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Abstract

Motivation: With the increasing amount of genomic and epigenomic data in the public domain, a

pressing challenge is to integrate these data to investigate the role of epigenetic mechanisms in regu-

lating gene expression and maintenance of cell-identity. To this end, we have implemented a computa-

tional pipeline to systematically study epigenetic variability and uncover regulatory DNA sequences.

Results: Haystack is a bioinformatics pipeline to identify hotspots of epigenetic variability across dif-

ferent cell-types, cell-type specific cis-regulatory elements, and associated transcription factors.

Haystack is generally applicable to any epigenetic mark and provides an important tool to investigate

the mechanisms underlying epigenetic switches during development. This software is accompanied

by a set of precomputed tracks, which may be used as a valuable resource for functional annotation

of the human genome.

Availability and implementation: The Haystack pipeline is implemented as an open-source, multiplat-

form, Python package called haystack_bio freely available at https://github.com/pinellolab/haystack_bio.

Contact: lpinello@mgh.harvard.edu or gcyuan@jimmy.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Epigenetic patterns are highly cell-type specific, and influence gene

expression programs (Jenuwein and Allis, 2001). Recently, a large

amount of epigenomic data across many cell types has been gener-

ated and deposited in the public domain, in part thanks to large con-

sortia such as Roadmap Epigenomics Project (Bernstein et al.,

2010), and ENCODE (Dunham et al., 2012). These data sources

offer unprecedented opportunities for systematic integration and

comparison. In an earlier work (Pinello et al., 2014), we developed

and validated a computational strategy to systematically evaluate

cross-cell-type epigenetic variability and to identify the underlying

regulatory factors of such variability. Here we provide an implemen-

tation of this strategy that automatically integrates multiple data

types in an easy-to-use command line software. Our goal is to facili-

tate biologists’ efforts at analyzing epigenetic data without the bur-

den of coding, and to enable researchers to integrate their own

sequencing data with information from the public domain.

2 Description

Haystack takes as input the genome-wide distributions of an epigen-

etic mark across multiple cell types or subjects—measured by

ChIP-seq, DNase-seq, ATAC-seq or similar assays—as well as gene

expression profiles quantified by microarray or RNA-seq. Users can

start with publicly available preprocessed data or integrate their

own data in the pipeline by providing BAM or bigWig files that can
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be generated by existing tools such as the ENCODE Uniform

Processing Pipelines. Haystack’s entire computational pipeline

can be executed with a single command (i.e. haystack_pipeline).

The pipeline is composed of three modules: haystack_hotspots,

haystack_motifs, and haystack_tf_activity_plane. Each module is

designed to carry out a distinct but related task (Fig. 1A), as

described below.

2.1 Module 1. Discovery of hotspots and cell-type

specific regions
haystack_hotspots identifies the hotspots of epigenetic variability,

i.e. those regions that are highly variable for a given epigenetic mark

among different cell types. The algorithm for identifying the hot-

spots was described previously in Pinello et al. (2014). Briefly, the

input for the pipeline is a set of genome-aligned sequencing tracks

for a given epigenetic mark in different cell types, in BAM or bigWig

format. The haystack_hotspots module first quantifies the sequence

reads to non-overlapping bins of predetermined size (500 bp by de-

fault), and normalizes data using a variance stabilization method

followed by quantile normalization. It then quantifies the variability

of the processed data signal in each bin using the variance-to-mean

ratio. The most variable regions, accordingly to this measure, are se-

lected as hotspots (originally termed as Highly Plastic Regions in

Pinello et al. [2014]). The subsets of hotspot regions that have spe-

cific activity in a particular cell type are next identified, based on a

z-score metric. Finally, an IGV (http://www.broadinstitute.org/igv/)

XML session file is created to enable easy visualization of the results

(Fig. 1B, Supplementary Fig. S1).

