno-
deoxycholate-SLC10A1 pair between ethnicities and with
the glycocholate-SLC10A1 association (declared as novel
in this manuscript), and, as mentioned before, both glyco-
chenodeoxycholate and glycocholate are biological sub-
strates for SLC10A1 (Mita et al. 2005). Another reason for
lack of consistency between the groups may be gene by
environment interactions, and different environments be-
tween groups. Therefore, the significant and consistent locus-
metabolite pairs reported here are likely to be true or real
findings. Of the 38 significant and consistent region-metab-
olite pairs, seven were deemed novel by virtue of not being
reported by previous GWAS or candidate gene studies. The
biology of the significant, consistent, and novel findings are
discussed below.

The results presented here improve our understanding
of genetic influences on serum fatty acyl levels. Measured
together, 9-hydroxyoctadecadienoic acid (9-HODE) and
13-HODE, the products of linoleic acid oxygenation by
12-lipoxygenase and 15-lipoxygenase, respectively (Cabral
et al. 2014; Vangaveti et al. 2016), were significantly associ-
ated with a variant located in the first intron of the gene
encoding fatty acid desaturase 2 (FADS2; rs174564, Table 1).
Rs174564 is an eQTL associated with increased expression
levels of FADS2, and decreased expression of FADSI in mul-
tiple tissues (GTEx Consortium 2015). Both FADS1 and FADS2
are desaturases, involved in polyunsaturated fatty acids metab-
olism. Downregulation of this pathway may lead to activation
of an alternative pathway of linoleic acid metabolism—such
as conversions to various HODEs (Choque et al. 2014). This
hypothesized mechanism may explain the observed associ-
ation of rs174564 with increased levels of HODEs and is
supported by data from Long et al. (2017) showing that
the same variant is associated with structural derivatives
of arachidonic and linoleic acids. Our analyses of predicted
gene expression suggest that genetically regulated FADS1
expression level is associated with decreased HODE:s levels,

while FADS2 is associated with increased HODEs levels
(Figure S4 and Table 2).

A common intronic variant (rs603424) in PKD2L1 was
associated with decreased 5-dodecenoate levels, a conju-
gated base of the unsaturated fatty acid, dodecenoic acid
(Feng and Cronan 2009). This variant previously was report-
ed to be associated with decreased 5-dodecenoate levels
(Long et al. 2017), and resides in an eQTL decreasing ex-
pression levels of the nearby gene SCD in adipose tissues
(GTEx Consortium 2015). SCD encodes a stearoyl-CoA desa-
turase, a rate-limiting enzyme in the biosynthesis of unsat-
urated fatty acids from saturated fatty acids (Poudyal and
Brown 2011).

A gene-based burden-test revealed an association between
rare coding variants in a sodium-bile acid cotransporter
SLC10A1 (Hallén et al. 2002), with increased levels of glyco-
cholate (Table S5). SLC10A1 takes both glycocholate and
glycochenodeoxycholate, with which a suggestive associa-
tion was observed, as its substrates, as well as several other
bile salts (Mita et al. 2005).

The results also provide insights into genetic regulation of
sterol lipids. For example, a novel intergenic variant 58 kbp
upstream of FDXI was detected to be associated with in-
creased levels of glycocholenate sulfate (Table S3). FDX1
participates in transport of electrons to mitochondrial cyto-
chrome P450, which is involved in bile acid metabolism
(Miller 2005). Rs2051466 lies in an eQTL, increasing the
expression of FDX1 (GTEx Consortium 2015), and was re-
cently reported to be suggestively associated with glyco-
cholenate sulfate levels in a European population (Long
et al. 2017).

The levels of serum steroid hormones were also investi-
gated. Multiethnic meta-analysis revealed a novel intergenic
variant 21 kbp downstream of UGT2B15 to be associated
with increased androsterone sulfate levels. Rs13121671 lies
in an eQTL decreasing the expression of UGT2B15 and/or
UGT2B17 in several tissues (GTEx Consortium 2015). These
genes encode UDP-glycosyltransferases, which catalyze the
glucuronidation of endogenous androgens (Gauthier-Landry
et al. 2015), thus affecting their clearance from the circula-
tion (Yong et al. 2010). Decreased glucuronidation of andros-
terone may potentially lead to a compensatory increase in an
alternative clearance mechanism, such as sulfation (Schulze
etal 2011).

A regulatory domain of CYP3A43 was associated with
decreased levels of three sulfated steroids: androsterone
sulfate, a-androstan-3-B-17-B-diol disulfate and epiandro-
sterone sulfate. It is located in a complex multigene region
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Figure 3 Results of meta-analyses of androsterone sulfate levels and CYP3A443 by four methods.

on chromosome 7, with several variants in surrounding
genes previously reported to be associated with detected
sulfated steroids (Shin et al. 2014). CYP3A43 is an oxido-
reductase, that can act as testosterone 6B-hydroxylase
(Domanski et al. 2001), leading to steroid hormone deacti-
vation (Han et al. 2015). The association is driven primarily
by a single variant (rs118168183) located in the last intron of
CYP3A7-CYP3AP1. Rs118168183 belongs to an established
enhancer and could potentially affect the transcription of several
genes, including CYP3A43, PTCD1, CYP3A4, AZGP1, and
CYP3A5 (Andersson et al. 2014).

The analysis strategy and the data presented here provide
further insight and information about the benefits of WGS
data relative to WES data for the analysis of common complex
phenotypes that underlie the majority of morbidity and mor-
tality in the US population. The tension becomes especially
taught when taking into account the cost of WGS, which
includes not only the sequencing itself, but also substantial
data processing and data storage costs. Despite the vast
majority of GWAS signals residing in noncoding regions of
the genome, there are only a handful of examples of insight
gained from the investigation of whole genome sequence for a
common complex phenotype or disease (Fuchsberger et al.
2016; Morrison et al. 2017). There are even fewer examples
where the mechanisms of the nongenic association are well-
understood. In the data presented here all of the novel con-
sistent between ethnicities common variants reside outside of
protein encoding exons and are in eQTLs affecting the ex-
pression of the genes involved in crucial biological processes,
such as inflammation and bile acids metabolism, in multiple
tissues (GTEx Consortium 2015). These results underscore
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the importance of integrating WGS analyses with nongenic
annotation such as ENCODE, FANTOM, and GTEXx.

In summary, we identified seven novel consistent lipid-
related metabolite-genomic region pairs. Discovered loci,
identified by either single variant or aggregation tests, lie
in or near the genes involved in transport (SLC10A1) and
metabolism (SCD, FDX1, UGT2B15, UGT2B17, FADS1, and
FADS?2) of lipid-related metabolites. Most of the significant
and consistent findings belonged to presumed regulatory
regions near annotated protein-encoding genes, emphasiz-
ing the importance of investigating noncoding regions and
applying versatile analytical approaches to improve our under-
standing of the genetic architecture of quantitative traits.
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