2.2 Module 2. Analysis of transcription factor motif
haystack_motifs identifies transcription factors (TFs) whose binding

sequence motifs are enriched in a cell-type specific subset of hot-

spots. This module takes the output of haystack_hotspots as its

input. Alternatively, the input may be a generic set of genomics re-

gions; e.g. promoters for a set of genes of interest or cell-type specific

enhancers. A motif database can also be specified (JASPAR

[Mathelier et al., 2016] by default) to look for motif enrichment (the

basic counting of each motif is based on the FIMO software; Grant

et al., 2011), with use of random or C þ G content matched gen-

omic sequences as background. We find that the latter option is

more appropriate for histone modifications. The output of this mod-

ule consists of an HTML page (Supplementary Fig. S2) that reports

each enriched motif, a series of informative parameters including the

target/background ratio, the P-value (calculated with the Fisher’s

exact test) and q-value, the motif logo, the central enrichment score,

the average profile in the target regions containing the motif, and

the closest genes for each region (Fig. 1C, Supplementary Fig. S2).

2.3 Module 3. Integration of gene expression data
Because different TFs may share similar sequence binding patterns,

the exact regulator cannot be determined by motif enrichment ana-

lysis alone. Spurious association may also occur due to, e.g. over-

abundance of motif sequences. haystack_tf_activity_plane provides

an additional filter to select for the most relevant TFs by further

integrating gene expression data; it is based on the assumption

that the expression level of a functional TF is correlated with the ex-

pression level of the target genes of hotspot regions. Such a relation-

ship is visualized with the use of an activity plane representation

(Fig. 1D). A detailed description of the tf activity plane plot and

how it is generated is provided in Supplementary Material Section 3.

Briefly, for each cell type, an activity plane plot (Supplementary Fig.

S3) is generated for each enriched motif identified in that cell type

by the haystack_motifs. In this representation, the cell-type of inter-

est is marked with a red star. The furthest is the star from the origin

the more cell-type specific is either the expression of the TF (x-axis)

or its effect on nearby genes (y-axis). This allows us to capture how

A C

B D

Fig. 1. (A) Haystack overview: modules and corresponding functions. (B) Hotspot analysis on H3k27ac: signal tracks, variability track and hotspots of variability

are computed from the ChIP-seq aligned data; the regions specific for a given cell type are also extracted. (C) Motif analysis on the regions specific for the H1hesc

cell line: Pou5f1:: Sox2 is significant; P- and q-value, motif logo and average profile are calculated. (D) TF activity for Sox2 in H1esc (star) compared to the other

cell types (circles), x-axis specificity of Sox2 expression (z-score), y-axis effect (z-score) on the gene nearby the regions containing the Sox2 motif
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informative (as measured by the gene expression level of the TF) a

particular TF is for a given cell type compared with other cell types.

However, not all possible plots are generated by default; Only those

passing the following filters are reported: (i) the activity of the TF re-

capitulates changes in gene expression such that the value of the cor-

relation of the TF with nearby genes exceeds a given threshold

(default rho ¼ 0.3) and (ii) the average gene expression is greater in

the considered cell type such that the standardized gene expression

values are positive (i.e. default z-score > 0). Earlier we showed that

these filters are important for identifying factors that truly play a

key role in mediating poised enhancer activities (Pinello et al.,

2014).

3 Related methods

Several epigenomics software packages already exist that share

Haystack’s goals of identifying functional regulatory sequences or

regulators involved in gene regulation. The main contribution of

Haystack can be summarized by the following three general aspects

of the pipeline: (i) Haystack takes as input not just epigenomic data,

but also genomic and transcriptomics data. The majority of avail-

able epigenomic tools are designed to work with one or two types of

data. DeepChrome instead (Singh et al., 2016) is an example of an

integrative deep learning method that takes in histone modification

signal as input and gene expression as output to be predicted.

However, DNA sequence is not incorporated, and the histone signal

is constrained to a small window around the transcription start site.

(ii) Haystack takes as input epigenomic data for a single epigenetic

mark across multiple cell types and generates cell-type specific hot-

spot annotation tracks. In contrast, chromatin state annotation

methods such as ChromHMM (Ernst and Kellis, 2012), Segway

(Hoffman et al., 2012), diHMM (Marco et al., 2017) and Spectacle

(Song and Chen, 2015) take as input epigenomic data for a single

cell type across multiple epigenetic marks and annotate genomic re-

gions into discrete chromatin states (e.g. enhancers, promoters)

based on the patterns of marks in a single cell type. These generated

annotated regions are not necessarily variable across cell types.

(iii) By computing cell-type specific enriched motifs using a central

enrichment filter and incorporating gene expression data, Haystack

generates a list of cell-type specific TFs. In contrast, Homer (Heinz

et al., 2010) can find enriched or de novo motifs from a set of se-

quences but cannot perform central enrichment filtering and

DREME (Bailey, 2011) can be used only for de novo motif discovery

but cannot calculate enrichment of known motifs. Neither method

incorporates gene expression data. A detailed comparison of related

methods is presented in Supplementary Table S1.

4 Results

4.1 Analysis of H3K27ac data
To demonstrate Haystack’s utility, we analyzed 6 ChIP-seq datasets

from the ENCODE project (Dunham et al., 2012) for the histone

modification H3K27ac (Fig. 1B). H3K27ac often marks active enhan-

cers that promote the expression of nearby genes. We also integrated

six RNA-seq assays, to quantify gene expression for the same cell

types. Figure 1 shows the output of the pipeline: Haystack not only re-

covers regions that are highly dynamic (variability and hotspots tracks

in Fig. 1), but also regions that are specifically active in each cell type.

Additionally, Haystack detects several TFs that are likely to play an

important regulatory role in those regions (Supplementary Fig. S3).

For example, for regions that are specifically active in the embryonic

stem cell line (H1hesc), we found that the Pou5f1:: Sox2 composed

motif was highly enriched, and the expression of Sox2—a fundamen-

tal TF for embryonic stem cell identity—was highly specific and posi-

tively correlated with activity of the target genes.

4.2 Analysis of roadmap epigenomics project
We applied the Haystack pipeline to data from the Roadmap

Epigenomics Project using the maximal number of non-redundant

cell-types for which gene expression and epigenetic data was avail-

able (Supplementary Material Section 4). We provide precomputed

analysis for H3k27ac (41 cell types), H3K27me3 (41 cell types),

H3K4me3 (41 cell types) and DNase I hypersensitivity (25 cell

types). These precomputed tracks provide a valuable resource for re-

searchers interested in identifying functional elements in the human

genome, exploring how epigenetic variability is controlled in differ-

ent cell types, and uncovering regulatory sequences.

4.3 Reproducible results through Cloud and

Docker support
To facilitate the use of Haystack without the need to access an inten-

sive computational facility, we provide detailed instructions in the

Supplementary Material on how to deploy and test Haystack on the

Amazon Web Services cloud or similar services. We also provide a

Docker image to make our tool more user-friendly and reproducible

(see Supplementary Material Section 5).

5 Usage

The entire pipeline can be executed simply by running a single com-

mand. By default, the users need only to create a single description

file that contains information about the data file paths (e.g. sam-

ples_names.txt) and the reference genome used in the analysis (e.g.

hg19):

haystack_pipeline samples_names.txt hg19

If the specified genome information and annotations are not available

locally, they will be automatically downloaded from the internet. The

haystack_pipeline command is equivalent to running haystack_hot-

spots followed by haystack_motifs and haystack_tf_activity_plane.

A detailed description of the settings is provided in Supplementary

Material Section 9. To illustrate the Haystack workflow, we also pro-

vide a walk-through example (see Supplementary Material Section 3)

that reproduces the results described in Section 4.
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